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We present a detailed theoretical investigation of interfaces and junctions involving itinerant antiferromag-
nets. By solving the Bogoliubov–de Gennes equations with a tight-binding model on a square lattice, we study
both the self-consistent order parameter fields proximate to interfaces between antiferromagnets �AF� and
s-wave �sSC� or d-wave �dSC� superconductors, the dispersion of quasiparticle subgap states at interfaces and
interlayers, and the local density of states �LDOS� as a function of distance from the interface. In addition, we
present the quasiclassical approach to interfaces and junctions involving itinerant antiferromagnets developed
in an earlier paper. Analytical results are in excellent agreement with what we obtain numerically. Strong
effects of pair breaking in the presence of low-energy interface Andreev states are found in particular for
AF/sSC interfaces when interface potentials are not too high. Potential barriers induce additional extrema in the
dispersive quasiparticle spectra with corresponding peaks in the LDOS. Discrete quasiparticle dispersive levels
in AF–normal metal �N�–AF systems are found to depend strongly on the misorientation angle of the magne-
tizations in the two antiferromagnets.
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I. INTRODUCTION

Interfaces of magnetic materials with normal metals and
superconductors have attracted much attention in recent
years because they can strongly influence properties of me-
soscopic and nanoscopic systems, and may play an important
role in compounds with competing magnetic and supercon-
ducting ordering. Hybrid superconducting systems involving
ferromagnets and/or antiferromagnets manifest unusual prop-
erties associated with spin and orbital effects, and are of both
fundamental interest and importance for technological appli-
cations. Ferromagnetic layers can spin polarize quasiparticle
currents and Zeeman split surface densities of states with
possible applications in spintronics.1 Superconductor-
ferromagnet-superconductor �SC/F/SC� junctions have been
shown to display 0-� transitions with varying temperature,
width, or orientational structure of the magnetization of the
ferromagnetic interlayer.2–10

There are also many situations of fundamental and prac-
tical interest which involve interfaces with antiferromagnets.
In particular, many of the properties of high-temperature su-
perconducting �HTS� cuprate materials are thought to result
from a competition between antiferromagnetic and supercon-
ducting order, and there are many naturally occurring situa-
tions and possible devices which might involve such bound-
aries. These include interfaces of insulating and highly doped
cuprates or superconductor-antiferromagnet-superconductor
�SC/AF/SC� junctions,11,12 HTS grain boundaries,13 where
antiferromagnetism may play a role as a surface state, and
the antiferromagnetism which has been observed in HTS
vortex cores.14–18 At the same time, there exist only very
preliminary results of experimental and theoretical investiga-
tions of proximity and Josephson effects through various
types of antiferromagnetic interfaces.19–25 Below we study
theoretically interfaces between itinerant antiferromagnets
and normal metals or superconductors. Itinerant antiferro-
magnets, such as chromium and its alloys,20,26,27 are metals

above the Néel temperature. In the antiferromagnetic phase,
however, an energy gap in the quasiparticle spectrum arises
either on the whole Fermi surface or on parts of it. Similar
properties are also manifested in Mott antiferromagnets, in
particular undoped cuprates. Since they possess strong cor-
relations due to large on-site Coulomb repulsion U, the
mean-field approach of the present paper cannot be applied
quantitatively to Mott systems, whereas it applies well to
itinerant antiferromagnets with comparatively small U. We
expect, however, that our main conclusions regarding AF/S
and AF/N interfaces can be qualitatively applied also to in-
terfaces with Mott antiferromagnets because they are based
largely on symmetry properties and general characteristics of
antiferromagnets, such as the doubling of period, nesting
conditions and the wave vector of the antiferromagnetic pat-
tern. In itinerant antiferromagnets, the energy gap in the qua-
siparticle spectrum is determined by the antiferromagnetic
order parameter, i.e., the sublattice electronic magnetization
m. This applies both to commensurate antiferromagnetic
phases and to phases with spin-density waves,28 and is remi-
niscent of the situation in superconductors, where the energy
gap is determined by the superconducting order parameter �.

Recently, it has been demonstrated theoretically that a
spin-dependent channel of quasiparticle reflection, the so-
called Q reflection, takes place at interfaces between itinerant
antiferromagnets and normal metals or superconductors.25

Parallel to the interface, the momentum component of low-
energy normal-metal quasiparticles changes by a wave vec-
tor Q� in a Q reflection event, where Q is the wave vector of
the antiferromagnetic pattern. Assuming small Fermi veloc-
ity mismatches and taking into account the nesting condition
EF�p+Q�=−EF�p� in itinerant antiferromagnets, one can see
that a normal-metal quasiparticle changes its total momen-
tum by Q and the respective velocity changes its sign in a Q
reflection event. Hence, normal-metal quasiparticles with en-
ergies less than or comparable to the antiferromagnetic gap
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experience spin-dependent retroreflection at antiferromagnet-
normal metal �AF/N� transparent interfaces. Furthermore, Q
reflection processes generate quasiparticle bound states be-
low the AF gap in AF/N /AF junctions, analogously to the
case of subgap states in SC/N /SC systems formed by the
Andreev reflection. The AF/N /AF bound states arise from a
coherent superposition of electrons with momenta k and
k+Q and almost opposite velocities. Subgap states arise also
at AF/SC interfaces as a combined effect of Andreev and Q
reflections. Among a variety of subgap states, low-energy
states with energies EB�min�m ,�� are of special interest
since they can result in low-temperature anomalies in the
Josephson critical current, as well as low-bias anomalies in
the conductance. Low-energy quasiparticle interface states
were also predicted to occur on antiferromagnetic–s-wave
superconductor �AF/sSC� interfaces in the absence of specu-
lar reflection, when one can disregard effects of interface
potential barriers and Fermi velocity mismatches. For an
sSC/AF/sSC junction, these bound states are split due to a
finite width of the AF interlayer and carry the supercurrent.
At AF/dSC �d-wave superconductor� interfaces, low-energy
bound states EB�min�m ,�� do not exist, at least if the order
parameters are small compared with the hopping matrix ele-
ment �� ,m� t�. This is contrary to the case of a �110� sur-
face of a dSC confined with an impenetrable potential wall
where zero-energy surface Andreev states are formed.29–31

Below, we extend the study of effects of Q reflection
processes based on self-consistent solutions of the
Bogoliubov–de Gennes �BdG� equations. This goes beyond
the framework of our earlier work.25 In general, we find ex-
cellent agreement with the results by Bobkova et al.25 At the
same time, the more general approach of the present paper
allows us to study several important problems. In particular,
we discuss the effects of interface potentials on the disper-
sive quasiparticle interface states and the local density of
states �LDOS�. In the presence of potential barriers and
Fermi velocity mismatches, there exists an interplay of
specular and Q reflections. We demonstrate that potential
barriers on interfaces between AF and either sSC or dSC can
result in additional extrema in dispersive quasiparticle spec-
tra and associated peaks in the LDOS. We also find addi-
tional interface quasiparticle states with subgap energies near
the edge of the continuum, which arise due to self-consistent
suppression of the order parameters near the interface. By
studying effects of interface pair breaking at AF/SC inter-
faces, we find that for the �110� orientation the self-
consistent suppression of both antiferromagnetic and super-
conducting order parameters near the interface is
accompanied by even-odd spatial oscillations. We show that
discrete quasiparticle dispersive levels in AF-N-AF systems
strongly depend on the relative orientation of the magnetiza-
tions in the two antiferromagnets. Effects of the misorienta-
tion angle turn out to be analogous to the influence of the
phase difference on the discrete quasiparticle spectrum in
SC-N-SC systems.

The paper is organized as follows. In Section II, we intro-
duce the microscopic model used to study various interfaces
with antiferromagnets, the BdG equations with a mean-field
treatment of both magnetism and superconductivity general
enough to study both s- and d-wave pairing symmetry, as

well as various interface potentials. In Sec. III, we sketch the
derivation of the associated quasiclassical �Andreev� equa-
tions complemented with boundary conditions by assuming
slow spatial variations of both order parameters within each
magnetic sublattice. In Sec. IV, we study quasiparticle states
at �100� and �110� interfaces of both s- and d-wave super-
conductors with antiferromagnets, and compare the results of
numerical evaluations of the BdG equations with the predic-
tions of the quasiclassical theory. We end Sec. IV by showing
how the bound state energies can be obtained within a trans-
fer matrix formalism. In Sec. V we study the AF/N /AF
junction, and discuss a “spin-�” configuration where the
relative phase of the staggered magnetization on both sides
of the junction can tune the energy of the interface bound
states. Conclusions and perspectives for future work are pre-
sented in Sec. VI.

II. MODEL

For studying the electronic structure of interfaces between
antiferromagnets and superconductors or normal metals, we
consider the following two-dimensional �2D� mean-field
Hamiltonian on a square lattice

Ĥ = − t �
�ij��

ĉi�
† ĉj� + �

�ij�
��ijĉi↑

† ĉj↓
† + H.c.� − �

i�

�� − hi�n̂i�

+ �
i

mi�n̂i↑ − n̂i↓� . �1�

Here, �ij and mi denote the superconducting and magnetic
order parameters, respectively. ĉi�

† creates an electron of spin
� on the site i, t denotes the nearest-neighbor hopping inte-
gral, � is the filling factor, hi models possible interface
potentials, and n̂i�= ĉi�

† ĉi� is the particle number operator
on site i. We will study self-consistently only singlet
s-wave or d-wave superconducting pairings defined as �ij
=−�Vi /2��ĉi↓ĉj↑− ĉi↑ĉj↓�. For s-wave pairing, one should set
i= j, whereas the d-wave order parameter �ij connects near-
est neighbor sites. The self-consistent magnetic order param-
eter is represented as mi= �Ui /2�	�n̂i↑�− �n̂i↓�
. In the bulk of
the antiferromagnet and in the absence of any perturbations,
the staggered magnetic order parameter takes the form mj
= �−1� ja+jbm=exp�iQj�m. For a square lattice with the crystal
coordinate axes a and b, the antiferromagnetic wave vector is
Q= �� /a ,� /a�. Within the framework of a generic Hubbard-
type model, the staggered antiferromagnetic gapped state is
stable only at or near half filling. For this reason we assume
below vanishing or small �.

We choose a coordinate system where x and y describe
coordinates perpendicular and parallel to the interface, re-
spectively. For a �100� interface the x and y axes coincide
with the crystal axes a and b. Then the normal-state electron
band is given by

��k� = − 2t�cos ka + cos kb� − � , �2�

and the respective Brillouin zone is spanned by ka,b
� 	−� ,�
, with the momenta given in units of a−1. For a
�110� interface we have instead
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��k� = − 4t cos�kx/�2�cos�ky/�2� − � , �3�

with kx� 	−�2� ,�2�
, and ky � 	−� /�2,� /�2
, on account
of the periodic conditions along the crystal surface.

The Hamiltonian �1� is quadratic in the Fermi fields and
can be diagonalized with Bogoliubov transformations, ĉi�

†

=�n	un�
* �i��̂n�

† +�vn��i��̂n�̄
. The corresponding
Bogoliubov–de Gennes equations take the form

�
j
�Kij,�

+ Dij,�

Dij,�
* − Kij,�

− 
�un��j�
vn�̄�j� 
 = En��un��i�

vn�̄�i� 
 . �4�

Here Kij,�
± =−t	�ij�+ �hi−��	ij ±�mi	ij, where �= ±1 for up

and down spin, 	ij and 	�ij� are the Kronecker delta symbols
connecting on-site and nearest neighbor sites, respectively.
The off-diagonal block Dij,� connects the nearest neighbor
links Dij,�=−�ij	�ij� with minus �plus� signs on the a�b� links
for the dx2−y2-wave pairing symmetry, or on-site coupling
Dij,�=−�i	ij for conventional s-wave pairing. We note that a
modified Bogoliubov transformation ĉi�

† =�n	un�
* �i��̂n�

†

+vn��i��̂n�̄
, implemented in Ref. 25, led to modified ampli-
tudes vn��i�: vn��i�→�vn��i�. The corresponding basic equa-
tions for these modified amplitudes coincide with those in
the present paper 	in particular, see Eqs. �4�, �6�–�9�, �13�,
and �14�
 after redefining the off-diagonal blocks Dij,�
→−�Dij,�, or, equivalently, �ij→−��ij, �i→−��i.

Crystal periodicity along the interface makes it conve-
nient to Fourier transform the BdG equations along the y axis
and introduce a wave vector component ky, as usual.32 In the
presence of antiferromagnetic ordering, this should be done
by taking into account magnetic crystal symmetry along the

boundary. In particular, the magnetic order parameter mj os-
cillates rapidly along the �100� interface and results in a dou-
bling of the period along the y axis. In general, a modified
magnetic period along the boundary arises for all interface
orientations except for a �110� interface. We will take into
account the magnetic crystal symmetry by introducing a unit
cell which contains two neighboring atoms which belong to
different magnetic sublattices A and B. Unit cells chosen
below for the �100� and �110� interface are shown in Figs. 1
and 2, respectively.

On account of the magnetic crystal symmetry, the Fourier
transformation is taken to be of the form

�uj,�
A�B�

vj,�̄
A�B� 
 =

dy

2�
�

−�/dy

�/dy

dkye
ikydyjy�ujx,�

A�B��ky�

v jx,�̄
A�B��ky�


 . �5�

Here ky is measured in units of a−1 and dy =2,�2 for �100�,
and �110� interfaces, respectively. The transformation is
identical for atoms of sublattices A and B in the same unit
cell j. The vector j= �jx , jy� denotes cell coordinates, where
jx�y� is the x�y� coordinate of the cell measured in units of the
appropriate basis vectors. For definiteness, we identify cell
positions with positions of the associated site A.

Let vector i denote the location of a nearest neighbor site
for site A�B� in the same unit cell. Then, the positions of all
nearest neighbors are described in the case of a �100�
interface in terms of the basis vectors shown in Fig. 1 as
�i+e1± �e2 /2� , i−e1± �e2 /2� , i±e2 , i�. Taking this into ac-
count when performing the Fourier transformation �5� in
Eqs. �4�, we obtain the following one-dimensional
Bogoliubov–de Gennes equations for the �100� case:

− �uj,�
A�B��ky� − te±iky	uj+1,�

B�A� �ky� + uj−1,�
B�A� �ky� + 2 cos kyuj,�

B�A��ky�
 + �mj
A�B�uj,�

A�B��ky� − �s,j
A�B�v j�̄

A�B��ky� − e±iky	�d,j j+1
A�B�,av j+1,�̄

B�A� �ky�

+ �d,j j−1
A�B�,av j−1,�̄

B�A� �ky� + 2 cos ky�d,j j
A�B�,bv j,�̄

B�A��ky�
 = Euj,�
A�B��ky� , �6�

FIG. 1. �Color online� �100� interface, showing the correspond-
ing unit cells with two atoms and basis vectors e�1, e�2 of the mag-
netic lattice.

FIG. 2. �Color online� �110� interface, showing the correspond-
ing unit cells and basis vectors.
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�v j,�̄
A�B��ky� + te±iky	v j+1,�̄

B�A� �ky� + v j−1,�̄
B�A� �ky� + 2 cos kyv j,�̄

B�A��ky�
 + �mj
A�B�v j,�̄

A�B��ky� − �s,j
A�B�*

uj,�
A�B��ky� − e±iky	�d,j j+1

A�B�,a*
uj+1,�

B�A� �ky�

+ �d,j j−1
A�B�,a*

uj−1,�
B�A� �ky� + 2 cos ky�d,j j

A�B�,b*
uj,�

B�A��ky�
 = Ev j,�̄
A�B��ky� . �7�

Here, j denotes only the x coordinate of a cell. The factors
exp�±iky� arise in the nonlocal terms in Eqs. �6� and �7� since
for the �100� interface orientation, in accordance with the
definitions above, the y coordinate of the site B is always less
by a than the coordinate of site A in the same cell.

For the �110� orientation, however, the y coordinate of the
site B is less by a /�2 than the y coordinate of site A in the

same cell. Furthermore, if the vector i denotes the location of
a nearest neighbor site for site A�B� in the same unit cell, the
positions of all nearest neighbors in the case of the �110�
interface are described in terms of basis vectors shown in
Fig. 2 as �i
e1 , i±e2 , i , i
e1±e2�. Thus, for the �110� inter-
face orientation we obtain the following one-dimensional
BdG equations:

− �uj,�
A�B��ky� − 2t cos

ky

�2
e±iky/�2	uj,�

B�A��ky� + uj
1,�
B�A� �ky�
 + �mj

A�B�uj,�
A�B��ky� − �s,j

A�B�v j,�̄
A�B��ky� − �	�d,j j

A�B�,ae±�2iky + �d,j j
A�B�,b
v j,�̄

B�A��ky�

+ 	�d,j j
1
A�B�,b e±�2iky + �d,j j
1

A�B�,a 
v j
1,�̄
B�A� �ky�� = Euj,�

A�B��ky� , �8�

�v j,�̄
A�B��ky� + 2t cos

ky

�2
e±iky/�2	v j,�̄

B�A��ky� + v j
1,�̄
B�A� �ky�
 + �mj

A�B�v j,�̄
A�B��ky� − �s,j

A�B�*
uj,�

A�B��ky� − 	��d,j j
A�B�,a*

e±�2iky + �d,j j
A�B�,b*

�uj,�
B�A��ky�

+ ��d,j j
1
A�B�,b*

e±�2iky + �d,j j
1
A�B�,a*

�uj
1,�
B�A� �ky�
 = Ev j,�̄

A�B��ky� . �9�

The singlet superconducting order parameters entering
Eqs. �6�–�9� are defined as �ij

A�B�=−�Vi /2��ĉi↓
A�B�ĉj↑

B�A�

− ĉi↑
A�B�ĉj↓

B�A��. The magnetic order parameter is mi
A�B�= �Ui /2�

�	�n̂i↑
A�B��− �n̂i↓

A�B��
. For the study of proximity effects, it is
convenient to introduce the magnetization Mi and the pairing
amplitude Fij, which are related to mi and �ij by mi=UiMi
and �ij =−ViFij, respectively.

The self-consistency equations in the sublattice represen-
tation take the form

ni�
A�B� = �

n,ky

	�un,ix,�
A�B� �ky��2f�En,ky,�� + �vn,ix,�

A�B� �ky��2f�− En,ky,��
 ,

�10�

�ij
A�B� = −

Vi

2 �
n,ky,�

	un,ix,�
A�B� �ky�vn,jx,�̄

B�A�*
�ky�eikydy�iy−jy�f�− En,ky,��

− un,jx,�
B�A� �ky�vn,ix,�̄

A�B�*
�ky�e−ikydy�iy−jy�f�En,ky,��
 . �11�

The sum is taken over eigenstates of Eqs. �6�–�9�, which
depend on ky, �, and possibly an additional set of quantum
numbers n. Equation �11� applies to the d-wave case,
whereas for the s-wave superconductor with on-site pairing
one should put in Eq. �11� �ii

� with amplitudes un,ix,�
� �ky�,

vn,ix,�̄
� �ky� taken for one sublattice �=A ,B. As usual, f�E�

= 	1+exp�E /T�
−1 denotes the Fermi distribution function at
temperature T.

Obviously, any bond between nearest neighbors connects
two sites from different sublattices. The notation �ij

A ��ij
B�

means that the order parameter is taken on the bond which
connects a site of sublattice A�B� within the unit cell i with a
nearest neighbor site 	of sublattice B�A�
 in the unit cell j.
All order parameters are presumed to be identical on links
�or sites� which can be obtained from each other by magnetic
translations along the interface or interlayer. For this reason,
it is sufficient to consider i and j in the notation �ij

A�B� as
containing only x components, if one indicates in addition
the type of link �a or b�.

III. ANDREEV EQUATIONS AND S MATRICES

We will base our numerical calculations on the one-
dimensional Bogoliubov–de Gennes equations formulated
above, as well as on the corresponding self-consistency
equations. For an analytical study of superconducting inter-
faces and junctions involving itinerant antiferromagnets, we
present in this section the quasiclassical approach developed
in Ref. 25. As is well known, the quasiclassical theory de-
scribes physical quantities which vary slowly in space com-
pared to the atomic scale and assumes characteristic energies
to be much less than the Fermi energy EF. We consider be-
low two types of superconductor-antiferromagnet hybrid sys-
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tems to which the quasiclassical approach applies to a differ-
ent extent.

The first type of system satisfies the conditions ����EF,
�m��EF. The latter inequality guarantees that the antiferro-
magnetic order parameter m, as a rule, varies slowly within
each separate sublattice A and B. Hence, one can use quasi-
classical equations both for superconducting and antiferro-
magnetic phases and match them at the interface if they are
formulated separately for each sublattice. Sublattice equa-
tions are coupled with each other via nonlocal terms which
contain, for example, hopping matrix elements or d-wave
superconducting order parameter fields. In total, this gives us
twice the usual number of coupled quasiclassical equations.
Another possible formulation of the quasiclassical approach
to the first type of superconductor itinerant antiferromagnet
hybrid system is not based on the sublattice representation.
Instead, one can formulate equations for quasiparticle trajec-
tories, taking into account that the rapidly oscillating antifer-
romagnetic order parameter mj = �−1� ja+jbm=exp�iQj�m
couples equations for two trajectories, one for a quasiparticle
momentum kF and the other for �kF+Q�. The approach based
on this �kF ,kF+Q� representation results also in twice the
number of quasiclassical equations. There are no further
coupled trajectories, since 2Q is assumed to be the reciprocal
vector of the nonmagnetic crystal due to the nesting condi-
tion.

In the second type of hybrid superconductor-
antiferromagnet system, only the superconducting order pa-
rameter satisfies the condition ����EF and can be safely
described with the quasiclassical equations. The antiferro-
magnetic order parameter is taken as sufficiently large �
� �m�
EF �one could also assume m�EF within the frame-
work of the approach, if this were relevant�. Then the effect
of the antiferromagnet on the superconductor can be taken
into account entirely via modified boundary conditions,
which complement quasiclassical equations at abrupt
superconductor-antiferromagnetic interfaces.

A. Andreev equations in the sublattice representation

We begin with the derivation of Andreev equations in the
sublattice representation. Assume for this purpose that the
solution of the BdG equations �6�–�9� can be represented as
the following product of rapidly oscillating exponents and a
slowly varying Andreev amplitude:

�
uj�

A

uj�
B

v j�̄
A

v j�̄
B
� = exp�i

kFb̂

2
�̂3
�

ũj�
A

ũj�
B

ṽ j�̄
A

ṽ j�̄
B
�exp�ikF,xdxj� . �12�

Here, kF,x is the x component of the quasiparticle momentum
on the Fermi surface, measured in units of a−1. The quantity
kF,x can be considered a function of ky. The Pauli matrix �̂3
operates in �AB� sublattice space, dx=1 for �100� interface

and dx=�2 for the �110� case. Introducing the unit vector b̂
along the crystal b axis permits us to define the Andreev
amplitudes in Eq. �12� in a unified form which applies to all
interface orientations.

As mentioned above, the parameter � is considered
throughout the paper to be small ��EF, since the antiferro-
magnetic phase is stable only close to half filling. For this
reason, one can additionally include effects of small devia-
tions from half filling in the quasiclassical approximation.
Taking this into account, we define a small parameter of the
quasiclassical expansion as �=max��m� , ��� , ����a / �vF,x��1.
Here vF,x is the x component of the Fermi velocity in the
normal metal state at half filling. The quasiclassical approach
works only for those ky for which vF,x is not too small and
does not break the condition ��1. We expand all properties
associated with the Fermi surface in powers of the small
parameter ��a / �vF,x���1. This concerns, in particular, kF,x,
which enters the exponential factor in Eq. �12�. The surface-
adapted Brillouin zone and respective Fermi surface for
small and vanishing � are shown in Figs. 3 and 4 for the
�100� and �110� interface orientations, respectively.

For the �100� orientation, the normal-state electron band
is described as �±�k�= 
2t�cos kx+cos ky�−�, and the Bril-
louin zone in the case of two atoms in the unit cell �see Fig.
1� is spanned by kx� 	−� ,�
, ky � 	−� /2 ,� /2
. For the
half-filled band kF,x= ± ��− �ky�� and vF,x

± = ±2ta sin kF,x. As is
seen in Fig. 3, four possible values of kF,x, which occur for a
given ky at ��0, merge into two values at �=0.

For the �110� interface, we have in the sublattice repre-
sentation �±�k�= 
4t cos�kx /�2�cos�ky /�2�−� and kx,y

� 	−� /�2,� /�2
. If ��0, only the Fermi surface �−�k�=0
exists in the first Brillouin zone, whereas for ��0 the Fermi
surface is determined from �+�k�=0. At �=0 both Fermi

FIG. 3. �Color online� The Brillouin zone adapted to the �100�
interface and the Fermi surfaces for small and vanishing �.

FIG. 4. �Color online� The Brillouin zone adapted to �110� in-
terface and the Fermi surfaces for small and vanishing �.
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surfaces coincide with the edges of the first Brillouin zone.
As seen in Fig. 4, two different values of kF,x, which occur
within the first Brillouin zone for a given ky, touch the edges
of the zone kF,x= ±� /�2 in the case of half filling and hence,
become equivalent at �=0. Since the Fermi velocities vF,x1
and vF,x3

have opposite signs, for the half-filled band
vF,x

± �kF�= ±2�2ta cos�ky /�2�, where two signs of vF,x�kF� at
the same kF correspond to two degenerate parts of the Fermi
surface.

To obtain the Andreev equations for the �100� orientation,
we substitute the ansatz �12� into Eqs. �6� and �7�, separately
for each of the two values kF,x= ± ��−ky�, and disregard
terms 
�2. For the �110� interface one should proceed analo-
gously, using in Eqs. �8� and �9� the ansatz �12� with kF,x

=� /�2. We note that �ũj±1,�
B�A� − ũj,�

B�A��
��ũj,�
B�A��, �ũj+1,�

B�A� + ũj−1,�
B�A�

−2ũj,�
B�A��
�2�ũj,�

B�A��. Neglecting terms of the order of �2, one
gets with the required accuracy ũj+1

� − ũj
�= ũj

�− ũj−1
� = �ũj+1

�

− ũj−1
� � /2=dx�ũj

� /�xj.
Using the outlined procedure, we obtain the following

Andreev equations in the sublattice representation:

− �ũj,�
A�B� − ivF,x

+ �ũj,�
B�A�

�xj
+ �mj

A�B�ũj,�
A�B� − �s,j

A�B�ṽ j,�̄
A�B�

− �d,j
A�B��kF,x,ky�ṽ j,�̄

B�A� = E�ũj,�
A�B�, �13�

�ṽ j,�̄
A�B� + ivF,x

+
�ṽ j,�̄

B�A�

�xj
+ �mj

A�B�ṽ j,�̄
A�B� − �s,j

A�B�*
ũj,�

A�B�

− �d,j
A�B�*

�kF,x,ky�ũj,�
B�A� = E�ṽ j,�̄

A�B�. �14�

These equations take a unified form, which applies to
any interface orientation. For the �100� orientation
�d,j

A�B��kF,x ,ky�=2�d,j
A�B��cos kF,x−cos ky�. The on-site d-wave

order parameter �d,j
A�B�, slowly varying on the atomic scale

with coordinate j along x axis, is defined in the coordinate
space by the four surrounding links. With standard site coor-
dinates i= �ix , iy� one can write �d,i=

1
4 ��d,ii+a+�d,ii−a

−�d,ii+b−�d,ii−b�. For the �110� orientation we have
�d,j

A�B��kF,x ,ky�=−4�d,j
A�B� sin�kF,x /�2�sin�ky /�2� with kF,x

=� /�2.
As one can see from the derivation of Eqs. �13� and �14�,

they apply to various cases when the sublattice magnetic
and/or superconducting order parameters vary slowly in
space, satisfying standard quasiclassical conditions. For in-
stance, no particular relation between the sublattice magne-
tizations mj

A and mj
B is implied yet. For both interface orien-

tations, the Fermi velocity vF,x
+ �kF� is positive for kF,x�0

within the Brillouin zone in the sublattice representation.
However, the associated solutions of Eqs. �13� and �14� can
describe, in general, both incoming and outgoing quasiparti-
cles on either side of the interface. This is seen from the
expression for the density of a quasiparticle probability cur-
rent jP, which can be found from the BdG equations in much
the same standard way known in the case of the Schrödinger
equation. The probability current density along the x axis,
carried by the solution with quantum numbers �n ,� ,ky�, can
be written in the �100� case as

jP,x =
vF,x

+

2a
�

�=±,�
	��ũn,�,�

j,�* ũn,�,�
j,�̄ − ṽn,�̄,�

j,� ṽn,�̄,�
j,�̄* �
 . �15�

Here, the sum is taken over sublattice index �=A ,B, as well
as over the two parts of the Fermi surface �= ±1.

For the �110� orientation we find

jP,x =
vF,x

+

2a
�

�

	�ũn,�
j,�*ũn,�

j,�̄ − ṽn,�̄
j,� ṽn,�̄

j,�̄*�
 . �16�

As usual, the components u and v of the Andreev amplitudes
with the same wave vector have opposite contributions to the
probability current.33 Since the current is formed mainly by
hopping between nearest neighbor sites, it is determined in
the sublattice representation as a mixed product of A and B
components of Andreev amplitudes for any interface orien-
tation. Hence, the sign of jP,x depends not only on the crystal
wave vector kF, but also on the relative signs of the A and B
components of the Andreev amplitudes.

One can further transform Eqs. �13� and �14�, which are
formulated in the �AB�-sublattice representation with two at-
oms per unit cell into the representation with one atom per
unit cell. Consider, for example, the �110� interface orienta-
tion. For one atom per unit cell, the Brillouin zone is spanned
by kx� 	−�2� ,�2�
, ky � 	−� /�2,� /�2
 and ��k� is given
in Eq. �3�, whereas in the case of two atoms per unit cell the
Brillouin zone in the kx direction is kx� 	−� /�2,� /�2
. As-
suming �kF,x��� /�2, one can write the following relation
between the quasiparticle amplitudes in the two representa-
tions 	compare with Eq. �12�
:

� ũj
A�kF�ei�ky−kF,x�/2�2

ũj
B�kF�e−i�ky−kF,x�/2�2


�eikF,x�2j = � ũ2j�kF�

ũ2j+1�kF�e−i�ky−kF,x�/�2 
ei�kF,x/�2�2j

+ � ũ2j�kF + Q�

− ũ2j+1�kF + Q�e−i�ky−kF,x�/�2
ei�kF,x/�2�2j . �17�

Here, we have taken into account that if j is the x coordinate
of a two-atom unit cell, then in the representation with one
atom per unit cell, the site A has even x coordinate 2j,
whereas site B has the odd coordinate 2j+1.

In the sublattice representation, the wave vector Q
= �±�2� ,0�, which is the wave vector of the antiferromag-
netic pattern that we will study below, is the reciprocal crys-
tal vector. Thus, the wave vectors kF and kF+Q are equiva-
lent to each other in the approach with two atoms per unit
cell. In the representation with one atom per unit cell, the
wave vectors kF and kF+Q are physically different. The
quantity kF+Q in Eq. �17� is assumed to lie in the first Bril-
louin zone of the representation with one atom per unit cell,
so that Q= �±�2� ,0� should be taken there with a minus sign
for 0�kF,x�� /�2 and with plus sign for −� /�2�kF,x�0.
Thus, it follows from Eq. �17� that
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�ũj
A�kF�

ũj
B�kF�


 = � ũ2j�kF� + ũ2j�kF + Q�
ũ2j+1�kF� − ũ2j+1�kF + Q�


e−i	�ky−kF,x�/2�2
.

�18�

For the �100� interface orientation, the Brillouin zone for
the square lattice with one atom per unit cell is spanned by
kx,y � 	−�2� ,�2�
 and ��k� is given in Eq. �2�, whereas for
two atoms per unit cell, shown in Fig. 2, the Brillouin zone
in the ky direction is ky � 	−� /�2,� /�2
. Assuming �kF,y�
�� /�2, we find the following relation between the quasi-
particle amplitudes in the two representations:

�ũj
A�ky�

ũj
B�ky�


 =
1

2
e−iky/2�ũj�ky� + ũj�ky + Qy�

ũj�ky� − ũj�ky + Qy�

 . �19�

Here, the wave vector Q= �±� , ±�� is the reciprocal crystal
vector in the sublattice representation. The quantity ky +Qy in
Eq. �19� is assumed to lie in the first Brillouin zone of the
representation with one atom per unit cell so that Qy = ±�
should be taken with a minus sign for 0�kF,y �� /�2 and
with a plus sign for −� /�2�kF,y �0.

Substituting Eq. �18� and �19� into Eqs. �13� and �14�, we
obtain the Andreev equations in the �kF ,kF+Q� representa-
tion. Since quasiparticle crystal momenta kF and kF+Q both
lie on the Fermi surfaces on either side of the interface, the
Andreev equation in the �kF ,kF+Q� representation takes the
comparatively simple form

�− ivF,x�kF��̂z�̂z
�

�xj
− ��̂z + �

mj
A + mj

B

2
+ �

mj
A − mj

B

2
�̂x

− �s,j
�̂+

2
− �s,j

* �̂−

2
− �d,j�kF�

�̂+

2
�̂z − �d,j

* �kF�
�̂−

2
�̂z
�̂ j�

= E��̂ j�. �20�

Here, �̂ j�= (ũj��kF� , ũj��kF+Q� , ṽ j�̄�kF� , ṽ j�̄�kF+Q�). �̂� and
�̂� denote the Pauli matrices in particle-hole and �kF ,kF

+Q� spaces. Equation �20� applies generally for any particu-
lar relation between mj

A and mj
B. For instance, it applies also

to the study of weak ferromagnets �m�� f�. In the case of
antiferromagnetic ordering satisfying the condition mj

B

=−mj
A, within the quasiclassical accuracy one can disregard

in Eq. �20� the term containing mj
A+mj

B.
The only term which couples Andreev amplitudes with

momenta kF and kF+Q in Eq. �20� contains the difference
between sublattice magnetizations mj

A−mj
B. This is natural,

since a finite difference mj
A−mj

B results in a doubling of the
period in the system which we study. Equations �13�, �14�,
and �20� apply also in the absence of period doubling, being
equivalent in this case to the standard Andreev equations. If
period doubling takes place only at the boundaries, the sub-
lattice or �kF ,kF+Q� representations of the quasiclassical
equations can be convenient for applying appropriate bound-
ary conditions to the solutions.

B. Boundary conditions and the S matrix in „kF ,kF+Q…

representation

The assumption of slowly varying order parameters does
not apply in the vicinity of abrupt boundaries. This invali-
dates quasiclassical equations close to the boundaries and
makes it necessary to complement them with appropriate
boundary conditions. The conditions have been obtained for
Andreev amplitudes in Ref. 34 and rederived later by various
methods �see, e.g., Ref. 35�. The boundary conditions for
Andreev amplitudes at a plane interface can be written in the
following form:

��−
l

�+
r 
 = �Š11 Š12

Š21 Š22


��+
l

�−
r 
 . �21�

Here, � denotes a collection of Andreev amplitudes. For
example, in the �kF ,kF+Q� representation it contains eight
amplitudes � j

T= (ũj��kF� , ũj��kF+Q� , ṽ j�̄�kF� , ṽ j�̄�kF

+Q� , ũj�̄�kF� , ũj�̄�kF+Q� , ṽ j��kF� , ṽ j��kF+Q�). The super-
scripts l�r� indicate that the amplitudes are taken on the left
�right� side of the boundary. The subscripts � in the ampli-
tudes denote the sign of the Fermi velocity components
vF,x�kF� or vF,x�kF+Q� for electrons. Thus, the solutions en-
tering the left- and right-hand sides of Eq. �21� are connected
at the interface by the normal-state scattering S matrix: S
= �Šij� 	i�j�=1,2
. This matrix Šii contains the reflection am-
plitudes of normal-state quasiparticles from the interface in

ith half space, whereas Šij with i� j incorporates the trans-
mission amplitudes of normal-state quasiparticles from side

j. In the �kF ,kF+Q� representation, each component Šij

	i�j�=1,2
 in the matrix S is an 8�8 matrix in the eight-
dimensional product space of particle-hole, spin and �kF ,kF

+Q� variables. We introduce the Pauli matrices ��, ��, and
��, which operate in �kF ,kF+Q� space, particle-hole space,
and spin space, respectively.

The normal-state S matrix is diagonal in particle-hole
space

Š = �Š11 Š12

Š21 Š22


 = Ŝ
1 + �z

2
+ S̃

1 − �z

2
. �22�

If the AF order parameter does not change its direction,
one can take a quantization axis along m. In this case up and
down spin states are eigenstates of the BdG and Andreev
equations, which are formulated separately for each electron
spin orientation as given in Eqs. �4�, �6�–�9�, �13�, and �14�.
Then the associated S matrix turns out to be diagonal also in
spin space, and the boundary conditions reduce to the fol-
lowing equalities:

ũ�,−
�,l = �

�

�S11,�
�� ũ�,+

�,l + S12,�
�� ũ�,−

�,r � ,

ũ�,+
�,r = �

�

�S21,�
�� ũ�,+

�,l + S22,�
�� ũ�,−

�,r � , �23�

ṽ�,−
�,l = �

�

�S̃11,�
�� ṽ�,+

�,l + S̃12,�
�� ṽ�,−

�,r � ,
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ṽ�,+
�,r = �

�

�S̃21,�
�� ṽ�,+

�,l + S̃22,�
�� ṽ�,−

�,r � . �24�

Here, the superscripts �, � take the two values kF,y, kF,y
+Qy.

As an example, we apply in the following the quasiclas-
sical approach to analytical calculations of the subgap spec-
trum of quasiparticle interface states near a �110� SC/AF
interface in the absence of potential barriers. A detailed self-
consistent study of quasiparticle states at interfaces with an-
tiferromagnets will be presented below in Secs. IV and V.
Let an s-wave superconductor and an antiferromagnet, sepa-
rated with the �110� interface, occupy separately the right
half spaces �j�0� and the left �j�0� half spaces of the
square lattice. Assuming �E�� ���� �m�, �vF,x� /a, we use the
Andreev equations only in the superconducting region and
apply the boundary conditions at the superconductor-
antiferromagnet interface. Wave functions for quasiparticles
with energies below the superconducting gap decay expo-
nentially with increasing distance from the interface. Solving
the Andreev equations, one can easily find the standard two

component solutions �̃�,±
r �kF�= (ũ�,±

r �kF� , ṽ�̄,±
r �kF�) taken in

the right half space of the boundary

�̃�,±
r �kF� = C±�E ± i��s

2 − E2

− �s

 . �25�

Reflection amplitudes for electrons r�
e and holes r�

h , which
enter the quasiclassical boundary conditions, are taken for
the normal-metal state of the superconducting region at the
Fermi surface. An AF/N boundary is impenetrable for
normal-metal quasiparticles with energies below the antifer-
romagnetic gap, even in the absence of any interface poten-
tials �i.e., for a transparent interface�. Hence, the correspond-
ing transmission amplitudes vanish and the complex
reflection amplitudes for electrons and holes have the unit

modulus �re�kF��= �rh�kF��=1. Further, if �̃�
r �kF� represents an

outgoing solution in the case of a �110� interface, then

�̃�
r �kF+Q� is the incoming solution and vice versa. Here,

Q= �±�2� ,0� only has a nonzero x component. For this rea-
son, it is convenient to formulate the boundary conditions for
the �110� interface indicating explicitly only the ky compo-
nent

�̃�,+
r �ky� = �r�

e �ky�
1 + �̂z

2
+ r�

h�ky�
1 − �̂z

2

�̃�,−

r �ky� . �26�

A relation between r�
e �kF� and r�

h�kF� follows from the
fact that the quantity −	u−��kF�
* represents the wave func-
tion v�̄�kF� for a hole with energy −E from one spin subband
if u��kF� is the wave function for an electron with energy E
from the other spin subband. Under the condition �� t, one
can consider the reflection amplitudes at subgap energies ±E
as taken at the Fermi surface. Accounting additionally for the
fact that incoming and outgoing waves for holes are inter-
changed as compared with the case of electrons, we find for
normal-metal electrons and holes at the �110� AF/N inter-

face: r�
h = �r�̄

e*
�−1. This condition simplifies because of the

equalities �re�kF��= �rh�kF��=1: r�
h =r−�

e . Eventually, applying

the boundary conditions �26� to the solution �25�, we get

C+�E + i��s
2 − E2� = r�

e �kF�C−�E − i��s
2 − E2� ,

C+ = r−�
e �kF�C−. �27�

This equation determines the energies of the bound states at
a �110� AF/sSC interface. In order to present the energy in a
convenient form, we divide the reflection amplitude into two
parts r�

e �kF�=rsp+rQ,�, which are symmetric and antisym-
metric with respect to spin inversion, respectively. The first
part rsp is actually spin independent and can be considered as
the contribution to the reflection amplitude from the specular
reflection channel. The contribution to the reflection ampli-
tude from the spin-dependent Q reflection differs in symme-
try from the specular reflection part. This is the part antisym-
metric in �, rQ,�, which is an imaginary quantity. The phase
of rQ,� differs by � for spin up and down quasiparticles.25 It
follows from the definition given and the condition �r�

e �kF��
=1 that reflection coefficients Rsp= �rsp�2 and RQ= �rQ,��2 sat-
isfy the relation Rsp+RQ=1. With these quantities, we obtain
from Eq. �27� the following bound state energies at the �110�
AF/sSC interface:

E = ± �s
�Rsp�kF� . �28�

If a d-wave superconductor occupies the right half space

instead of the s-wave one, the expression for �̃�,±
r �kF� in Eq.

�25� is modified with the substitution �s→ ±�d�kF�. As a
result, we obtain the spectrum of the bound states at the
�110� AF/dSC interface

E = ± �d�kF��RQ�kF� . �29�

The specific expressions for the normal-state reflection
amplitudes can be found for the �110� AF/N interface along
the standard way by solving the Schrödinger equations for
electrons in the left and the right half spaces and constructing
incoming and outgoing solutions in the normal-metal region,
as well as the exponentially decaying solution in the antifer-
romagnetic region for electrons with energies below the an-
tiferromagnetic gap. The reflection amplitude is fixed after
substituting the bulk solutions to the equations taken at lines
where the nearest neighbor hopping mixes the normal-metal
and the antiferromagnetic regions,

rQ,��k f� = − i��1 + � ma
�2vF,x�ky�


2�−1/2

,

rsp�kF� = �1 + ��2vF,x�ky�
ma


2�−1/2

, �30�

where vF,x�ky�=2�2ta cos�ky /�2�.
Substituting Eq. �30� into Eqs. �28� and �29�, we come to

the results obtained in Ref. 25. We note now that the �110�
interface represents a special situation, when the normal state
Fermi velocity for the half-filled lattice has only a vF,x com-
ponent, which is perpendicular to the surface. Hence, outgo-
ing and incoming normal-metal quasiparticles move only
along or opposite to the surface normal. The quasiparticle
trajectory of this kind is intrinsic to the specular reflection
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channel. However, Q reflection takes place in this particular
case along the same quasiparticle trajectory. For this reason,
specular and Q reflections make coherent contributions to the
total reflection amplitude r�

e �kF�=rsp+rQ,�. For different in-
terface orientations, for example, for the �100� interface,
specular and Q reflection takes place along different trajec-
tories and do not interfere with each other.

In the absence of interface potentials specular reflection of
quasiparticles arises entirely due to a mismatch of Fermi ve-
locities in the AF and the sSC. Since normal-metal states are
presumably identical in the left and right half spaces under
the conditions ��m , t the mismatch in the model is con-
trolled by the parameter m / t. As is seen from Eq. �30�,
rsp→1 when the antiferromagnetic gap is large, �m�
�4t cos ky. At the same time Q reflection becomes dominant
in the opposite limit �m � �4t cos ky, taking place at energies
below the antiferromagnetic gap �E�� �m�. The quasiparticle
bound state energy �28� at the AF/sSC interface is almost
zero in the limit �E���s, whereas the bound state �29� at the
AF/dSC interface lies very close to the edge of the supercon-
ducting gap.

IV. QUASIPARTICLE STATES AT SC/AF INTERFACES

In this section we study quasiparticle spectra and the cor-
responding local density of states in the vicinity of AF/SC
interfaces based on our self-consistent approach outlined
above. We consider �100� and �110� interfaces between AF
and either s-wave or d-wave superconductors. The coupling
constants are site dependent with

Ui = U for i � 0, �31�

Vi = V for i � 0, �32�

and zero elsewhere. In the following we will typically be
studying finite systems of length N=100−200 along the x
axis. The ky sum is performed explicitly by using 400 points
in the Brillouin zone. The interface is always positioned at
the bond in the middle of the system and the potential hi is
only nonzero on the two sites immediately adjacent to the
interface. We apply open boundary conditions equivalent to
an impenetrable wall at each end of the system.

A. The s-wave superconductor-antiferromagnet (100) interface

We begin with the AF/sSC �100� situation since Q reflec-
tion is expected to lead to low-energy bound states for this
particular interface orientation.25 As is well known, nonmag-
netic interfaces do not break s-wave Cooper pairs in their
vicinity. In contrast, ferromagnetic as well as antiferromag-
netic interfaces are pair breaking, in general, even for s-wave
superconductors since they break time-reversal symmetry.
This is analogous to the difference between effects of non-
magnetic and magnetic impurities in s-wave superconduct-
ors. In Fig. 5 we show the self-consistent suppression of the
magnetization Mi and the pairing amplitude Fii near the
�100� interface for various values of superconducting and
antiferromagnetic coupling constants. As seen, the healing
length on each side of the interface decreases with increasing

amplitude of the order parameter in agreement with the be-
havior of the respective magnetic and superconducting co-
herence lengths ��vF,x / �m� ,�vF,x /�s. We find a correlation
between the strength of the suppression of order parameters
and the energy of the Andreev bound state arising near the
AF/sSC interfaces. The lower the �positive� energy of the
subgap state, the stronger the suppression of both order pa-
rameters at the interface, at least in simple cases which have
been studied.

In Fig. 6 we plot the quasiparticle spectrum as obtained
from the eigenvalues of the BdG equations �6� and �7�. Natu-
rally, bound states present at the interface show up inside the

FIG. 5. �Color online� Self-consistent spatial dependence of the
absolute values of the magnetization Mi and the pairing amplitude
Fii near a �100� interface. Parameters: �=0 and, from top to bot-
tom, �U=2.0t, V=2.0t�, �U=1.6t, V=1.5t�, �U=1.2t, V=1.2t�, and
�U=0.93t, V=0.9t�.

FIG. 6. Eigenvalues for the �100� AF/sSC interface as a function
of ky for �=0.0, U=2.7t, Vs=2.0t, and h=0.0 �a� and h=2.0t �b�.
Here, one sees explicitly the presence and dispersion of the bound
state band inside the gap.
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main gap of the spectrum as a distinct band, which disperses
with the momentum component ky along the interface. The
two gap edges seen in Fig. 6 are associated with the super-
conducting �lesser� and the antiferromagnetic �larger� gaps.

We have calculated the bound state spectrum also analyti-
cally, assuming �s�m , t. Solving the Andreev equations for
the superconducting region and applying appropriate bound-
ary conditions, we obtain the two dispersive energies of qua-
siparticle Andreev bound states for the �100� AF/sSC inter-
face. The spectrum is symmetric with respect to the zero
level and can be described with a reflection coefficient
Rsp�ky� for quasiparticles in the specular reflection channel:
E�ky�= ±�s�Rsp�ky�. This expression actually coincides with
Eq. �28� derived in Sec. III for the �110� interface although
the explicit expression for the reflection coefficient differs
for the two orientations. A calculation of the reflection coef-
ficient Rsp�ky� for the �100� AF/sSC interface in the absence
of potential barriers leads to the following explicit expres-
sion for energies of the Andreev bound states:

E�ky� = ± �s� A�ky� +�A2�ky� + 4�m

2t

2

A�ky� + 2 sin2 ky +�A2�ky� + 4�m

2t

2�

1/2

,

�33�

where

A�ky� = �m

2t

2

− sin2 ky . �34�

The dispersion shown in Fig. 6�a� can be verified to agree
well with the expression in Eq. �33� within the accuracy
±�� / t�2. Equation �33� is very similar to Eq. 7 of Ref. 36 and
can be obtained from there simply by substituting the mag-
netic m and s-wave �s order parameters for the charge den-
sity wave Ws and d-wave �d order parameters, respectively.
As follows from Eq. �33�, the quasiparticle subgap state be-
comes a dispersionless zero-energy state if one additionally
assumes m� t and disregards terms less or of the order of
�m / t�2. This limiting case corresponds to the zero-energy so-
lution found from the quasiclassical Andreev equations ap-
plied to both superconducting and antiferromagnetic regions
under the conditions m ,�s� t.25

The differential tunneling conductance measured, for in-
stance, by scanning tunneling microscopy �STM� experi-
ments is proportional to the local density of states.37 There-
fore, it is important to calculate the LDOS, given by

Ni
���� = −

Im

�
�
nky�

� �un,i,�
� �ky��2

� − Enky� − i�
+

�vn,i,�
� �ky��2

� + Enky� − i�� ,

�35�

where �=A ,B indicates the magnetic sublattice and � is an
artificial broadening which in the following is set to �
=0.02t. For the �100� interface, we find Ni

A���=Ni
B���. In

plots of the resulting LDOS we expect any bound states to
result in additional peaks inside the gap of the bulk AF and
SC. These peaks should be localized near the interface. This

is indeed the case for the �100� AF/sSC interface, as can be
seen from Fig. 7. Here, the two center LDOS scans in both
7�a� and 7�b� are at the interface while the top �bottom� five
scans are moving into the SC �AF�.

Additional potentials h�0 present near the interface can
strongly enhance specular reflection at the expense of the Q
reflection. There are several consequences of the interface
potential for Andreev bound states present in the system.
First, potentials tend to suppress the bound states resulting
from Q reflection and move their positions towards the gap
edge. As expected, in the limit h� t we always find that the
Q reflection bound states have been pushed into the con-
tinuum. Second, in the regime where h is of the order of t,
we find that the main effect of the specular reflection channel
is to cause a stronger dispersion of the bound state energy.
One can identify additional extrema in the wave vector de-
pendence of the bound state energy E�ky�. A typical example
is seen in Fig. 6�b� where h=2.0t. The new stationary points
in the dispersion lead to additional LDOS peaks near the
interface as seen in Fig. 7�b�. In the LDOS we also see that
the particle-hole symmetry is broken when h�0, whereas
the quasiparticle spectrum is still symmetric with respect to
the Fermi level. A similar asymmetry between positive and
negative bias in the LDOS will be present when starting
from a particle-hole asymmetric band, i.e., when ��0. For
the sake of clarity, the results presented below are for the
particle-hole symmetric nested band where �=0 and any
asymmetry will only result from a nonzero interface poten-
tial h.

It is interesting to investigate the importance of the sup-
pression of the order parameters near the interface resulting
from the self-consistency. Figure 8 shows the bands and the
corresponding LDOS for a non-self-consistent calculation
with step-function fields: mi

A=−mi
B=m0��−i�, �s=�0��i�

with m0=0.7t, and �0=0.4t. Clearly, the results are very

FIG. 7. �Color online� LDOS corresponding to the same param-
eters as in Fig. 6. The interface bound states result in subgap peaks
in the LDOS near the interface region. The two center LDOS scans
in both �a� and �b� are at the interface while the top �bottom� five
scans are into the SC �AF�. The lines are off-set for clarity.
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similar to those shown for h=0 in Figs. 6�a� and 7�a�, respec-
tively. This result applies also to the other interfaces studied
below: in general the self-consistency has only minor effects
on the bound states resulting from Q reflection. It can, on the
other hand, depending on specific parameters, induce new
bound states close to the gap edge.

As a final point in this section, we verify the bound nature
of the subgap states by showing explicitly the spatial depen-
dence of the eigenstates corresponding to the subgap band in,
e.g., Fig. 6�a�. This is done in Fig. 9, where we plot
�ui

A�ky��2= �ui
B�ky��2 as a function of the x component of the

unit cell near the interface for ky =0.0 and ky =0.25�. Clearly,
the wave functions are seen to be bound to the interface
region.

B. The s-wave superconductor-antiferromagnet (110) interface

Unlike the �100� interface studied in the preceding sec-
tion, in the �110� case all sites at the interface belong to the

same sublattice, so that the interface layer �chain� itself is
ferromagnetically ordered. Up and down magnetizations al-
ternate only along the interface normal, i.e., the x direction as
seen from Fig. 2. For this reason some characteristic proper-
ties of AF/sSC �110� interfaces could naively be expected to
be reminiscent of the properties of superconductor-
ferromagnetic boundaries. For example, Cooper pair wave
functions are known to decay into the ferromagnet adjacent
to the superconductor, manifesting at the same time spatial
oscillations.6,38 The oscillations are known to be induced by
the difference between the momenta of spin up and down
quasiparticles with the same energy.39 These oscillations in
the SC/F proximity effect are related to those in the Fulde-
Ferrell-Larkin-Ovchinnikov �FFLO� superconducting
phase.40

In Fig. 10 we show the obtained self-consistent spatial
profiles of the magnetization Mi and the pairing amplitude
Fii near the �110� AF/sSC interface region for various cou-
pling strengths. Both the magnetization and the pairing am-
plitude display an oscillatory decaying behavior near the in-
terface. The oscillations have an even-odd character, i.e.,
they are not present within each separate magnetic sublattice.
Thus, the oscillations in Fig. 10 are not equivalent to FFLO
oscillations, but simply induced by the AF staggered order-
ing. The characteristic scales for suppression of the order
parameters are seen to be the corresponding coherence
lengths of the antiferromagnet and the superconductor. We
find that an additional potential at the interface decreases
both the decay length and the amplitude of the oscillations
on both sides of the interface.

The dispersion of the subgap energies at �110� AF/sSC
interfaces are described analytically by Eqs. �28� and �30�
within the non-self-consistent quasiclassical approach. In
Fig. 11�a� we plot the numerically determined self-consistent
�spin up� eigenbands for the �110� AF/sSC interface. The

FIG. 8. �Color online� Non-self-consistent spectrum and LDOS
corresponding �roughly� to the same parameters as in Fig. 6�a� but
with step-function spatial dependence of Mi and Fii. These results
are basically identical to those shown in Fig. 6�a�, verifying that it is
the Q reflection, not the order parameter suppression, that generates
the subgap states.

FIG. 9. Amplitude of �ui
A�ky��2 as a function of the x component

of the unit cell i corresponding to the bound state in Fig. 6�a� when
ky =0.0 �a� and ky =0.25� �b�, respectively.

FIG. 10. �Color online� Spatial dependence of the self-consistent
results for the absolute value of the magnetization Mi and pairing
amplitude Fii for the AF/sSC �110� interface orientation. Param-
eters: �=0 and �top� U=2.0t, V=2.0t, �middle� U=1.6t, V=1.5t,
and �bottom� U=0.93t, V=0.9t.
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dispersion of the main bound state can be checked to yield
excellent agreement with the result in Eq. �28�. Positive and
negative energies correspond there to spin up and down qua-
siparticles, respectively. Thus, at low temperatures only spin
down quasiparticle Andreev states will be occupied. Strongly
spin-discriminated Andreev states together with the alternat-
ing magnetization of chains, which are parallel to the �110�
interface, are at the origin of the even-odd oscillations of the
order parameters shown in Fig. 10. It is worth noting that
spin polarized Andreev states are compatible with singlet
spin structure of Cooper pairs.9 Whereas the electron and the
Andreev reflected hole belong to different spin subbands and
have opposite Zeeman energies, they possess identical spin
polarization. Since they have also almost opposite velocities,
they do not carry together any spin current except for special
cases.41

At the edge of the Brillouin zone we find new high-energy
subgap states. By comparing to non-self-consistent calcula-
tions with steplike spatial order parameter dependence, we
have found that these states are related to the self-consistent
order parameter suppression near the interface. When includ-
ing a potential at the interface, the structure of the dispersion
of the subgap states becomes more complicated. In Fig. 11�b�
we show an example where h= t. When the potential be-
comes too large, h�m ,�, the specular reflection channel
completely dominates the Q reflection and all bound states
are pushed out of the gap into the continuum.

The spin-summed LDOS corresponding to the results
shown in Figs. 11�a� and 11�b� is shown in Fig. 12. Since in
the �110� case sites A and B from the same cell are at differ-
ent distances from the interface, Ni

A��� and Ni
B��� differ

from each other. Each of Figs. 11�a� and 11�b� display Ni
A���

and Ni
B��� jointly, i.e., show the LDOS for all sites along the

x axis. As expected, the bound states again show up as peaks

in the LDOS close to the interface. The states at the Brillouin
zone edge can give rise to higher energy peaks. The main
influence of the potential scattering is to break the particle-
hole symmetry present in the LDOS in Fig. 12�a�. In particu-
lar, as seen from Fig. 12�b�, the presence of a potential h can
lead to distinct even�odd� amplitude modulations of the
bound state LDOS peaks into the superconductor.

C. The d-wave superconductor-antiferromagnet (100) interface

The electronic structure of interfaces formed by d-wave
superconductors and antiferromagnets is an important prob-
lem relevant to, e.g., the high temperature superconductors
where AF and dSC order dominate the phase diagram. A
qualitative difference between the properties of AF/sSC and
AF/dSC interfaces arises from the fact that the quasiclassical
d-wave order parameter �d

j �k f� changes sign in a Q reflection
event for any interface orientation, �d�kF+Q�=−�d�kF�.
This change of sign can strongly weaken the effect of phase
difference of reflection coefficients for spin up and down
quasiparticles, which is close to � in the limit � ,m� t. For
this reason, low-energy interface bound states EB�kF�
�min�m ,�bulk�kF�� existing at AF/sSC interfaces under the
conditions �s ,m� t, do not exist at AF/dSC interfaces with
arbitrary orientation.25 In this section we demonstrate results
of self-consistent numerical calculations for the spatial pro-
files of superconducting and antiferromagnetic order param-
eters, the quasiparticle spectrum, and the associated LDOS in
the vicinity of �100� AF/dSC interfaces.

Figure 13 shows a typical result for the suppression of Mi
and Fi near the interface. Here, we plot the d-wave pairing
amplitude defined on-site in the usual way from the four
surrounding links Fi= �Fi,i+a+Fi,i−a−Fi,i+b−Fi−b�. Comparing
Fig. 13 and Fig. 5, one can notice weaker pair breaking ef-
fects on the scale of the respective coherence length for the

FIG. 11. Spin up eigenvalues resulting from the Bogoliubov–de
Gennes equations in the case of a �110� AF/sSC interface. The
parameters are U=2.7t, V=2.0t, and h=0.0 for �a� and h=1.0t for
�b�. The bands shown here correspond to �u↑ ,v↓�. The bands asso-
ciated with �u↓ ,v↑� are identical to the bands shown here upon
mirror reflection around E=0.

FIG. 12. �Color online� LDOS near the �110� AF/sSC interface
corresponding to the parameters used in Fig. 11. The two center
LDOS scans in both �a� and �b� are at the interface while the top
�bottom� five scans are the LDOS upon moving into the SC �AF�.
The lines are offset for clarity.
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AF/dSC �100� interface compared to the AF/sSC interface.
This is associated with lower bound state energies at AF/sSC
interfaces. We find similar results for the �110� AF/dSC in-
terface studied in the next section. Contrary to the �110� AF/
sSC case, the order parameters exhibit a rather smooth sup-
pression near a �100� or �110� AF/dSC interface, i.e., the
order parameter oscillations are absent. This correlates with
the absence of a spin discrimination in the quasiparticle sub-
gap spectrum generated by the �110� AF/dSC boundary.

The eigenbands for two different parameter sets are
shown in Fig. 14. The left figure shows the result without
any potential at the interface. Here, a subgap band exists
close to the edge of the continuum. We find that the larger
the ratio m /�, the closer the subgap band is to the gap edge.

This agrees with Ref. 25, where it was demonstrated that
there are no interface bound states on AF/dSC �100� inter-
faces in the limit m��. Only upon decreasing the ratio m /�
does a bound state gets peeled off the continuum, as seen in
Fig. 14�a�. The band is degenerate and will be split by a
nonzero potential h�0 as seen in Fig. 14�b�. This is accom-
panied by the appearance of additional extrema in the disper-
sion of a lower band. Although with increasing h a lower
band first becomes closer to the Fermi level than for h=0, its
position depends nonmonotonically on h and never ap-
proaches zero energy. When h� t, both bound state bands are
pushed into the continuum. The results of non-self-consistent
calculations are very similar to the results shown in Fig. 14,
it is the Q reflection channel that induces the bound states at
the AF/dSC interface, not the order parameter suppression.

The LDOS corresponding the same parameters used in
Fig. 14 is shown in Fig. 15. Again the new LDOS peaks
arising from the bound states are sensitive to the presence of
the interface potential h. When h=0 the bands in Fig. 14�a�
close to the continuum edge gives rise to LDOS peaks near
the coherence peaks. Experimentally, it may be a challenge
to distinguish these bound state peaks from the coherence
peaks of the bulk dSC. However, for the case when h=1.0t,
we see that the lower band from Fig. 14�b� results in sharp
LDOS peaks near the interface in the intermediate region of
subgap energies.

D. The d-wave superconductor-antiferromagnet (110) interface

As is well known, a zero-energy Andreev bound state ex-
ists at the �110� insulator I/dSC interface generated by the
sign reversal of the gap function as seen by a quasiparticle
specularly scattered off the surface.29–31 This state has been
observed in the differential tunneling conductance as a con-
ductance peak at zero bias.42–56 In this section we study the
AF/dSC interface with �110� orientation.

FIG. 13. �Color online� Spatial dependence of the self-consistent
results for the absolute value of the magnetization Mi and pairing
amplitude Fi for the AF/dSC �100� orientation. Parameters: �=0,
and �top to bottom� U=2.7t, V=2.0t; U=1.7t, V=1.0t; and U
=1.1t, V=0.5t.

FIG. 14. Eigenbands for the AF/dSC �100� interface as a func-
tion of ky. Parameters: U=2.7t, V=2.0t, �=0, and h=0.0 �a� and
h=1.0t �b�.

FIG. 15. �Color online� LDOS corresponding to the plots shown
in Fig. 14. The two center LDOS scans in both �a� and �b� are at the
interface while the top �bottom� five scans shows the LDOS when
moving into the SC �AF�.
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In Fig. 16 we plot the �spin up� bands and the correspond-
ing LDOS when U=2.7t, V=2.0t, and h=0.0. Since the open
boundary conditions at the edges of our finite system are
equivalent to a hard wall, a zero energy state �ZES� is present
at the superconducting end of our system. This state, clearly
seen in Fig. 16�a�, is not associated with the AF/dSC inter-
face in which we are interested. It mixes with the bound
states resulting from the Q reflection at the interface, how-
ever, and causes small deviations from the expected mirror
symmetry �through E=0� of the bound state bands. In the
limit of an infinite system, this spurious effect disappears and
the continuum gap node closes at ky =0.

The dispersion of the subgap states in the absence of po-
tential barriers is described analytically in Eqs. �29� and �30�
assuming spatially constant order parameters �d�kF��m , t.
These states should move to lower energy as m increases.
For our band vF,x=2�2ta cos�ky /�2� and again it can be eas-
ily verified that the functional form of the self-consistent
subgap band in Fig. 16�a� agrees well with Eqs. �29� and
�30�.

The presence of ZES at �110� I/dSC interfaces makes it
interesting to plot the LDOS as a function of increased inter-
face potential h. Figure 17 shows the evolution of the LDOS
when approaching the interface in two cases where h= t 	Fig.
17�a�
 and h=2t 	Fig. 17�b�
. The details of the dispersion of
the subgap states are sensitive to the strength of the potential
barrier at the interface, and the resulting LDOS will strongly
depend on h. In the limit where h� t the low-energy LDOS
near the interface will be dominated by the ZES. However, in
the regime where h� t, the ZES coexists with the Q reflec-
tion bound states as is evident from Fig. 17. This finding is
relevant for the discussion of possible surface induced
magnetization near I/dSC interfaces in cuprate
superconductors.24,57,58 In the case of small finite Mi near a

�110� dSC surface, we would expect small sideband peaks
originating from the Q reflection as seen in Fig. 17.

E. Transfer matrix method

The existence and dispersion of bound states at interfaces
between SC and AF can also be conveniently formulated
within a transfer matrix method designed to locate the bound
states from their defining property, spatially decaying wave
functions. Below, we use the same transfer matrix formalism
presented in Ref. 24. In this method, one introduces a
�q ,��-dependent matrix T�i+1, i� defined by

��i + 1� = T�i + 1,i���i� , �36�

which transfers the spinor � from site i to site i+1. For a
model with nearest neighbor coupling � takes the explicit
form ��i�= (��i� ,��i−1�), where

��i� = „uky��i�,vky��i�,uky+���i�,vky+���i�… . �37�

The associated 8�8 transfer matrix has the general form

T�i + 1,i� = �A B

1 0

 , �38�

where A �B� denotes the 4�4 coefficient-matrix connecting
��i+1� and ��i� 	��i−1�
 determined from the
Bogoliubov–de Gennes Equations �4�.

For a typical interface there will be three distinct transfer
matrices; one in the bulk magnetic region TM, one in the bulk
SC region TSC, and one associated with transfer through the
interface TI. By diagonalizing TM and TSC one determines
whether eigenstates decay, grow or propagate from the inter-
face depending on whether the eigenvalues are less than,

FIG. 16. �Color online� Bands and LDOS for the �110� AF/dSC
interface with U=2.7t, V=2.0t, and h=0.0. The low-energy bands
are dominated by the gap node at ky =0, the Q reflection bound
states and a zero energy state. The latter state is located at the dSC/ I
boundary at the right-most the end of our system where the open
boundary conditions operate as a hard wall.

FIG. 17. �Color online� LDOS for the �110� AF/dSC interface
with �=0, U=2.7t, V=2.0t, and h=1.0t �a� and h=2.0t �b�. Again,
the two center LDOS scans in both �a� and �b� are at the interface
while the top �bottom� five scans show the LDOS when moving
into the SC �AF�. Here, one clearly sees the continuous evo-
lution of the well-known zero energy state with increasing interface
potential h.
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larger or equal to one, respectively. Here, decaying and
growing refer to propagation along the x axis.

Let PEM denote the matrix obtained after propagating the
eigenvectors of the bulk magnetic transfer matrix through the
interface. Then we can define a matrix A given by

PEM = ESCA , �39�

where ESC is the matrix containing the eigenvectors of the
bulk superconducting region as column vectors. Let Sg

M and
Sg

SC denote the subspace of growing eigenstates of PEM and
ESC, respectively. Consider the following linear combination
of the growing states of PEM:

�
i�Sg

m

�i�PEMi� = �
i�Sg

m
�

j�Sg
SC

�iAji�ESCj� = �
j�Sg

SC � �
i�Sg

M

Aji�i

��ESCj� . �40�

From Eq. �40�, it is evident that to have a bound state at the
interface, the vector � must belong to the null space of the
reduced matrix Ar, defined to be the Sg

SC�Sg
M upper left part

of the original matrix A. This follows since the matrices PEM
and ESC were chosen to have the eigenstates with the largest
eigenvalues as column vectors to the left. Thus, when the
two subspaces Sg

SC and Sg
M have the same dimension, a bound

state at the interface is characterized by the vanishing of the
determinant of Ar. The bound state criterion is

det Ar = 0. �41�

This is the criterion used previously by Andersen and Hede-
gard to study the splitting of the ZES near dSC-AF
interfaces.24

In Fig. 18, we show the results of Eq. �41� for the �100�
	Fig. 18�a�
 and �110� 	Fig. 18�b�
 AF/sSC interface, respec-
tively. Here, we used a nested band �=0.0 with M =0.4 and
�=0.1t. In both graphs we also plot the curves given by the

analytical results in Eqs. �33�, �28�, and �30�, respectively.
The �almost� complete overlap of the curves reveal that the
transfer matrix method captures the low-energy bound states,
and that these have the same dispersion as discussed in the
previous sections. Small deviations are seen near the Bril-
louin zone edges. This is expected since the Fermi velocity
vF vanishes there and the quasiclassical approximation used
to derive Eqs. �33� and �28� becomes less reliable.

For the AF/dSC interfaces we find similar agreement be-
tween the analytical results and the transfer matrix method.

V. THE AF/N /AF JUNCTION

Discrete quasiparticle bound states below the AF gap in-
duced by Q reflection processes at AF/N interfaces exist in a
planar AF/N /AF junction analogous to Andreev bound
states in SC/N/SC systems.25 Here, we present the analytical
solution of the problem for the simple case �s ,m�vF,x /a,
when the sublattice quasiclassical approximation applies
well to both the superconductor and the antiferromagnet.
Analogous to the Andreev Equations �20�, we formulate
Schrödinger equations for electrons with the quasiclassical
approximation in the �kF ,kF+Q� representation,

�− ivF,x�kF�
�

�x
− � − E
ũ�,kF

�x� + �m±ũ�,kF+Q�x� = 0,

�ivF,x�kF�
�

�x
− � − E
ũ�,kF+Q�x� + �m±ũ�,kF

�x� = 0.

�42�

The relation vF,x�kF+Q�=−vF,x�kF� is taken into account in
Eq. �42�.

Let  be a misorientation angle between two magnetic
order parameters m± in the right x�d /2 and the left
x�−d /2 antiferromagnetic half spaces. Consider the magne-
tizations lying in the yz plane, which is perpendicular to the
interface normal. The quasiparticle spin will be not a good
quantum number in the case  �0,�, so that we have to
explicitly introduce spin coordinates. We choose the global
quantization axis along the magnetization in the left antifer-
romagnet. Since Eqs. �42� are written for the quantization
axis taken along the order parameters m±�0, the solutions in
the right antiferromagnet should be rotated by the angle  
around the x axis in spin space before matching them with
the corresponding solution in the normal metal region at x
=d /2. After the rotation, the low-energy solutions of Eqs.
�42� in the right antiferromagnetic half space can be written
as

FIG. 18. Comparison of the dispersion obtained for the 100 �a�
and 110 �b� AF/sSC interface form the transfer matrix method and
the result of Eq. �33� �a� or Eqs. �28� and �30� �b�, respectively.
There appears to be only one plot in each figure here because of the
excellent agreement between these two methods.
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�D+,↑�
cos� /2�ei sgn�vF,x�!+

i sin� /2�ei sgn�vF,x�!+

cos� /2�
i sin� /2�

�
+ D+,↓�

− i sin� /2�ei sgn�vF,x�!+

− cos� /2�ei sgn�vF,x�!+

i sin� /2�
cos� /2�

��exp�−
�m+

2 − �E + ��2

�vF,x�
x
 .

�43�

Here, we have introduced the notation

ei!±�E� =
1

m±
	E + � + i�m±

2 − �E + ��2
 . �44�

The upper two lines in Eq. �43� describe the spin up and
down amplitudes with the momentum kF and the lower two
lines show the relative values of spin up and down ampli-
tudes with the momentum kF+Q. The solutions for the left
antiferromagnetic half space can be obtained from Eq. �43�
after the substitutions  →0, m+→m−, !+→−!−, D+,↑�↓�
→D−,↑�↓�, x→−x.

In the normal-metal region −d /2�x�d /2 the magnetiza-
tion vanishes and the solutions of Eqs. �42� take the form

�
ũ↑,kF

�x�

ũ↓,kF
�x�

ũ↑,kF+Q�x�

ũ↓,kF+Q�x�
� = �C1�

1

0

0

0
� + C3�

0

1

0

0
��eix�E+��/vF,x

+ �C2�
0

0

1

0
� + C4�

0

0

0

1
��e−ix�E+��/vF,x.

�45�

In the absence of potential barriers, the quasiclassical solu-
tions are continuous across the interfaces. Matching the so-
lutions �43� and �45� at x= ±d /2, we obtain the following
equation for bound state energies:

En
± =

�vF,x�
2d

„!+�En
±� + !−�En

±� ±  + 2�n… − � , �46�

where n=0, ±1, ±2,¯.
The dependence of the bound state energies on the par-

ticular values m± disappears for low-energy states in the al-
most half filled lattice. Indeed, under the condition �En+��
�m± one can take !±�� /2 and find from Eq. �46� the fol-
lowing low-energy equidistant spectrum:

En
±�kF, � =

�vF,x�kF��
2d

�2��n +
1

2

 ±  � − � . �47�

As seen from Eq. �47�, En+1−En=��vF,x� /d and En
±���

−En�0�= ±��vF,x� /2d. The condition �En+���m± is valid for
sufficiently large thickness of the normal-metal region d
� ��vF,x /m���m, when there can be many levels described
by Eq. �47�. The zero-energy bound state appears, in particu-
lar, in the half-filled lattice for  =� when the relative phase
of the antiferromagnetic ordering differs by � in the left and
the right half spaces.

The spectrum �47� qualitatively differs from that in a con-
ventional “particle in a box,” i.e., a system of almost free
quasiparticles confined by impenetrable walls constituting an
I /N / I junction. The reason for the difference is associated
with strong correlations between electrons with momenta kF
and kF+Q, induced in the normal-metal region by the anti-
ferromagnets, where equations for electrons with kF and kF
+Q are coupled 	see Eqs. �42�
.

After the substitution m±→� the bound state energies
�46� coincide with those obtained many years ago for
SC/N /SC systems �at �=0� with the phase difference  .59

The reason for this is seen at  =0 where the quasiclassical
equations �42� for electrons with momenta kF and kF+Q
coincide with the Andreev equations with �=0 and real �
after the substitutions �m→�, ũ�,kF+Q�x�→ ṽ�̄,kF

�x�. It is im-
portant for this property that electrons with the momentum
kF+Q possess a reverse velocity �similar to holes with the
momentum kF� compared with electrons with the momentum
kF. In the presence of a misorientation angle, one can trans-
form Eqs. �42� into the corresponding Andreev equations at
�=0 with complex �, if one uses a gauge transformation
after rotating all the quantities in Eq. �42� over the angle  in
spin space.

In the following, we study the AF/N /AF junction from
the solution of the BdG equations �4�. For the coupling con-
stants we have the following simple spatial dependence:

Ui = U for �i� �
d

2
, �48�

Vi = 0 for all i , �49�

and U=0 within the normal region �i��d /2.
In Fig. 19 we plot the eigenbands for the �100� AF/N /AF

junction when �=0, U=2.7t, d=4 	Fig. 19�a�
 and U=2.0t,
d=48 	Fig. 19�b�
. In the limit of a long normal region, we
see that outside the parabola-shaped region centered at ky
=0.0, the bands roughly approach a set of equidistant sine-
shaped bands, in agreement with Eq. �47� at  =0 for the
�100� orientation. In this limit the low-energy LDOS in the N
region �not shown� displays the expected equally spaced
peaks. Note, that inside the parabola region we observe a
qualitatively new dispersive behavior of the eigenenergies
with maximum at ky =0. We expect these deviations from the
simple result of the quasiclassical treatment to be caused by
the assumption m� t used to obtain Eq. �47�. In addition, the
details of the spectrum near points where vF,x approaches
zero can always differ from the quasiclassical result.
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It is clear from Fig. 19�a� that we can have very strong
deviations from the quasiclassical result when d�a and m
� t. In particular, within the quasiclassical framework the
dispersion of the bound state energies is entirely associated
with the momentum dependence of the Fermi velocity
vF,x�kF�. In contrast, Fig. 19�a� displays a more complicated
momentum dependence of the energy levels with numerous
extrema and additional peaks in the associated LDOS.

We have also studied a spin-� junction, a AF/N /�AF
junction with  =�, where the magnetization has gained an
extra � phase shift when crossing the normal region N. This
is similar to the �-phase shift in the stripe phase of the cu-
prate superconductors.60–62 For the AF/N /�AF junction the
subgap bands are shifted compared to the AF/N /AF con-
figuration. As a consequence, the associated LDOS will re-
veal whether the junction exhibits the � phase shift or not.
This can be seen in Fig. 20 which shows the LDOS associ-
ated with Fig. 19�a� and the corresponding AF/N /�AF junc-
tion in Fig. 20�b�. The surprisingly large number of peaks
seen in Fig. 20 agree with the strongly dispersive bands as
can be verified from the stationary points in Fig. 19�a�. The
presence of low-energy states seen in the AF/N /�AF junc-
tion in Fig. 20�b� correlates with predictions of the quasiclas-
sical approach, which, however, does not apply directly to
the case of very thin normal metal region d=4.

Figure 21 shows the bands and LDOS for the �110�
AF/N /AF 	Figs. 21�a� and 21�c�
 and AF/N /�AF 	Figs.
21�b� and 21�d�
 junction, respectively. In accordance with
Eqs. �46� and �47�, the orientational dependence of the spec-
trum is associated with the Fermi velocity dispersion. In-
deed, in the limit of large d, the bound state spectrum con-
sists again of equidistant states like in the �100� case. For the
�110� geometry we also find that the main qualitative differ-
ence between the AF/N /AF and AF/N /�AF junctions is
associated with the presence of almost zero energy states in
the latter case.

VI. CONCLUSIONS

We have performed a theoretical study of interfaces and
junctions involving antiferromagnets and superconductors or
normal metals. This was presented both in the framework of
quasiclassics and self-consistent numerical solutions of the
relevant Bogoliubov–de Gennes equations. Where compari-
son is appropriate, we found full agreement between the two
methods. In particular, we investigated the formation of
bound states near �100� and �110� interfaces between antifer-
romagnets and s- or d-wave superconductors. We calculated
their dispersion, their influence on the proximity effect, and
the associated modifications of the LDOS near the interface

FIG. 19. Bound state eigenbands for a �100� AF/N /AF junction
where the length d of the normal region N is either d=4 �a� or d
=48 �b� lattice sites. Parameters: �=0, U=2.7t �a�, and U=2.0t �b�.

FIG. 20. �Color online� LDOS for the �100� AF/N /AF �a� and
AF/N /�AF �b� junction with d=4, �=0, and U=2.7t. The four
center LDOS scans are in the N region.

FIG. 21. �Color online� Eigenbands and the associated LDOS
for the �110� AF/N /AF �a� and �c� and �110� AF/N /�AF �b� and
�d� junction with d=8, �=0, and U=2.7t. Note the low-energy state
generated in the spin-� junction. In the LDOS plots, the middle
eight scans are in the N region whereas the upper and lower three
shows the LDOS upon moving into the AF.
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regions. In addition we discussed the crossover between Q
reflection and conventional specular reflection as a function
of the potential barrier at the interface. In future work we
plan to investigate the role of the bound states on the Joseph-
son current in SC/AF/SC junctions where the low-energy
bound states can be expected to generate, e.g., unusual tem-
perature dependence of the critical current.
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