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Superfluid-insulator transitions of two-species bosons in an optical lattice
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We consider the two-species bosonic Hubbard model with variable interspecies interaction and hopping
strength in the grand canonical ensemble with a common chemical potential. We analyze the superfluid-
insulator (SI) transition for the relevant parameter regimes and compute the ground state phase diagram in the
vicinity of odd filling Mott states. We find that the superfluid-insulator transition occurs with (a) simultaneous
onset of superfluidity of both species or (b) coexistence of Mott insulating state of one species and superfluidity
of the other or, in the case of unit filling, (¢c) complete depopulation of one species. The superfluid-insulator
transition can be first order in a large region of the phase diagram. We develop a variational mean-field method
which takes into account the effect of second order quantum fluctuations on the superfluid-insulator transition
and corroborate the mean-field phase diagram using a quantum Monte Carlo study.

DOI: 10.1103/PhysRevB.72.184507

I. INTRODUCTION

Experiments with ultracold atoms have achieved revers-
ible tuning of bosonic atoms between superfluid (SF) and
Mott insulating (MI) states by varying the strength of the
periodic potential produced by standing laser light.!> The
physics of such ultracold atoms in the Mott insulating state
can be described by a bosonic Hubbard model, well known
in context of other condensed matter systems.3 However, ul-
tracold atoms in optical lattices offer much better control
over microscopic parameters of the model. Consequently, it
is possible to explore parameter regimes which are not avail-
able in other analogous condensed matter systems.

Recently, experiments involving internal states of these
atoms have been carried out.*® In particular, in Ref. 4, the
two hyperfine states (|[F=2,mp=-2)=|1) and |F=1,mp
=—1)=[2)) of ®'Rb atoms have been used to create en-
tangled states between atoms in different wells of the optical
lattice. In these experiments, a /2 pulse is applied to
bosons originally in one of the two hyperfine states (say |1)),
leaving them in eigenstates of o, ([|1)+|2)]/v2), where the o
denote Pauli matrices corresponding to the two hyperfine
states.

To envisage how such experimental systems are relevant
for realization of a two species Bose-Hubbard model, con-
sider an optical lattice created using elliptically polarized
light with polarization angle 6. Since the spin states with
my=+1/2 see potentials V.=V, sin’(kx+#), the hyperfine
states |1) and |2) experience potentials V() given by (see
Refs. 4, 6, and 7 for details)

V, =V, sin’(kx + 6),
\%
V,= ZO(Sinz(kx +6) + 3 sin’(kx - 6)). (1)

Consequently, a change in the polarization angle @ is equiva-
lent to a relative shift of the lattices with respect to each
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other. Since the interaction between the bosons is short-
ranged, such a shift can be used to control the interspecies
interaction U’. Note that changing the polarization angle also
changes the depth of V,, and therefore the corresponding
hopping amplitude #,. Hence, systems of atoms where state
selective optical potentials can be implemented may provide
ideal test beds for studying properties of the two species
bosonic Hubbard model with variable hopping amplitudes
and interspecies interaction strength.

Several theoretical works have discussed realizations of
novel phases in the two-species system in an optical
lattice.3~!! Because of the interspecies interaction, the Mott
phase is divided into regions with different long range or-
ders. These phases can be described in terms of isospin, a
quantum number which describes the occupation state of a
single site by two components.®"'” For a total occupation
2ny—1, the states |ng,ny—1) and |ny—1,ny) correspond to
isospin states with S,=1/2 and S,=—1/2, respectively. How-
ever, at the superfluid transition point, which can be ap-
proached by decreasing the strength of the optical lattice, the
isospin description breaks down because of strong density
fluctuations. The isospin quantum number S, which is given
by the difference in quantized occupation numbers of the two
boson species, becomes ill-defined at this point. Neverthe-
less, one can still investigate the effect of such isospin order
in the Mott state on the superfluid-insulator (SI) transition.
This is the key issue that we are going to address in this
work. We note that although there have also been earlier
studies of the SI transitions from such isospin symmetry bro-
ken Mott states,®!! the phase diagram of the system for the
entire parameter range has, to the best of our knowledge, not
been charted out and large parts remain to be explored.

Keeping the above-mentioned experimental and theoreti-
cal scenarios in mind, we shall study a two-species bosonic
Hubbard model described by the Bose-Hubbard
Hamiltonian®-10
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where a=1,2 is the species index, #;(,) denote hopping am-
plitudes for the two species between nearest neighbor sites
(ij), the matrix element U denotes on-site intraspecies Hub-
bard interaction, U’ =AU is the interspecies interaction and
we have taken the chemical potential u to be the same for
both species. Note that a change in optical lattice depth by
tuning the laser polarization also leads to a relative shift of
chemical potential of the two species. However this shift is
usually small and can always be compensated by applying an
external magnetic field since the two species have different
magnetic moments. For future convenience, we introduce the
ratio n=1,/t;, and shall take 1,<¢, (7<1). Our aim is to
study the different phases of the system as a function of u, A,
t1, and 7 for odd total filling factor. Also, we shall refer to
the species index « as the isospin label for the bosons with
isospin S=1/2.

In Eq. (2) we have assumed a grand canonical ensemble.
In real experiments where the number of each species may
be conserved separately this description is not necessarily
adequate. In the single species Bose-Hubbard system the va-
lidity of the grand canonical ensemble comes from the over-
all confining potential. In that case different regions will ef-
fectively see different “effective chemical potentials” at
equilibrium leading to a domain structure with different
phases (Mott insulator and superfluid). Thus for a large trap,
the bosons in the Mott insulating phase in the bulk remain in
contact with the superfluid at the edges of the trap which acts
as a reservoir of particles. This justifies the use of the grand
canonical ensemble for treating such systems.'? In the two
species system it is not so clear that this will be the case.
Nevertheless, we will in the remainder of this paper use Eq.
(2), partly because it constitutes a challenging theoretical
problem on its own but also since it is an important first step
towards understanding the full problem including individual
number conservation and effects of external trapping poten-
tial.

Before proceeding with the analysis, we summarize the
key results of this work. First, we find that the superfluid-
insulator transition in systems described by Eq. (2) can take
place with (a) simultaneous onset of superfludity of species 1
and 2 (SF-SF phase) or (b) coexistence of Mott insulating
phase of species 2 and superfluid phase of species 1 (MI,
+SF, phase) or (c), in the case of a unit filling Mott state,
depopulation of species 2 (a-SF phase). Second, for a large
region of the phase diagram the superfluid-insulator transi-
tion occurs with a discontinuous jump in the number of each
species and is therefore first order. Third, there is a second
order quantum phase transition between the a-SF and the
SF-SF superfluid phases which can be viewed as a ny=0
Mott insulator-superfluid transition for the bosons of species
2. Finally our analysis explicitly demonstrates the necessity
of including effects of O(r>/U?) quantum fluctuations [be-
yond the O(z/U) mean-field theory] for a correct quantitative

PHYSICAL REVIEW B 72, 184507 (2005)

T i I T I T

3,2)or (2,3

(2,2)

u/U
[y}

(2,1) or (1,2)

1 (1,1)

L (1,0) or (0,1) .

O 1 l 1 I i1 ] 1 | 1
0 0.2 0.4 0.6 0.8 1

A

FIG. 1. Schematic phase diagram of two-species boson model in
the Mott insulating state for #;=r,=0. Notice the twofold degen-
eracy at each site for odd fillings.

description of the phase diagram and the nature of the phase
transitions in the system.

The organization of the paper is as follows. To put this
work in perspective, we review the results on the Mott
phases of the Hamiltonian in Eq. (2) in Sec. II. In Sec. III, we
study the SI transition using O(¢/U) mean-field theory and
also discuss the shortcomings of such a theory in the present
case. This is followed by Sec. IV, where we implement a
canonical transformation method which takes into account
the effect of quantum fluctuation to O(z>/U?) on the transi-
tion and present a detailed phase diagram of the model. This
is supplemented by quantum Monte Carlo simulations in
Sec. V. In Sec. VI we discuss how the different phases can be
detected experimentally. This is followed by a summary of
our results in Sec. VIIL

II. REVIEW OF MOTT PHASES

In this section, we review the Mott phases of the two
species Bose-Hubbard model.®1° Deep inside the Mott
phase, for t,=£,=0, the Hubbard Hamiltonian [Eq. (2)] re-
duces to the sum of on-site terms H; given by

U
H;=- ,U«E Njg+ 5 E Nio(Rig = 1) +2\nny | (3)

The phases of H; are characterized by the ground state of the
system having an integer number of bosons n; ,(u/U,\) per
site. The phase diagram is shown in Fig. 1. Apart from the
usual even filling phases where n,=n,, phases with odd fill-
ing ny—n,==1, which has no counterpart in single species
systems, occur. For the rest of this paper, we shall concen-
trate on phases with odd total filling, where each site is dou-
bly degenerate (1n,—n,==+1) leading to 2" degenerate ground
states for a system with N sites for #,=1,=0.
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FIG. 2. (Color online) Mean-field phase diagram of the effective
low energy Hamiltonian in Eq. (4) obtained using perturbation
theory at odd filling for ny=1. The phase diagrams for other values
of odd n are qualitatively similar in the Mott insulating regime.

At finite hopping strengths, this degeneracy is lifted by
quantum fluctuations which can be studied by second order
perturbation theory. More precisely, one can carry out this
perturbation theory in the regime U,U’,|U-U'|>>1t.t,
where we are far away from both the SU(2) symmetric limit
(A=1) and the vanishing interspecies interaction limit (A
<1). In both these limits perturbation theory breaks down.

To compute the fluctuation correction for a Mott state
with an odd number n; of atoms on each site, we divide the
system into A and B sublattices (to allow for the possibility
of an antiferromagnetic phase or checkerboard solid) and use
a trial wave function

|11’> = H H |'/fA>i|'//B>j,

ieA jeB

where
0 . [7)
|14 p) = cos /;’B Ing.ng— 1) + €'%45 sin 3’B|”0 - 1,np),

where |n,,n,); denotes n, and n, atoms of species 1 and 2 at
site i. A perturbative calculation yields the O(¢>/U?) correc-
tion to the ground-state energy as a function of the angles
bap and ¢, p,
Nzt%
2U
— 79)ny(cos 0, + cos ) + (1 + 7)[1 — cos 6, cos 6]

E;= {(1+772)n(2)(1+cos 6, cos ) + (1

2 2 )
n ns—1 .
X [ﬁ + 20_ N } +sin(6,)sin(fp)cos(py — ¢3)% ’

(4)

where 7 is the coordination number of the lattice. Minimizing
the E; with respect to 6, 5 and ¢, 3, we obtain the phase
diagram shown in Fig. 2 for ny=1 as a function of the pa-
rameters z and . This phase diagram illustrates presence of
three types of phases:’ (a) antiferromagnetic (AF) phase with
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FIG. 3. Plot of optimum values of 6, and 6g as a function of A
for different values of 7. In the XY and FM phases 6,= 65 and the
lines for 6z are indistinguishable whereas in the AF phase one
angle takes on a value 7 while the other takes on a zero value. We
find a discontinuous change in both 6, and 6 as the AF phase is
entered, signaling a first-order transition.

045)=0, Op)=, (b) ferromagnetic (FM) phase with 6,
=05=0, and (c) XY phases with 6,= 605 # 0. What we refer to
as an antiferromagnetic phase (AF) here is a checkerboard
solid with one atom per site. Each site is occupied by either
an atom of species 1 or species 2 in an alternating fashion.

The nature of the transitions between these effective iso-
spin phases can be understood by plotting the values of the
angles 6, and 65 across the different phase boundaries. These
plots are shown in Fig. 3. Here the angles 6, and 63 have
been plotted for three different values of #. In the XY and
FM phases 6,=603 and the lines are indistinguishable,
whereas in the AF phase one phase takes on a value 7 and
the other 0. We find that there is always an abrupt jump from
the XY to the AF phase across the AF phase boundary, sug-
gesting that the AF-XY transition is first order. We do not
find any canted AF phases. The situation here is analogous to
the first order melting transition of hard-core bosons with
next nearest-neighbor interaction at half-filling.'”> The
FM-XY transition, on the other hand, is continuous and pro-
ceeds via continuous change of 6, and 6.

The phase diagram obtained here agrees qualitatively with
that of Ref. 9, although there is a quantitative difference. In
our phase diagram, the tricritical point where all the phases
meet is at A=0.25, =0 instead of A=0.5, =0, as found in
Ref. 9. To understand why this difference arises, we now
map the boson Hamiltonian to an effective low-energy spin-
model. Defining the isospin operators S;=(n;;—ny;)/2, S}
=(b] byi+blby) /2, and §Y=i(b}b,—b]by;)/2 one obtains an
effective XXZ model in a magnetic field®?

Hyxz=— 2 [ (S{S+S)S)) +J.Si8]- B2 S5. (5)
(ij) i

The exchange couplings J, ,J, and the magnetic field B are

given by
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Note that for ny=1, AF, FM, and XY phases meet when J,
=J, =0 at A=0.5, »=0 provided one neglects the magnetic
field term, as done in Ref. 9. However, if one retains the
magnetic field term, the AF and the FM phases will meet
when J,+2B/z=0 and J, =0 or A=0.25, 7=0.

The XY phase obtained here is identical to the superfluid
counterflow (SCF) phase obtained in Ref. 10 and also to the
v=1 bilayer quantum Hall state for small layer separation
where the layer index plays the role of isospin.'*!> The stiff-
ness energy locking the two order parameter phases together
in the XY phases can be obtained from Eq. (4),

(6)

2, 2
_ Nztymng

2UN sin 6, sin 6.

N eps - ¢B)2

We have in ommited a term proportlonal to X S in Hxxz-
This term is a constant since S .=1/4 for all the states in the
low energy manifold with S,;= + 1/2 and does not contribute
to the low energy effective Hamlltoman and will not play a
role in the quantum disordering of the XY phase. The disor-
dering of the XY phase due to quantum fluctuation depends
only on the exchange constants J,, J, and B.

III. O(t/U) MEAN-FIELD THEORY FOR THE SI
TRANSITION

In this section, we shall study the SI transition within
O(t/U) mean-field theory by constructing a site factorizable
variational wavefunction which provides an analytical albeit
qualitative understanding of the transition. We shall work in
the parameter regime where U,U’, t,. For the
sake of clarity, although we shall qualitatively comment on
the general case, all calculations in this section from here on
shall be performed for two spatial dimensions and ny=1.

Before carrying out the mean-field analysis, we review
earlier studies of SI transition for the two species Bose-
Hubbard model [Eq. (2)]. In Ref. 11, the SI transition has
been studied for the case ¢, =1, but with different interspecies
and intraspecies interaction strengths and chemical poten-
tials. This has been done using a standard mean-field theory?
corresponding to decoupling the hopping between sites by
introducing order parameter fields A, i.e., bmbja~bjaAa
+bjaAZ—|Aa 2, where the fields A, satisfy the self-
consistency relations A,=(b,). Their analysis led to the pre-
diction of three different phases; (1) both species superfluid
(SF-SF); (2) species 1 superfluid and species 2 in a Mott
state (SF-MI); (3) species 2 superfluid and species 1 in a
Mott state. (MI-SF). It has been found (erroneously, as we
shall see) in Ref. 11 that the Mott states are always destabi-
lized by MI-SF or SF-MI phases and there is no direct tran-
sition from the Mott to the SF-SF phase. The transitions are
concluded to be second order as in the standard single spe-
cies Bose-Hubbard model.? The question of the interplay be-
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tween the exchange effects and the SI transition in the region
of small \ was studied by Demler et al.® for unit filling factor
and fixed chemical potential wu/U =%)\. Apart from the
phases mentioned above they also found a superfluid phase
with species one superfluid and depopulation of species 2.
In our proposed setup, A is not necessarily small and the
SI transition in this regime has not previously been investi-
gated. To analyze the SI transition to O(#/U) within mean
field it suffices to consider an on-site trial wave function,'®

(7)

where u is the amplitude of the ferromagnetic Mott state
0y in ¥,, h, and p are amplitudes of removing, adding
bosons of species 1, 2 to the Mott state and r is the amplitude
of isospin-flip. We note here that allowing the isospin-flip
process in the trial wave function [Eq. (7)] is absolutely cru-
cial for correctly taking into account the manifold of low
energy boson states which are degenerate to O(z/U). The
normalization of the wave-function yields the constraint
ui+r2+pt+p3+p3+hi=1. This wave function, as we shall
see, is appropriate for studying the SI transition from the FM
and the XY Mott phases. We shall comment about the AF-SI
transition later.

The energy of the variational ground state
EU(MO’ r,Pi ’hl vp29h2)=<qlv|H|q,v> is given by

E, = Eyou+ | (0] + p3) OET + p3SES + hi O, —

s &)

a=1,2 Zta
(8)

where Ey is the energy of the Mott state, z is the coordi-
nation number of the lattice, 5E§ denote the energies of
adding/removing a boson of species « to/from the Mott state
given by

SE{=—p+U, OSE;=—u+\NU OE =p, 9)

and the superfluid order parameters A;, can be calculated
from this variational wave function,

—
A=zt (Wb | W) =zt (upp N2 + rp, + ughy),

_ (10
Ay =20(W |bo| W) = 285 (ugps + rhy + rp3\2).

Mathematically, it is possible to show that for all of the
Mott and superfluid phases (except the AF phase for which
we need to use two sublattices), the variational energy has a
stationary point. The parameter values at these points and
how they translate into the various phases is shown in Table
I. The transition to superfluidity from the Mott state occurs
when it becomes energetically favorable to have nonzero A,
i.e., nonzero amplitudes of additional particles and holes (p
and ) in the variational ground state. For our purposes, it is
sufficient to take all the coefficients real. This amounts to
setting the phase of the superfluid order parameter to zero
and does not affect the variational energy of the state. Note
that the wave function [Eq. (7)] is general enough to incor-
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TABLE 1. Parameter values of the variational wave function
corresponding to the different phases.

Phase Up r P1 D2 D3 hy
FM Mott-insulator 1 0 0 0 0 0
XY Mott-insulator #0 #0 0 0 0 0
SF,, MI, 0 #0 0 #0 0 0
MI,, SF, #0 0 0 #0 0 0
SF;, 0, (a-SF) #0 0 #0 0 0 #0
SF,, SF, #0 #0 #0 #0 #0 #0

porate both the FM (uy,=1) and the XY [uy=cos(6/2) r
=sin(#/2)] phases of the Mott state. However, since these
two states are degenerate to O(¢/U), our simple mean-field
treatment cannot distinguish between their isospin order. In
Secs. IV and V we shall carry out more sophisticated treat-
ments of our model which will take into account the effect of
O(*/U?) fluctuations using canonical transformation and
quantum Monte Carlo. In this section, we shall analyze the
O(t/U) mean-field theory and point out certain qualitative
features of the phase diagram.

A. General features of the phase diagram

Although the variational wave function in this section ex-
cludes second order exchange effects, the qualitative features
of the SI transition from the FM and the XY phases for n
=1 can be understood from Egs. (8) and (9). Consider, for
example, approaching the SI transition from FM/XY Mott
phase. For u<U,\U, since 8E| <JE], SE;, at the SI transi-
tion point 1, =¢{=0E]/z and the energy of the variational
wavefunction is minimized with r=0, uy~ 1, p;=p,=p3=0,
h, # 0. Consequently, from Eq. (10), we have A,=0, A; #0,
and also

ny= <\I,v|biibli|q,v> = (“(2) + 2P% +P%) =1,

| (1
ny = (W b by W,y = (¥ + 2p§ +p3)=0.

Thus the transition to superfluidity occurs with complete de-
population of species 2. We refer to this phase as a-SF. Al-
ternatively one can view this phase as SF;-MI, with a zero
filling factor in the Mott phase. Numerically, we find that
such a depopulation occurs until a critical value of w= ;.

In the other limit, when u=AU= u,,, it is much more
favorable to destabilize the Mott state by adding a particle of
species 2 since 8E; < SE], SE|. As a result the transition oc-
curs with uy=0, r=1 and p, #0. Consequently, the transi-
tion takes place with

A2=0, nz,Al,nl #0 (12)

i.e., we have a transition which is accompanied by a jump of
population species 2 at the transition. The phase consists of a
Mott insulator of species 2 (since A,=0) and superfluid of
species 1. We call this state MI, +SF;.

For po>u> p., 6E; and S8E| are comparable and the
energy of the ground state at the transition is minimized for
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FIG. 4. (Color online) O(¢/U) mean-field results for the SI tran-
sition from the XY phase for A=0.4 and 7=0.8. The inset shows n,
at the transition. Superfluidity sets in (a) with depopulation bosons
of species 2 in region A (a-SF phase); (b) simultaneously for both
species in region B (SF-SF); and (c) with Mott phase for 2 and
superfluid for 1 in region C (MI,+SF;). The vertical dotted lines
are guides to the eye and represent the positions of ., and u,, (see
text).

r, ug# 0 and p, # 0. In this case, provided 7 # 0, both A; and
A, are nonzero at the transition implying simultaneous onset
of superfluidity of species 1 and 2 (referred to as SF-SF). The
width of this region is expected to be large at large 7, since
higher #, makes it energetically more favorable to realize
superfluidity of species 2.

The values of w,.; and u., are shown for representative
values of 7=0.8 and A=0.4 in Fig. 4. The phase diagram
corroborates the above discussion. From the inset of Fig. 4,
we find that there are three distinct regions where the SI
transition takes place with (a) depopulation of species 2 (re-
gion A), (b) simultaneous setting of superfluidity of the two
species (region B), and (c) Mott insulating phase of species 2
and superfluidiy of species 1 (region C). The situation here is
in sharp contrast to the even filling case which will always
have an intermediate state with superfluidity of species 1 and
insulating state of species 2 for 0 < 7<1.

Upon further increase of #; from the critical value ¢,., two
scenarios are possible. If superfluidity sets in with depopula-
tion, increasing #; does not change the situation further. On
the other hand, if the transition occurs to either the SF-SF or
ML, +SF; phase, upon increasing #;, the fraction of B atoms
in the superfluid decreases as shown in Fig. 5 for a set of
representative values of 7, N, and w. Finally, one crosses a
critical value t}k at which it becomes energetically favorable
for the system to depopulate. This happens at large enough
L= tT ~ 8E7/z, at which the variational energy minima shifts
to ug# 0, r=p,=0. Beyond this point, we only find superflu-
idity of species 1. Within O(#/U) mean-field theory, such a
transition from SF-SF to a-SF phase is found to be first order
since EO,:LQA%(/ zt, is discontinuous across the transition.

Although we do not show it explicitly here, a similar con-
sideration remains valid for the SI transition from the AF
phase. This can again be seen by dividing the lattice into the
usual A and B sublattices and constructing an appropriate
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FIG. 5. (Color online) A plot of the order parameters A;, A,, and
n, for u/U=0.57, A=0.6, and 7=0.2 as a function of the hopping
amplitude 7. The system enters the MI,+SF; phase at r=1{ (vertical
dotted line between regions A and B) from a FM Mott phase (region
A). Note that the transition occurs with a spontaneous jump of n,
and is hence expected to be first order. As we increase ¢, both
species becomes superfluid (region B), until 7, reaches f, (vertical
dotted line between region B and C) where the system depopulates.
The depopulation occurs with a jump in A; and is therefore first
order.

two sublattice variational wave function. We do not find any
translational symmetry broken superfluid phases. We also
note that the above discussions have to be modified for n
# 1, where the Mott state can also be destabilized by adding
holes of species 2. For example, when ny>1, for u<<A,
oL = OF;. Thus if 7+ 0, we expect the ground state energy
to be always minimized for u,, r# 0 at the transition. Con-
sequently, there will be no depopulation for any finite 7 in
this limit. In the rest of this work, we shall restrict all dis-
cussion to odd fillings with ny=1.

B. Necessity of going beyond the O(¢/U) mean-field theory

We now discuss the limitations of the mean-field theory to
set the stage for incorporating the fluctuation effects. To un-
derstand why using the mean-field theory is dangerous in the
present context, consider plotting the mean-field phase dia-
gram at a fixed u/U=0.5 and #;/U=0.04 as a function of 7
and N\. Such a phase diagram is shown in Fig. 6. Here, we
have used the phase diagram (Fig. 2) of the XXZ model [Eq.
(5)] to determine the isospin phases since the O(f/U) mean-
field theory cannot distinguish between them. As can be
seen, the phase diagram (Fig. 6) corroborates the expecta-
tions based on the qualitative discussion of the Sec. III A.
For small 7 (transition from FM/AF phases), the system fa-
vors a-SF phase while for larger 7 (transition from the XY-
phase) the SF-SF phase dominates.

However, consider now plotting such a phase diagram
near . or u.. Clearly, we expect that incorporating ex-
change effects will make it harder for the isospins to flip,
since now it costs an energy O(z*>/U?). This will, in general,
shift the positions of w.; and u., from their mean-field val-

PHYSICAL REVIEW B 72, 184507 (2005)

08

t1 /U =004 n=A/2

7L FM

06F

051

SF-SF

03k

02

0.1 . . L I
0 0.4 0.5 0.6 0.7 0.8

n

FIG. 6. O(1/U) mean-field phase diagram for the two-species
model as a function 7 and N for u/U=N\/2 and t;/U=0.04. In the
absence of second order fluctuation corrections, the SF-SF phase
borders to the FM phase implying a discontinuous change in the
population of species 2 for a large region of parameter phase.

ues. Therefore, near u,.; or w.,, the phase diagrams in the
n-\ plane predicted by the mean-field theory will be quali-
tatively different from the true phase diagrams. In this sense,
the failure of the O(z/U) mean-field theory in the present
case is much more severe compared to the usual SI transition
for single species bosons. However, as long as we are away
from the critical u values, such a mean-field theory gives
qualitatively correct results and therefore the scenario de-
scribed in the previous section remains largely valid.

Another problem of the O(z/U) mean-field theory is that
it overestimates the jump of n; or n, at the transition since it
does not take into account the energy cost of an isospin flip.
Consequently, it can erroneously predict first-order MI-SF or
a-SF to SF-SF transitions where in reality such transitions
might be second order. Also, as we shall see in the next
section, the shapes of the transition curves and topology of
phase boundaries change quite a bit upon inclusion of the
fluctuation corrections.

Thus, although the O(#/U) mean-field theory correctly
predicts the qualitative nature of the MI-SF transition for
most parts of the phase diagram it fails drastically either
when we are close to w,.; or u., or when we want to estimate
the order of the transition. In the next section, we remedy
this failure by incorporating the O(#>/ U?) fluctuation correc-
tions.

IV. CANONICAL TRANSFORMATION

The effect of fluctuation to second order in /U can be
taken into account using a suitable canonical transformation
method. We describe the implementation of this method in
Sec. IV A and present the phase diagrams in Sec. IV B.

A. Implementing the canonical transformation

We begin by separating the Bose-Hubbard Hamiltonian
[Eq. (2)] into an onsite term Hy=2,;H; [Eq. (3)] and the hop-
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Oh
e o

7 J

FIG. 7. Bonds in a 2D square lattice. There are two types of
bonds, horizontal and vertical labeled by oy, and o, respectively.
The horizontal bond shown is denoted by o,. The sites on the left
and right sides of this bond of (sites i and j in this case) are labeled
by oy, and T respectively.

ping terms 7. The first step is to write 7 in terms of sum over
bonds o between the neighboring lattice site. To this end, as
shown in Fig. 7, we can decompose the hopping into hop-
ping on vertical and horizontal bonds, labeled o, ;,, between
adjacent sites. The hopping term can then be written as a sum
over bonds

T=2T,=2T,+2T,, (13)
ag ap (TU

T, = Et (b Do, athec), (14)

Ty =—2to (bT by, athc). (15)

a

We now seek a unitary transformation that will capture
the effects of the second order exchange effects. We shall
only consider the case ny=1, although generalization to other
values of ny is straightforward. To do this, we first introduce
the projection operators P, acting on the two sites associated
with each bond o. P, projects the state of the system to the
manifold of states having one particle on each site of the
bond. Such a projection operator can be decomposed into
two parts depending on whether the bosons occupying the
sites of the bond are of the same or different species: P,
=P2+ P(lr. For instance for a horizontal bond we can write

P, =Py + Py ,
h
0 _
Po-h - (th o'hR + U'hL
UhR’ (16)
(th o'hR + (th
UhR’ (17)

where the state |n,=1, n,=0) as before and the
subscript on the parentheses denotes the bond and which of
the sites the operators act on (cf. Fig. 7). Using the projection
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operator [Egs. (16) and (17)], we now decompose T, [Eq.
(13)] into two parts

Ty=PLT,P:+(T,P,+P,T,)=T0+ T, (18)

where Pr=1-P,. The idea is now to use these results to
seek a unitary transformation

H' = eSHe ™ = H + [iS, 1] + 3[iS,[iS, H]] + -+ (19)

which eliminates the terms T(lr to O(¢/U) (see Refs. 17 and
18). It turns out that a suitable choice of S is

i i
=—> P +P T ]=—2 [P\T,]. 20
M@[ o+ Py T,] w%[ WTol  (20)

where we have introduced the notation PX=\P%+ P! for fu-
ture convenience. We now expand H [Eq. (19)] in powers of
S. Since S is first order in #/U, this is equivalent to an ex-
pansion in #/U and we have to O(£*/U?),

H' =Hy+ 2 T,+ [iS,HNE Tg}
(o (o

+ 3[iS,[iS,Hol] + O(FI1UP). (21)

We now evaluate the different terms in Eq. (21). The algebra
is straightforward, but lengthy and we present some details
in the Appendix. The final result, to O(¢>/U?), is

H =Hy+ Z PiT,P: - —E [PAT2P,

~T,PAT, +h.c.]
2NU

1
- FJZ [PYT, Ty~ ToPyT = 2(PYT,T,, P

o+j

— T,PyPyyT ) +hel, (22)

where the sum over j extends over bonds which are nearest
neighbors to o. We note that the third and the fourth terms of
Eq. (22) represent the effective XXZ model [Eq. (5)] of Sec.
II and the two-particle hopping processes, respectively,
whereas the terms in the last line involve hopping operators
on neighboring bonds and are expected to be important in the
superfluid phases.

B. Phase diagram

The phase diagram of H" is obtained by dividing the lat-
tice into two sublattices A and B and using an on-site varia-
tional wave function |¢,)=I1; 1L p|h)[4);. The division
into two sublattices is essential for taking into account the
AF phase. We note that this is equivalent to generalizing the
mean-field treatment of Sec. III to incorporate second order
fluctuation corrections. Although it is cumbersome to evalu-
ate the expectation value (i,|H"|¢,) analytically, it can be
calculated numerically by representing the various operators
in the Hamiltonian as matrices in an appropriately chosen
basis. The task of minimizing {i,|H"|i,) is then a numerical
optimization problem. Truncating the Hilbert space to have
at most two particles on each site, we perform constrained
(to keep the norm to unity) optimization for each point in the
phase diagram. We use a sequential quadratic programming
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0.05 ) 1

FIG. 8. (Color online) O(r*/ U?) mean-field phase diagram for
the two-species model as a function 7 and N\ for u=NU/2. The plot
for #{/U=0.04 should be compared with the phase diagram ob-
tained to O(#/U) in Fig. 6 (see text). Note the gradual evolution of
the different phases with increase of #;. The existence of the multi-
critical point is due to the special symmetry at u=ANU/2 where
adding a hole or a particle of species 2 to the FM Mott state cost
equal energies. Quantum Monte Carlo however reveals that these
multicritical points can be split (see Sec. V).

algorithm from the MATLAB (TM) optimization toolbox for
this task. Due to nontrivial energy landscapes and possible
existence of first order transitions, several starting points,
including random starting points, were used as input to the
algorithm.

First, we show the phase diagram in the #-\ plane for
wm/U=0.5\ in Fig. 8, which shows the gradual evolution of
the phases of the system as ¢, is increased. A comparison of
Fig. 8 for 7;/U=0.04 to its O(t/U) mean-field counterpart
[Fig. 6], immediately shows us the importance of incorporat-
ing the exchange effects. Whereas the O(z/U) mean-field
phase diagram shows a large boundary between the FM and
the SF-SF phase indicating a first order transition, Fig. 8
shows only second order phase boundaries and no direct
transition between FM and SF-SF phases. This clearly points
out that incorporating the exchange effects can lead to quali-
tatively different results.

The transition between the FM and the a-SF phases is
second order, as expected. The transition between the a-SF
and SF-SF phases is also found to be second order, in con-
trast to the prediction of the O(¢/U) mean-field theory. This
is a consequence of incorporating the second order fluctua-
tion corrections. We note that the a-SF-SF-SF transition can
alternatively be viewed as a Mott-insulator (with
ny=0)—superfluid transition of species 2 in the presence of
species 1 in a superfluid state. The supersolid (SS) phase
obtained for small values of N\ and # represents a superfluid
phase with broken sublattice symmetry. This is precisely the
region where z#2/\U becomes large and the perturbation
theory breaks down. We shall see in the next section using
Monte Carlo that the SS phase is indeed an artifact and sig-
nifies the breakdown of perturbation theory.

Similar phase diagrams for w/U=0.1N and w/U=0.9\
and ¢;/U=0.01 are shown in Figs. 9 and 10, respectively.
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FIG. 9. (Color online) O(f*/U?) mean-field phase diagram for
the two-species model as a function 7 and N for u/U=0.1\ and
t;/U=0.01. The superfluidity is a-SF for a large parameter regime
as predicted by the O(#/U) mean-field theory.

These plots confirm that the qualitative expectations of the
O(t/U) mean-field theory. For w/U=0.1\, we find a large
a-SF region and the transition to a-SF occurs from both FM
and XY phases (Fig. 9), the transitions from XY to a-SF
being first order. For w/U=0.9\ (Fig. 10), the a-SF phase is
replaced by MI,+SF;. Here we find a direct first order tran-
sition between the FM and MI,+SF,; phases. These first or-
der transitions are in perfect agreement with the predictions
of the O(¢/U) mean-field theory.

08

07

061

05

04

03

02

0.1
0 0.1 02 03 04 05 06 07 08

n

FIG. 10. (Color online) O(z>/U?) phase diagram for the two-
species model as a function 7 and N for u/U=09\ for t,/U
=0.02. We see a large area of MI,+SF; phase again in accordance
with the mean-field theory prediction.
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FIG. 11. Comparative phase diagram for the two-species model
as a function # and N\ for u/U=0.25\ for ¢,/ U=0.02. The discrete
points represent the phase boundaries as calculated using quantum
Monte Carlo while the colored regions are obtained from the
O(#*/U?) mean field theory. The shape of the markers represent the
different phase boundaries; a-SF/SF-SF (stars); SF-SF/XY (circles);
a-SF/FM  (right triangles); FM/XY (up triangles); a-SF/XY
(squares). As a comparison the phase boundaries obtained using the
O(#/U) mean field theory are also shown as lines; a-SF/Mott (dot-
ted); a-SF/SF-SF (dashed-dotted); SF-SF/Mott (dashed).

V. QUANTUM MONTE CARLO

To verify that the inclusion of O(#>/ U?) corrections using
the canonical transformation procedure as carried out in Sec.
IV really gives an improvement over the O(z/U) mean-field
theory in Sec. III, we have performed quantum Monte Carlo
(QMC) studies using the Stochastic Series Expansion
method introduced by Sandwik et al.'>?° Here we have used
a particular form of these updates, directed loop-updates. For
details on this algorithm and how to evaluate the order pa-
rameter see Refs. 21-23. The basis states used were from a
truncated Hilbert space in which each site hosts at most two
atoms per site, in the same way as done in the mean-field and
canonical transformation treatments. We expect such a trun-
cation to be adequate for reproducing the phase diagram
since we work with ny=1 and are always close to the MI-SF
transition. We have investigated phase diagrams in the range
m/U=0.1N-0.8\ and found Monte Carlo results agreeing
well with the qualitative predictions of both Secs. III and IV
and we now turn to a critical comparison between the results
obtained by different methods.

First, QMC confirms our suspicion that the appearance of
the SS phase for small \ is indeed an artifact of the break-
down of the second order perturbation theory at small \.
Second, comparisons with QMC show that the details of the
phase diagram are much better reproduced using the canoni-
cal transformation method.

A comparison between the different methods can be seen
in Fig. 11 where the phase diagram has been drawn for
m/U=0.25\, t,/U=0.02. The dotted, dashed, and dash-
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dotted lines are the phase boundaries as obtained using the
O(#/U) mean field theory of Sec. III. As can be seen there is
a large discrepancy between the location of the phase bound-
aries as compared to the O(#*/U?) mean field theory. The
discrete set of points represent the phase boundaries obtained
by QMC. Comparing the three methods we thus see that the
inclusion of O(#?/U?) effects yields the phase boundaries
with great accuracy.

We also find that the Monte Carlo study predicts the
a-SF/SE-SF transition to be second order. This validates the
result obtained using the canonical transformation method
and shows that the expectation of a first order a-SF-SF-SF
transition based on O(¢/U) mean-field theory (Sec. III) was
an artifact of omitting O(¢>/U?) corrections.

An interesting prediction, and possible failure, of the
O(£*/U?) mean-field theory is the existence of continuous
parameter region having points where four phases meet (cf.
the diagrams for #,=0.04 and #,=0.05 in Fig. 8). However,
using QMC for systems of sizes up to 20X 20 sites and in-
verse temperatures B=1500/U for parameter values u
=0.5N\U, t;=0.04, suggests that although the phase bound-
aries come very close they do not meet at a single point but
a small region showing a first order transition between the
a-SF and the XY phase seems to remain.

VI. DETECTING THE DIFFERENT PHASES

The traditional way of examining the existence of super-
fluidity in trapped boson systems is to switch off the trap, let
the cloud of atoms expand freely and image the expanding
cloud. The momentum distribution of the atoms inside the
trap can then be inferred by looking at their position, or
equivalently density, distribution in the expanded cloud.
Since the momentum distribution function of the atoms is
characterized by the presence/absence of coherence peaks in
the superfluid/Mott insulating states, such a measurement
serves as a qualitative probe of the state of the atoms inside
the trap.! In our proposed setup, however, such a simple
expansion alone, which can not distinguish between the two
species, will not be able to distinguish between all the dif-
ferent phases. Nevertheless, since the two species have dif-
ferent magnetic moments (my=-2 and mp=-1), it is pos-
sible to separate them during the expansion using a pair of
Stern-Gerlach magnets.?*?*> The expanding cloud will then
be separated into two clouds if both species of atoms are
present in the system. This, together with the momentum
distribution measurement, will qualitatively distinguish be-
tween all the phases obtained in this work. To make this
statement concrete, let us consider the phase diagram shown
in Fig. 9. Here the proposed set of measurements will lead to
(a) single cloud with no coherence peak (FM phase) or (b)
single cloud with coherence peak (a-SF phase), or (c) two
clouds with no coherence peaks (XY phase) or (d) two
clouds with a coherence peak (SF-SF phase). Thus this meth-
ods allows, for instance, the detection of the mixed phases
(MI,+SF,, a-SF, and SF-SF). It further provides a tool for
finding the phase transitions between the Mott phases for
no=1. The second order transition from the XY-phase to the
FM phase, for example, will be associated with gradual
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depletion of the atoms in one of the clouds whereas the tran-
sition to the AF phase will be characterized by an abrupt
change from a single to a double cloud.

The above mentioned detection technique, however, does
not provide any evidence of the isospin order in the Mott
states since they can not probe the spatial correlations be-
tween the atoms at a lattice scale. Such correlations can be
probed, for example, by tilting the optical lattice with a po-
tential gradient.! Deep inside the Mott phase, such a potential
gradient will excite the system only if £=Eg,e, where £ is
the potential energy shift between adjacent lattice due to the
field gradient and Egyy is the dipole formation energy.'2
The dipole formation energy will sharply change across the
phase transition lines between AF-XY and AF-FM phases
and consequently the peak in the excitation width, measured
in Ref. 1 as a function of the applied field gradient, shall
show an abrupt shift at the transitions across these phases. In
contrast, there will be a gradual shift of the peak position as
one moves from the XY to the FM phase. Alternatively, iso-
spin order can also be measured by probing noise correlation
of the expanding clouds.?’~?° For example, a transition from
the FM to AF isospin states will be marked by appearance of
additional peaks in the noise spectrum at half the reciprocal
lattice vector. The detection of the XY phase can also be
obtained by the Ramsey spectroscopy technique as suggested
in Ref. 10.

Another possible way of detecting the phases is to image
the expanding cloud by passing a linearly polarized laser
beam through it. As shown in Ref. 30, the angle of rotation
of the plane of polarization (6,.) of the outgoing laser beam
is proportional to the net m, along the direction of propaga-
tion (x,) of the beam: 6~ [dx m,(x ). 6, can then be
easily measured by passing the outgoing beam through a
crossed polarizer since the intensity of the beam coming out
of the crossed polarizer is I_~ sin’(6,,,). We therefore expect
I_ to jump discontinuously across any first order transitions
such as FM-AF or XY-ASF phase boundaries and gradually
change across second order transitions such as the FM-a-SF
or XY-2SF phase boundaries. Of course, such measurements
have to be supplemented with momentum distribution func-
tion measurement to distinguish between the superfluid and
Mott phases.

VII. CONCLUSIONS

In conclusion, we have studied the MI-SF transition in a
consisting of two species of ultracold atoms in an optical
lattice in a previously unexplored parameter region. We have
used an O(#/U) mean-field theory to explain the qualitative
features of the transition in most regions of the phase dia-
gram. This is followed by incorporating the O(r?/U?) ex-
change effects using a canonical transformation method and
a quantum Monte Carlo calculation. All of these methods
show that the superfluid-insulator transition can occur with
either depopulation of species 2 (a-SF phase) or simulta-
neous onset of superfluidity of both species (SF-SF phase) or
Mott insulator of species 2 coexisting with superfluid of spe-
cies 1 (MI,+SF, phase) and can be first order in large re-
gions of the phase diagram. We have also shown that,
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whereas some qualitative features of the SI transition can be
obtained from O(z/U) mean-field theory, incorporating the
O(72/ U?) corrections is necessary to deduce the details of the
phase diagram and order of the transitions between the
phases. Our quantum Monte Carlo study lends strong support
to the above-mentioned results and also shows screening of
bosons of species 2 in the SF-SF phase. We also discussed
possible experimental tests of some of our predictions.
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APPENDIX

Here we briefly sketch the derivation of H* [Eq. (22)]
starting from Eq. (21). To do this we show the detailed deri-
vation of two terms H;=[iS,H,] and H,=[iS,T,]. The deri-
vations of all other terms follow in a similar fashion.

1. Hl
To compute H,, we use Eq. (20) to expand S and write
1

1S,Hy|=—
[i 0] U

2 [INPS+ P.T,1,H,]

1
=—— > [(\P5T, + P°T, - \T,PS - T,P"),H,].
)\U ot o ot o o’ o ol o 0

(A1)

Now consider the first term in the commutator in Eq. (Al).
Noting that the projection operator P, always projects onto
the states |1, 0) or |0, 1), we see that we can write

P3T Hy—HyPST,=UPST,. (A2)

This is an operator identity guaranteed by the construction of
the projection operator P,. Other terms in Eq. (A1) can be
written in a similar fashion and we have

Hy=- > (P5T, + P°T, + T,P5 + T,P°)=- >\ (P,T,

+T,Py)

=-2 T,
a

(A3)

where in obtaining the last line we have again used the prop-
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erties of the projection operators P3. Combining Egs. (18),
(A3), and (20), we get the second term in Eq. (22).

2. H,

Now we consider the term Hf[iS,E,,T},]. For this, as we
shall see, it is useful to define the operator M, =P,T,
+T,P,. Then one can write, using Eq. (20),

1
Hy==— > [[PAT, 1 M) (A4)

Note that unlike H,, here the sum extends over two different
bonds o and o’. Consequently, expansion of Eq. (A4) leads
to terms which can be classified into two categories. The first
type of terms involves two hopping operators 7', on the same
bond while the second involves the hopping operators on the
different bonds,

HZ:H2a+H2b’
1
Hy,=—— 2 [[PLT, . M,], A5
0= g2 [P T M,] (AS)
1
H2b = )\_2 2 [[P2-7 TO']’MO'+j]7 (A6)
U o

where the sum over j extend over the bonds which are near-
est neighbors to o.
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We first consider H,,. We expand the operators M, and
PZ; and use the relation [P,,,PZ;]:O. Also, we note that all
terms of the form P(]TTUP?TTU in such an expansion vanish
identically. After some straightforward algebra, one obtains

1
Hyy=— E[PQT@PU + P, T2PN-2T,PAT,]. (A7)

Note that the first two terms of Eq. (A7) represent second
order virtual hopping processes and thus give the 1/ U terms
responsible for the isospin ordering of the Mott phases, while
the third term represents two particle-hopping across a bond
with an intermediate virtual state of one particle on each side
of the bond.

Next we come to computation of H,,. We again expand
out the operators as before. Here, the crucial identity is that
any terms of the form PUTUPZ +ilorj OF Py Ty jPﬁTU vanish
as long as o and o+ denotes nearest-neighbor bonds. Using
this, one gets

1
H2h - FJZ 2 (PL\'T(rT(r+jP0'+j - T(TP>;P0'+] otj + hC)
o

(A8)

The other term [iS,[iS,H,]] in Eq. (21) can be computed
in a similar fashion. Using all these results, we finally obtain
Eq. (22).
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