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We consider a multidomain superconductor/ferromagnet �SF� structure with an in-plane magnetization,
assuming that the neighboring domains are separated by the Néel domain walls. We show that an odd triplet
long-range component arises in the domain walls and spreads into domains over a long distance of the order
�T=�D /2�T �in the dirty limit�. The density of states variation in the domains due to this component changes
over distances of the order �T and turns to zero in the middle of domains if the magnetization rotates in the
same direction in all domain walls.
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I. INTRODUCTION

The past decade has seen a rapid growth of interest in the
study of hybrid superconductor-ferromagnet �SF� structures
�see, for example, Refs. 1–3�. The interest in such systems
originates from the possibility of finding new physical phe-
nomena as well from the hope of constructing new devices
based on these structures. New physical phenomena arising
in these systems are the result of a nontrivial interplay of
competing types of ordering in superconductors and ferro-
magnets. Superconducting correlations lead in superconduct-
ors to the appearance of the Cooper pairs, that is, the pairs of
electrons with opposite spins. On the opposite, the exchange
interaction in ferromagnets tries to align the electron spins in
one direction. In SF structures these two types of interactions
are spatially separated and can coexist despite much greater
value of the exchange energy h in comparison to the super-
conducting order parameter �.

Due to the proximity effect4 the superconducting correla-
tions penetrate the ferromagnet in SF structures. The oppo-
site effect, i.e., the penetration of a magnetic moment M into
the superconductor, also takes place. It turns out that the
magnetic moment MS is induced in the superconductor. The
magnetic moment MS is aligned in the direction opposite to
the magnetization direction of free electrons in the ferromag-
net and spreads over a distance of the order of the supercon-
ducting correlation length �S=�DS /� �in the dirty limit�.5 On
the other hand the condensate wave function f penetrates the
ferromagnet with an uniform magnetization MF over a much
shorter distance of the order of the “exchange length” �h

=�DF /h.1,2 The condensate wave function decays in F in a
nonmonotonic way as f�x��exp�−x /�h�cos�x /�h�; it oscil-
lates in space and decreases exponentially. This nonmono-
tonic behavior of f�x� leads to a nonmonotonic dependence
of the critical temperature Tc of the superconducting transi-
tion in SF bilayers and multilayers1,2,6–10 and to a �-state in
SFS Josephson junctions.1,2,11–16

In the case of a nonuniform magnetization in the ferro-
magnet a new phenomenon appears: a triplet component of
the condensate wave function f �generally speaking the con-

densate wave function is a matrix in the particle-hole and
spin space� arises in the SF system.3 This triplet component
is an odd function of the Matsubara frequency � �while the
conventional BCS singlet component of f is an even function
of �� and spreads in the ferromagnet over a long distance of
the order of �T=�DF /2�T. This long-range triplet odd-
frequency component was predicted to exist in a SF structure
with nonhomogeneous magnetization in Ref. 17 and this pre-
diction was confirmed for a slightly different case in Ref. 18.
In Refs. 17 and 18, a SF structure with a domain wall at the
SF interface was considered, that is, it was assumed that
MF=M�0,sin ��x� , cos ��x��, where ��x�=Qx in the interval
0�x�aQ and ��x�=QaQ at x�aQ. The triplet component fL
was shown to arise in the domain wall and to penetrate the
ferromagnet over a long distance �T. Unlike the triplet com-
ponent in superfluid 3He and in Sr2RuO4, this odd triplet
component corresponds to s-wave correlations and hence is
symmetric in the momentum space; therefore it is not de-
stroyed by scattering on ordinary, nonmagnetic impurities,
and survives in the dirty limit. We call this component the
long-range triplet component �LRTC�. The LRTC may also
arise in a SF structure with a uniform magnetization and
spin-active interface.19 Note that from a macroscopic point
of view a domain wall at the SF interface can also be con-
sidered as a “spin-active interface.” The LRTC may arise in
a multilayered SF structure with noncollinear orientations of
the magnetization vector MFi

in different Fi layers.20,21 In
particular, a new type of superconductivity �odd triplet su-
perconductivity� has been predicted in such structures if the
thickness of the F layers d obeys the condition: �h	d
�T.
In this case the Josephson coupling between neighboring F
layers is realized only via the LRTC because the singlet com-
ponent decays very fast in the F layers. Therefore supercon-
ductivity in the transverse direction is due to the LRTC,
whereas in-plane superconductivity is caused mainly by the
singlet BCS component. The influence of the LRTC on the
critical temperature of the superconducting transition in FSF
structures with a noncollinear magnetization orientation was
studied in Ref. 22.

Historically, the odd-frequency triplet pairing was conjec-
tured in 1974 by Berezinsii23 as a possible mechanism for
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superfluidity in 3He. It turned out later that in 3He another
type of triplet pairing �even in frequency, odd in momentum�
is realized. Odd-frequency pairing in solids was also studied
in Refs. 24–26. A triplet odd-frequency pairing was investi-
gated in Ref. 24 �two-dimensional electron gas with repul-
sion in the presence of impurities� and Ref. 25 �a Kondo
lattice model�. A singlet odd-frequency pairing was
analyzed26 as a possible type of pairing in high-temperature
superconductors.

Although several experimental results may be interpreted
in terms of the LRTC,27–32 there are still no direct experimen-
tal evidences in favor of the odd triplet superconductivity.
Therefore there is a need to investigate, in more detail, a
possibility to observe this new type of superconductivity.
One of the important and inherent features of ferromagnets is
the domain structure. The domain structure in a ferromagnet
may essentially alter the properties of SF structures. For ex-
ample, modulation of the phase difference � between two
superconductors due to internal magnetic fields in the ferro-
magnetic domains, can lead to a negative critical current Ic in
the Josephson SFS junction.33 The influence of domains on Ic
in SFS Josephson junctions was studied in Refs. 34 and 35.
In Ref. 34 the magnetization vector is assumed to be in-plane
and to rotate around the direction normal to the plane of the
junction. In this case the LRTC arises, and the possible
�-state may be suppressed due to an effective averaging of
the exchange field. In Ref. 35 a SFS junction with two in-
plane domains of opposite orientation was studied �no LRTC
arises in this case�. It was shown that if the thicknesses of the
domains are equal, the critical current Ic is always positive.

In realistic domain structures, the domains are separated
by domain walls. Below we shall discuss the case when the
magnetization vector MF lies in the plane of the F film and
the domain walls are of the Néel-type.36 A limiting case of
such a structure was considered in Refs. 37 and 38. It was
assumed that the vector MF rotates in space continuously

MF�y� = M0�0,sin Qy,cos Qy� �1�

�we choose the x axis normal to the plane of the F film,
whereas in Ref. 38 the z axis is normal to the plane of the F
film�. The possibility of a cryptoferromagnetic state in SF
structures with the magnetization MF�y� given by Eq. �1�
was studied in Ref. 37. The F layer was supposed to be very
thin: d	�h. A solution for the Eilenberger equation has been
found near the critical temperature Tc of the superconducting
transition. It was established that in a certain interval of pa-
rameters �Q, d, etc.� a homogeneous state in the ferromagnet
becomes energetically unfavorable and the nonhomogeneous
magnetization determined by Eq. �1� arises in the F film. In
Ref. 38 a SF bilayer with the F film of arbitrary thickness
was studied in the dirty limit. Analysis of a solution for the
Usadel equation shows that in the case of magnetization,
uniformly rotating along the F film �see Eq. �1��, the conden-
sate function f penetrates into the F film over a short distance
of the order �h. The LRTC is absent in this case. According
to Refs. 17–19 and 21, the LRTC appears if MF rotates
across the F layer �i.e., depends not on y but on x�.

In the present paper we consider a domain structure in a
thin F film, where domains with antiparallel in-plane magne-

tizations are separated by the Néel walls �while the magne-
tization does not change across the thin F film�. This domain
structure is realized in real ferromagnetic films.36 The yz
plane is chosen to be parallel to the SF interface �see Fig. 1�.
We show that the LRTC arises at the Néel domain walls and
decays exponentially away from the domain walls and the SF
interface over a long distance �T. We calculate the density of
states �DOS� variation �
 in the ferromagnet caused by the
proximity effect and find that �
�y� turns to zero in the
middle of domains in the case of positive chirality.

The paper is organized as follows: In Sec. II, we formu-
late the Usadel equations, the corresponding boundary con-
ditions, and investigate the main features of the long-range
triplet superconducting component which appears due to the
presence of Néel domain walls. The analysis is made on the
simplified model with half-infinite S and F layers and only
one half-infinite region with rotating magnetization. In Sec.
III, we consider the case of the multidomain F layer, employ-
ing the results of Sec. II. To make the model realistic, in Sec.
IV we take into account a finite thickness of the ferromagnet.
To illustrate the results for the LRTC, we study the density of
states due to it. Finally, we present our conclusions in Sec. V.

FIG. 1. SF systems considered in the paper. �a� SF bilayer with
half-infinite S and F parts. The domain �y�0� and the region with
rotating magnetization �y�0� are also half-infinite. �b� Multido-
main F layer of thickness d in contact with a bulk superconductor.
Depending on the relative orientation of rotating magnetizations in
neighboring domain walls, we distinguish the cases of positive and
negative chirality �Q has the same or opposite sign in the neighbor-
ing domain walls, respectively�. The proportion between the widths
of domains and domain walls is chosen only for drawing purposes.
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II. BASIC EQUATIONS: HALF-INFINITE DOMAIN

Consider a ferromagnet �x�0� in contact with a super-
conductor �x�0�. We assume that the in-plane exchange
field h�y� in the F layer, which is proportional to the magne-
tization MF, depends on y: h�y�=h�0,0 ,1� at y�0 and
h�y�=h�0,sin ��y� , cos ��y�� with ��y�=Qy at y�0. This
means that the magnetization vector MF is oriented along the
z axis at y�0 and rotates in the yz plane at y�0. The region
with rotating magnetization models a Néel domain wall. The
structure that we discuss first is shown in Fig. 1�a� and con-
tains only one half-infinite domain and one half-infinite re-
gion with rotating magnetization; the thickness of the ferro-
magnet is also infinite. Then we shall use the obtained results
to describe a realistic structure depicted in Fig. 1�b�.

Our goal is to find the condensate Green functions in the
ferromagnet, induced due to the proximity effect. We con-
sider the dirty limit, which means, in particular, that h�	1,
where � is the momentum relaxation time due to elastic scat-
tering.

We employ a widely used model: an exchange field h acts
on free electrons and there is no attractive interaction in the F
layer leading to the superconducting order parameter.1–3

However, the condensate �Gor’kov� functions are finite in
the F region due to the boundary conditions at the SF inter-
face. We are interested in distances much larger than the
Fermi wavelength, therefore we can use the quasiclassical
Green functions ǧR�A�. The matrix retarded �advanced� func-
tions ǧR�A� in the ferromagnet obey the Usadel equation3

D � �ǧR�A� � ǧR�A�� + i���̂3, ǧR�A�� − i�ȟ, ǧR�A�� = 0, �2�

where � is energy, ȟ=h��̂3�̂3 cos ��y�+ �̂0�̂2 sin ��y��, and
��y�=0 at y�0 while ��y�=Qy at y�0. We assume that the
diffusion constants D for electrons with spin up and down
are equal �this is correct if the exchange energy h is much
less than the Fermi energy �F�. The matrix Green functions ǧ
are 4�4 matrices in the Gor’kov-Nambu and spin spaces. �̂i
and �̂i are the Pauli matrices in the Gor’kov-Nambu and spin
spaces, respectively.

We represent ǧR�A� in the form

ǧR�A� = ± �̂3�̂0 + f̌ , �3�

where the first term is the retarded �advanced� quasiclassical
Green function in the normal state. The superconducting cor-

relations, described by f̌�x ,y�, are assumed to be weak due to
the finite interface transparency �resulting from an oxide bar-
rier or from mismatch in the Fermi surfaces of S and F ma-
terials�. In the considered case of weak proximity effect

�� f̌ �	1�, Eq. �2� can be linearized. In the Matsubara repre-
sentation it acquires the form

�2 f̌ − 2k�
2 f̌ − ikh

2 sgn ����̂3, f̌	cos ��y� + �̂3��̂2, f̌�sin ��y��

= 0, �4�

where �=�T�2n+1�, k�
2 = ��� /D, kh

2=h /D, the square brack-
ets denote the commutator, and the braces denote the anti-
commutator.

The Green function in the bulk of the superconductor is

f̌ S= �̂2�̂3fS, with fS=� /��2+�2. We shall use the following

boundary condition for f̌ at the SF interface �x=0�:

� f̌

�x
= −

f̌ S

�b
, �5�

where �b=Rb�, while � is the conductivity of the ferromag-
net and Rb is the interface resistance per unit area. This
boundary condition follows from the general ones39,40 if two
assumptions are made: �1� the proximity effect is weak �i.e.,

�b /�h�1� and �2� the bulk solution f̌ S in the superconductor
is unperturbed and valid up to the interface �i.e., �b /�S
�� /�S�.

We can rewrite Eq. �4� in the form taking into account
boundary condition �5�,

�2 f̌

�x2 +
�2 f̌

�y2 − 2k�
2 f̌ − ikh

2 sgn ����̂3, f̌	cos ��y�

+ �̂3��̂2, f̌�sin ��y�� = −
2 f̌ S

�b
��x� . �6�

We must seek for an even solution of this equation, then this
is equivalent to the problem with the boundary condition �we

have reflected f̌ with respect to x=0 and now solve the equa-
tion at all x�. However, the requirement that the solution is
even, will be automatically satisfied: as we shall see below,
the Fourier harmonics �over x� depend only on k2, hence they
are even in k, which means that f�x� is even in x.

Performing the Fourier transformation f̌�k ,y�
=
dxf̌�x ,y�exp�−ikx�, we obtain

�2 f̌

�y2 − �k2 + 2k�
2 � f̌ − ikh

2 sgn ����̂3, f̌	cos ��y�

+ �̂3��̂2, f̌�sin ��y�� = −
2 f̌ S

�b
. �7�

At y�0 the function ��y� is y-dependent, while at y�0
we have �=0. In the region of positive y one can exclude the
y-dependence from Eq. �7� with the aid of rotation

f̌ = Ǔ f̌uǓ+, �8�

where Ǔ=exp�i�̂3�̂1��y� /2�. As a result, we get �y�0�

�2 f̌ u

�y2 − �k2 +
Q2

2
+ 2k�

2� f̌ u −
Q2

2
�̂1 f̌ u�̂1 + iQ�̂3
�̂1,

� f̌ u

�y
�

− ikh
2 sgn ���̂3, f̌ u	 = −

2 f̌ S

�b
�9�

in terms of the new function f̌ u�k ,y�. The same equation is
valid for y�0 if we set Q=0,

�2 f̌ u

�y2 − �k2 + 2k�
2 � f̌ u − ikh

2 sgn ���̂3, f̌ u	 = −
2 f̌ S

�b
. �10�
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The original functions f̌ and � f̌ /�y are continuous at y
=0. Therefore the rotated functions obey the following
boundary conditions at y=0,

f̌ u�− 0� = f̌ u�+ 0� , �11�

� f̌ u�− 0�
�y

=
� f̌ u�+ 0�

�y
+ i

Q

2
�̂3��̂1, f̌ u	 . �12�

Thus we have to solve the linear matrix Eqs. �9� �y�0�
and �10� �y�0� of the second order with the boundary con-
ditions �11� and �12� at y=0. We can represent the solution in
the form

f̌ u = F̌�Q���y� + F̌�0���− y� + � f̌ u, �13�

where � is the Heaviside step function and the constants

F̌�Q� and F̌�0� are the homogeneous solutions of Eqs. �9�
and �10� at y= ±�. The matrices F̌ have the form

F̌ = �̂2��̂0F0 + �̂3F3� , �14�

where

F0�Q� = −
4ifSkh

2 sgn �

�bD�Q�
, �15�

F3�Q� =
2fS�k2 + Q2 + 2k�

2 �
�bD�Q�

, �16�

and

D�Q� = �k2 + Q2 + 2k�
2 ��k2 + 2k�

2 � + 4kh
4. �17�

The correction � f̌ u�k ,y� obeys the same Eqs. �9� and �10�
without the right-hand side. It has the form

� f̌ u = �̂2�̂3f3 + �̂2�̂0f0 + �̂1�̂1f1. �18�

The first term is the singlet component. The second term is
the triplet component with zero projection of the Cooper pair
spin on the z axis. This component arises even in the case of
a homogenous magnetization of the ferromagnet and decays
in the F film over the short distance �h. The last term in Eq.
�18� is the triplet component with the spin moment projec-
tion ±1. It arises in the case of a nonhomogeneous magneti-
zation and decays over a long distance of the order �T. The
functions f i�k ,y� in Eq. �18� can be represented as a sum of
eigenfunctions of Eqs. �9� and �10�, i.e.,

f i�y� = �
l

Ail exp�− �l�Q�y�, at y � 0, �19�

f i�y� = �
l

Bil exp��l�0�y�, at y � 0. �20�

The inverse decay lengths �l�Q� are the eigenvalues of Eqs.
�9� and �10� �without the right-hand side�. The equation for
�l�Q� has the form �l=1,2 ,3�

���l
2 − k2 − Q2 − 2k�

2 �2 + 4�Q�l�2���l
2 − k2 − 2k�

2 �

+ 4kh
4��l

2 − k2 − Q2 − 2k�
2 � = 0. �21�

We assume that the exchange length is the shortest length in
the problem:

kh
2 � k2,Q2,k�

2 . �22�

Then the eigenvalues �l consist of two “short-range” values

�± � �1 � i sgn ��kh, �23�

and one “long-range” value

�L�Q� � �k2 + Q2 + 2k�
2 . �24�

At y�0 we have the same �l with Q=0.
Calculating the corresponding eigenvectors under as-

sumption �22�, in the first order over 1 /kh we obtain

A0± � � A3±, A1± � �
2Q

�±
A3±, A3,0L � 0. �25�

To be more exact, A3L��Q�L / ikh
2 sgn �� A1L and A0L is even

smaller. The same relations with Q=0 hold for Bil, which
yields

B0± � � B3± �26�

for nonzero coefficients.
The next step is to match solutions �19� and �20� with the

help of boundary conditions �11� and �12� and to find the
coefficients Ail and Bil. This simple but cumbersome calcu-
lation is presented in the Appendix. In the considered limit of
a small exchange length �see Eq. �22��, the coefficients A1L
�B1L �see Eq. �A15�� that describe the LRTC are the largest
ones. In this limit the function F0�Q� has a simple form
�A12�. Therefore the magnitude of the LRTC at the interface
between a domain and a domain wall �y=0� is equal to

fL�k,0� � f1�k,0� = −
ifS sgn �

�bkh
2

Q

�Q + �0
, �27�

where for brevity we have denoted

�Q � �L�Q�, �0 � �L�0� . �28�

Now we return to the real space and analyze our results.
The spatial dependence of the LRTC at y�0 is �see Eq. �20��

fL�x,y� =� dk

2�
fL�k,0�exp�ikx�exp��0y� . �29�

From this formula one can easily find the asymptotic behav-
ior of the LRTC fL�x ,y�. For large negative y ��y��1/k��,
we expand �0 and �Q with respect to �k /k��2 �since the char-
acteristic k in the integral is of the order �k� / �y�� and obtain

fL�x,y� = −
ifSQ sgn �

�bkh
2 � k�

�2��y�

�
exp�− �2k��y��exp�− x2k�/�2�y��

�2k� + �2k�
2 + Q2

. �30�

This formula shows that the condensate function fL�x ,y� de-
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cays exponentially with increasing y, but the characteristic
length is rather large ��k�

−1�.
For comparison, we can calculate the short-range compo-

nent at the SF interface in the case of a homogenous magne-
tization: f0=−ifS sgn � /2�bkh �it follows directly from Eq.
�10��. Formula �30� shows that at the SF interface �x=0� and
at distances �y�
k�

−1, the function fL�x ,y� is of the order
fS min�Q ,k�� /�bkh

2, which is smaller than the amplitude of
the short-range component by the parameter min�Q ,k�� /kh.
Thus, the interface amplitude of the LRTC is smaller, how-
ever it decays much slower in space.

In the domain wall �y�0� the behavior of the function
fL�x ,y� is nearly the same as at y�0 �Eq. �30�� if Q�k�. In
the opposite limit Q�k� the function fL�x ,y� in the domain
wall decays faster: fL�x ,y��exp�−Q�y��.

Having found the condensate function f̌ , we can calculate
the density of states �DOS� in the ferromagnetic region. The
DOS, normalized to the normal-metallic value, is given by
the general formula


��� = � 1
4 Re Tr��̂3�̂0ǧ���→−i�. �31�

Using the normalization condition ǧ2=1 and the smallness of
the condensate function, we can write the correction to the
DOS due to the proximity effect as

�
��� = − �Re fL
2

2
�

�→−i�
�32�

�we consider the region in space where only the LRTC is
essential�. This expression is valid at any Q, both zero and
nonzero. Equations �30� and �32� show that the LRTC
changes the DOS in the ferromagnet at distances much larger
than the exchange length �h.

III. TRIPLET COMPONENT IN MULTIDOMAIN SF
STRUCTURES

In this section we study the LRTC in a SF structure with
a multidomain ferromagnetic layer, still assuming infinite
thickness of the F layer �Fig. 1�b� with d→��. One can
distinguish between two possibilities: �a� positive chirality,
when the magnetization vector M�y� in all the domain walls
rotates in the same direction �e.g., clockwise�, and �b� nega-
tive chirality, when the vector M�y� in neighboring domain
walls rotates in the opposite directions �e.g., clockwise in the
2nth domain walls and counterclockwise in the �2n+1�th
domain walls�. We are interested in the LRTC assuming that
the exchange length �h is much smaller than the coherence
length �T. At distances x essentially exceeding the length �h
only the LRTC survives in the F layer.

We assume that the width of the domains with Q=0 is 2a0
and the width of the domain walls �Q�0� is 2aQ. The origin
�y=0� is located in the middle of a domain with the constant
magnetization. At x��h only the long-range components of
the condensate function survive in the ferromagnet. The larg-
est long-range component is the LRTC. At the boundary be-
tween a domain and a domain wall the solution must satisfy
boundary conditions �11� and �12�. Consider first the case of

positive chirality. The angle ��y� is then an odd function of
y, which means that f1�y� is also odd—this general symme-
try can be demonstrated in Eq. �6�. Hence the solution for the
LRTC is

f1�y� = A sinh��0y�, − a0 � y � a0, �33�

f1�y� = B sinh��Q�y − a0 − aQ��, a0 � y � a0 + 2aQ.

�34�

Matching these solutions and their derivatives at y=a0, we
find

B = − A
sinh �0

sinh �Q
= −

QF0

cosh �Q��Q + �0
tanh �Q

tanh �0
� , �35�

where �Q=�QaQ and �0=�0a0. The amplitude of the LRTC at
y=a0 is

f1�a0� =
QF0

�Q coth �Q + �0 coth �0
. �36�

We see that f1�a0� turns to zero both at aQ→0 and
a0→0. These limits mean that the widths of the domain
walls and domains are assumed to be small in comparison
with �T while larger than �h. The case aQ=0 implies that we
have a domain structure with collinear magnetization orien-
tation. The case a0=0 corresponds to a SF structure with
continuously rotating magnetization �the case studied in Ref.
38�. In both cases, the LRTC does not arise.

The spatial dependence of the LRTC in the domain
��y��a0�, corresponding to Eq. �36�, is given by the inverse
Fourier transformation

fL�x,y� =� dk

2�
eikxf1�a0�

sinh��0y�
sinh �0

. �37�

Interestingly, the function fL�x ,y� turns to zero in the center
of a domain �y=0�. This means that the DOS variation due to
the LRTC also turns to zero in the domain center.

Consider now the case of negative chirality, when the M
vector rotates in the opposite directions in neighboring do-
main walls. In this case the spatial dependence of the func-
tion f1�y� in domain walls remains the same as before, i.e.,
this function is an odd function with respect to the center of
a domain wall. However the spatial dependence of the LRTC
in domains changes drastically: it becomes an even function
with respect to the center of a domain. Therefore this depen-
dence is

f1�y� = C cosh��0y�, − a0 � y � a0, �38�

f1�y� = D sinh��Q�y − a0 − aQ��, a0 � y � a0 + 2aQ.

�39�

From boundary conditions �11� and �12� we find the coeffi-
cients C and D, and finally

f1�a0� =
QF0

�Q coth �Q + �0 tanh �0
. �40�
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In this case the LRTC disappears only in the limit
aQ→0 because in this limit one again has a domain structure
with collinear magnetization orientation and very narrow do-
main walls.

Another type of SF structures, sensitive to the chirality of
the vector M, was considered in Refs. 20 and 21. It was
shown that the sign of the critical Josephson current in a
multilayered SF structure depends on chirality.

IV. FINITE THICKNESS OF MULTIDOMAIN F LAYER

In this section we consider a realistic structure with a
ferromagnetic layer of finite thickness d, see Fig. 1�b�. We
again have to solve Eq. �4� with boundary conditions. The
first of them, at the SF interface, is Eq. �5� and the other one,
at the free surface of the ferromagnetic layer, is

� � f̌

�x
�

x=d
= 0. �41�

Similarly to Sec. II, we can continue f̌ to the whole x axis,
reflecting it with respect to x=0 and periodically continuing
from the �−d ,d� interval. The advantage of this trick is that
the boundary conditions are included into the equation. Simi-
larly to Eq. �6�, we obtain

�2 f̌

�x2 +
�2 f̌

�y2 − 2k�
2 f̌ − ikh

2 sgn ����̂3, f̌	cos ��y�

+ �̂3��̂2, f̌�sin ��y�� = −
2 f̌ S

�b
�

N=−�

�

��x − 2dN� , �42�

which must be solved at all x in the class of even and
2d-periodic functions. A periodic function can be expanded
into the Fourier series,

f̌�x� =
1

2d
�

n=−�

�

eiknx f̌�kn�, kn =
�

d
n ,

f̌�kn� = �
−d

d

e−iknx f̌�x�dx . �43�

After this transformation, we reproduce Eq. �7� with the only
difference that the continuous wave vector k is substituted by
discrete kn.

As in Sec. II, the requirement that f̌�x� is even, is auto-
matically satisfied since the equation contains only kn

2, while
the 2d-periodicity is guaranteed since we consider kn defined
by Eq. �43�.

The equivalence to the previous equations allows us to
directly use the results of Secs. II and III, obtained for the
infinite d. The rule is very simple: in the case of finite d, all
the results of Secs. II and III for the Fourier harmonics are
valid if we substitute k by kn. The real-space function can
then be calculated with the help of Eq. �43�.

For example, we consider the case of multidomain SF
structure with the F layer of thickness d. For the case of
positive chirality, instead of Eq. �37� inside of the domain
��y��a0�, we obtain

fL�x,y� =
1

2d
�
kn

eiknxf1�a0�
sinh��0y�

sinh �0
, �44�

where f1�a0� is given by Eq. �36�.
The formula �44� can be drastically simplified in the limit

when the F film is thin for the long-range component but
thick for the short-range one �i.e., kh�1/d�Q ,k��. In this
case, the main contribution is given by the n=0 harmonic,
since otherwise � in the denominator of Eq. �36� become
very large. Therefore, Eq. �44� yields

fL�x,y� = − � ifS sgn �

2d�bkh
2 � Q

�Q coth �Q + �0 coth �0

� � sinh��0y�
sinh��0a0�

�
kn=0

, �45�

where we have used Eq. �A12�. The x dependence has van-
ished since the F layer is thin.

The variation of the DOS in space, ��
�y�
=−Re fL

2 /2��→−i�, differs drastically from the case without
the LRTC: it is almost constant across the layer �no x depen-
dence� and equal to zero in the middle of domains �y=0�.
The condensate function fL�y� decays exponentially �oscillat-
ing at the same time� from the boundaries between domain
walls and domains with characteristic length �T=�D /2�T
�for the DOS, ��=�D /��; see Fig. 2 for illustration. At the
same time, the singlet component in the case of a domain
structure leads to an even dependence of �
�y� with respect
to the middle of a domain. The characteristic length of the
short-range components is �h=�D /h. This case is realized if
�Q→0.

The case of negative chirality is treated similarly, and in-
side of the domain ��y��a0� we obtain

fL�x,y� =
1

2d
�
kn

eiknxf1�a0�
cosh��0y�

cosh �0
, �46�

where f1�a0� is given by Eq. �40�. In the limit kh�1/d�Q,
k�, Eq. �46� yields

fL�x,y� = − � ifS sgn �

2d�bkh
2 � Q

�Q coth �Q + �0 tanh �0

� � cosh��0y�
cosh��0a0�

�
kn=0

. �47�

The resulting corrections to the DOS, �
�y�, in the case of
positive and negative chiralities are compared in Fig. 3.

The dimensionless parameter �d�bkh
2�2, which multiplies

�
�y� in Figs. 2 and 3, is much larger than unity under our
assumptions. This means that �
�y� is very small. However,
at the boundary of our approximation, when the parameter is
of the order of unity, we expect no qualitative differences to
appear. At the same time, in this case the DOS correction
shown in Figs. 2 and 3 already falls into experimentally mea-
surable range: in Ref. 41, the resolution of the DOS measure-
ment was of the order 0.002–0.003. Experimentally, it is de-
sirable to measure �
 at small energies, since the effect
grows as energy decreases, see Fig. 2.
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The behavior of the LRTC �and the corresponding correc-
tion to the DOS �
�y�� inside of the domain walls is similar
to Eqs. �44� and �46� with the main difference that the decay
length in the y direction is determined not by �0 but by �Q.

The coordinate dependence of the DOS presented in Figs.
2 and 3 differs from the corresponding dependence of the
DOS variation caused by the singlet component. If the thick-
ness of the F film d is less than the exchange length �h, then
the DOS variation, related to the singlet component, in a
domain wider than �h, does not depend on y. In the case of
the LRTC the DOS variation is a strongly coordinate-
dependent quantity since the LRTC arises near the domain
walls.

V. CONCLUSIONS

We have studied the long-range triplet superconductivity
or LRTC in the SF multidomain structure, where magnetic
domains are separated by the Néel domain walls. The mag-
netization vector M is supposed to lie in the plane of the F

film. We show that in this case the LRTC arises at the do-
main walls and decays in domains over a large distance �T
=�D /2�T �we assume the diffusive case�. The same length
characterize the decay of the LRTC from the SF interface.
Although the amplitude of the LRTC is less than the ampli-
tude of the singlet component in the F film at the interface by
k /kh times, it decays much more slowly in the F film �here
the characteristic value of the wave vector k is of the order �T
or d−1�. Therefore if the thickness of the F film d is much
larger than the “exchange” length �h=�D /h, which charac-
terizes the decay of the singlet component in the ferromag-
net, only the LRTC f survives at the outer surface of the F
film in a SF structure. Its spatial in-plane dependence in do-
mains f�y� differs drastically from the corresponding depen-
dence of the singlet component near the SF interface. If the
vector M�y� rotates in the Néel walls in the same direction
�positive chirality�, then f turns to zero in the centers of
domains. This implies that the DOS variation due to the
proximity effect �
�� ,y�� f2�� ,y� varies inside a domain
turning to zero in the middle. Thus the measurements of the

FIG. 2. Correction �
�y� �due to the proxim-
ity effect� to the DOS at the free surface of the F
layer in the case of positive chirality. �
 is mul-
tiplied by a dimensionless parameter �d�bkh

2�2,
while y is normalized by Q. The curves are plot-
ted at several energies � �normalized by DQ2�.
The width of the domains is a0=5/Q, while the
rotation of magnetization in the domain walls
corresponds to QaQ=�. We assume the limit
DQ2	�, which means that the width of the do-
main walls is larger than the coherence length. At
the boundary of applicability of our approxima-
tion, �
�y� falls into experimentally measurable
range �Ref. 41� �see text for details�.

FIG. 3. Correction �
�y� to the
DOS at the free surface of the F
layer: comparison of positive �de-
noted by “�”� and negative �de-
noted by “�”� chiralities at two
widths of domains, a0=3/Q and
a0=4/Q. The energy is �
=0.5DQ2. The difference between
the chiralities becomes less pro-
nounced as a0 or � increases.
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DOS variation at the outer surface of the F film in SF bilay-
ers allows one to get an information on the nature of the
condensate in the ferromagnetic films �singlet or triplet�.

The effects of the LRTC are mostly pronounced at the
boundaries between domains and domain walls. However,
the correction to the DOS that we find is small since we
assume the SF interface of low transparency and hence a
weak proximity effect. At the same time, as we increase the
interface transparency and reach the limit of applicability of
our approximation, the correction to the DOS falls into ex-
perimentally measurable range, while we expect that our re-
sults are still qualitatively valid. Another way to increase the
correction to the DOS is to measure it at smaller energies.

The obtained results provide an insight for the Josephson
effect in SFS junctions with multidomain structure in the F
layer. If the thickness of the F layer d is much larger than the
short exchange length �h, the Josephson coupling between
the S layers is due to the LRTC. In this case the local critical
current density jc�y� is modulated in space, reaching its
maxima at the domain walls and decaying to the centers of
domains.
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APPENDIX: CALCULATING Ail AND Bil

To find the coefficients Ail and Bil, we match solutions
�19� and �20� with the help of boundary conditions �11� and
�12�. This yields

A3+ + A3− + F3�Q� = B3+ + B3− + F3�0� , �A1�

− A3+ + A3− + F0�Q� = − B3+ + B3− + F0�0� , �A2�

−
2Q

�+
A3+ +

2Q

�−
A3− + A1L = B1L, �A3�

− �+A3+ − �−A3− = �+B3+ + �−B3−, �A4�

�+A3+ − �−A3− − QB1L = − �+B3+ + �−B3−, �A5�

Q�A3+ − A3− + F0�Q�� − �QA1L = �0B1L, �A6�

where for brevity we have denoted

�Q � �L�Q�, �0 � �L�0� . �A7�

From Eqs. �A4� and �A5� we find

B3+ = − A3+ +
Q

2�+
B1L, �A8�

B3− = − A3− −
Q

2�−
B1L. �A9�

From Eqs. �A1� and �A2� we find

2�A3+ + A3−� +
Q

2
� 1

�−
−

1

�+
�B1L = − �F3, �A10�

2�− A3+ + A3−� +
Q

2
� 1

�−
+

1

�+
�B1L = − �F0, �A11�

where �F3=F3�Q�−F3�0� and �F0=F0�Q�−F0�0�. If Eq.
�22� is fulfilled, on the order of magnitude we have �F3
� �Q /kh�2F0 and �F0� �Q /kh�2��k2+2k�

2 � /kh
2�F0, where

F0 � −
ifS sgn �

�bkh
2 . �A12�

It follows from Eqs. �A10� and �A11� that the coefficients
A3± are smaller than B1L by the parameter Q /kh.

From Eq. �A3� we find

A1L � B1L. �A13�

From Eq. �A6� we find

Q�A3+ − A3−� − �QA1L + QF0 = �0B1L. �A14�

The first term here is small, therefore we finally obtain

A1L � B1L �
QF0

�Q + �0
. �A15�

These coefficients determine the amplitude of the LRTC
in the domain �y�0� and in the region with rotating magne-
tization �y�0�.
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