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We study the two-dimensional fully frustrated XY �FFXY� model and two related models, a discretization of
the Landau-Ginzburg-Wilson Hamiltonian for the critical modes of the FFXY model and a coupled Ising-XY
model, by means of Monte Carlo simulations on square lattices L2, L�103. We show that their phase diagram
is characterized by two very close chiral and spin transitions, at Tch�Tsp respectively, of the Ising and
Kosterlitz-Thouless type. At Tch the Ising regime sets in only after a preasymptotic regime, which appears
universal to some extent. The approach is nonmonotonic for most observables, with a wide region controlled
by an effective exponent �eff�0.8.
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The nature of the phase transitions in frustrated systems is
of great interest in statistical physics. The two-dimensional
fully frustrated XY �FFXY� model1 is defined by the Hamil-
tonian

HFFXY = − J�
�xy�

cos��x − �y + Axy� , �1�

where the sum is over all nearest-neighbor pairs of a square
or triangular lattice, and Axy satisfy the constraint �Axy =�
around any plaquette. It is experimentally relevant for
Josephson-junction arrays in a magnetic field.2 The angle
variable �x corresponds to the phase of the superconducting
order parameter on each superconducting grain, and Axy is
the vector potential of a perpendicular magnetic field corre-
sponding to half a flux quantum per plaquette.

The ground state of the FFXY model presents an enlarged
O�2� � Z2 degeneracy. The additional Z2 degeneracy is re-
lated to the breaking of the chiral symmetry.1 For each
plaquette � we define the chirality

Cn � �
�xy���

sin��x − �y + Axy� , �2�

where n is the dual-lattice site at the center of �. On the
square lattice the staggered magnetization MC��n
�−1�n1+n2Cn /V defines an order parameter, which competes
with the spin modes to determine the phase diagram of the
FFXY model. The critical behavior has been much investi-
gated during the last few decades �see, e.g., Refs. 3–21�
using Monte Carlo �MC� simulations, real-space
renormalization-group �RG� techniques, field-theoretical
methods, etc. Moreover, several related models have also
been considered: for instance, the fractional-charge Coulomb
gas, coupled Ising-XY models, and coupled XY models.

In spite of all this work, the phase diagram and critical
behavior of the FFXY model are still rather controversial.
Most recent MC simulations favor the existence of two very
close transitions.7,8,10,12,13,15,16,19 The most likely interpreta-
tion is that the higher-temperature transition is characterized
by the onset of chiral long-range order, while spins remain
disordered. The lower-temperature transition is associated
with the breaking of the continuous symmetry and is fol-

lowed by a low-temperature phase in which spin quasi-long-
range order coexists with chiral long-range order. The chiral
transition is expected to be in the Ising universality class, due
to the scalar nature of the chiral order parameter. The second
one should be a Kosterlitz-Thouless �KT� transition. This
scenario is also supported by arguments based on a kink-
antikink unbinding picture.17,21 The Ising nature of the chiral
transition has not been satisfactorily supported by numerical
simulations so far. Most MC simulations4–9,11,12,14,15,19,20

have found that the behavior of the chiral modes—both in
the FFXY and in related models—is not consistent with an
Ising transition. For example, most finite-size scaling �FSS�
analyses have obtained ��0.8, instead of the Ising value �
=1. There are several possible explanations. One possibility
is that, even if the chiral order parameter is a scalar, the
chiral transition belongs to a universality class that is not the
Ising one. After all, the estimate ��0.8 appears to be some-
what universal, the same value being obtained in several dif-
ferent models. A second one is that the Ising regime sets in
only on large lattices: the observed behavior is only an inter-
mediate crossover. A third possibility is that the apparent two
transitions are a finite-size effect. On the contrary, spin and
chirality order at the same temperature. In this case the criti-
cal spin and chiral modes couple at criticality and give rise to
a qualitatively new critical behavior, in which chiral modes
do not behave as spins in the Ising model.

In this paper we consider the square-lattice FFXY model
�implemented by alternating vertical lines with ferromag-
netic and antiferromagnetic couplings� and two related lattice
models. The first one is a �4 model defined by the Hamil-
tonian

H� = − J �
�xy�,i

�i,x · �i,y + �
x,i

��i,x
2 + U��i,x

2 − 1�2	

+ 2�U + D��
x

�1,x
2 �2,x

2 , �3�

where �1,x ,�2,x are real two-component variables defined on
the sites x of a square lattice, �i

2��i ·�i, and J ,U ,D�0.
Hamiltonian H� is expected to describe the critical modes of
the FFXY model. It corresponds to a straightforward lattice
discretization of the Landau-Ginzburg-Wilson theory ob-
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tained by applying a Hubbard-Stratonovich transformation to
the FFXY model, see, e.g., Ref. 5. Here we set U=1; all
results reported below refer to this case. The symmetry
�1↔�2 is the analog of the Z2 chiral symmetry of the FFXY
model. The chiral order parameter is

Cx = �1,x
2 − �2,x

2 . �4�

When D=0, the model �3� becomes O�4� symmetric; it does
not have any transition at finite temperature, but its correla-
tion length diverges exponentially for J→	, see, e.g., Ref.
22. We also consider the coupled Ising-XY �IsXY� model4

HIsXY = − �
�xy�


 J

2
�1 + 
x
y�sx · sy + C
x
y� , �5�

where 
x= ±1, and the two-component spins sx satisfy
sx ·sx=1. Here sx and 
x correspond to spin and chiral vari-
ables, respectively. Note that, by taking the limit U→	 and
then D→	 in model �3�, one recovers the IsXY model for
C=0.

We performed MC simulations on L�L lattices with pe-
riodic boundary conditions, and sizes up to L=O�103�. We
used mixtures of Metropolis and overrelaxation updating al-
gorithms, as proposed in Ref. 23. Here we present the main
results; details will be reported elsewhere. We find two very
close Ising and KT transitions in the FFXY model, and in the
�4 and IsXY models for extended ranges of the parameters
D�0 and C. No evidence of unique continuous transitions is
found. For sufficiently large D and −C, i.e., D�50 and C
�−5, we find instead a single first-order transition. The
phase diagrams of the �4 and IsXY models are shown in Fig.
1.24 Little is known about the region where the two continu-
ous transition lines turn into a single first-order one. Another
interesting feature emerges from our numerical results: the
asymptotic critical behavior at the chiral transition is ob-
served only after a peculiar nonmonotonic crossover regime,
which appears universal to some extent.

In the FFXY model the square lattice can be divided into
four sublattices, so that the four sites of every plaquette be-
long to different sublattices. The ground state is translation
invariant within these sublattices. We define the spin corre-

lation function Gs�x� as the correlation between two spins in
the same L /2�L /2 sublattice. Furthermore, we consider the
staggered chirality correlation function Gc�x�. In the �4

model the spin and chiral correlation functions are defined by
Gs�x����i�i,0 ·�i,x� and Gc�x�= �C0Cx�c. In the IsXY model
we have Gs�x���s0 ·sx� and Gc�x�= �
0
x�c. From Gs and Gc

we define the susceptibilities s and c, and second-moment
correlation lengths �s and �c. We also consider Rs��s /L,
Rc��c /L, the spin and chiral Binder parameters Bs and Bc,
and the helicity modulus �.

We first show that the low-temperature phase of these
models is characterized by the breaking of the Z2 chiral sym-
metry and by a spin quasi-long-range order analogous to the
one of the standard XY model. Indeed, chiral modes are mag-
netized and, in the large-L limit, the exponent � �computed
by using s�L2−��, Rs��s /L, and � satisfy the universal
relations that hold among the corresponding quantities in the
low-temperature phase of the XY model on a L�L square
lattice with periodic boundary conditions. For example,25,26

���� =
1

2��
−

�n=−	

	
n2 exp�− �n2/��

�2�n=−	

	
exp�− �n2/��

�6�

for 0���1/4. As shown by the results of Table I, the
agreement is very good and provides a conclusive evidence
that the low-temperature phase of the FFXY and related mod-
els is controlled by the same line of Gaussian fixed points
that is relevant for the XY model.

To determine the number of transitions, we perform a FSS
analysis using the method proposed in Ref. 27, see also Ref.
28. Instead of computing the various quantities at fixed
Hamiltonian parameters, we compute them at a fixed value
of a chiral—this guarantees that we are observing the chiral
transition—RG invariant quantity; in our specific case we
choose Rc��c /L. This method has the advantage of not re-
quiring a precise estimate of the critical temperature. We fix
Rc=RIs, where RIs=0.905048¯ is the corresponding Ising
value.29 Note that such a choice does not represent a bias in
favor of an Ising transition. If the transition is unique, also
the spin correlation length �s diverges, and thus Rs��s /L at
fixed Rc is expected to converge to a nonzero value. If there
are two transitions and Tch�Tsp, �s remains finite, so that
Rs�1/L for L→	. Results for Rs are shown in Fig. 2. They

FIG. 1. Sketches of the phase diagrams of the �4 model for U
=1 �above� and of the IsXY model �below�. The behavior in the
circled region where the transition lines meet is unclear.

TABLE I. Comparison of the estimates of � obtained from s,
and from Rs and � using the relations valid in the XY model, such
as Eq. �6�, in the low-temperature phase.

Model J � � from Rs � from �

FFXY 2.4 0.1480�5� 0.1479�4� 0.14779�11�
2.3 0.1750�5� 0.1752�4� 0.1758�3�
2.26 0.2023�11� 0.2015�7� 0.2021�5�

� ,D=1/2 1.50 0.1341�6� 0.1346�4� 0.13425�12�
1.48 0.1675�16� 0.1672�10� 0.1670�4�

� ,D=99 1.6005 0.120�3� 0.1214�6� 0.1202�5�
IsXY ,C=0 1.52 0.1817�7� 0.1821�4� 0.18190�13�
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appear to decrease with increasing L, without showing any
hint at a convergence to a nonzero value. This shows that the
spin correlation length �s

�c� at the chiral transition is finite,
though quite large. For example, for L→	 we have �s

�c�

=118�1� for the FFXY model, �s
�c��380 for the �4 model

with D=1/2, �s
�c�=52.7�4� for the IsXY model at C=0. Ad-

ditional evidence is provided by the helicity modulus. At the
chiral transition, it appears to vanish in the large-L limit,
consistently with the fact that spin variables are disordered.

If spin and chiral modes decouple, the chiral transition is
expected to belong to the Ising universality class. The best
evidence for that is provided by the finite-size behavior at
fixed Rc=RIs of the chiral Binder cumulant Bc. In the case of
an Ising transition, since Rc=RIs, the asymptotic behavior of
Bc is expected to be29,30

Bc = BIs + aL−7/4, �7�

where29 BIs=1.167923�5� and the leading correction is due to
the analytic background. As shown in Fig. 3, Bc clearly ap-

proaches the Ising value as L increases; moreover, the pre-
dicted convergence rate is also well verified by the data.
Note that the Ising asymptotic behavior—the regime in
which we observe the approach to the Ising value with the
predicted rate of convergence—is observed only for L
�2�s

�c� with a scaling-correction coefficient in Eq. �7� given
by a�0.14��s

�c��7/4 �thus �Bc�Bc−BIs�0.01 only when L
�4�s

�c��. The Ising nature of the chiral transition is further
supported by the analysis of the critical exponents. For any
invariant quantity S, such as Rc and Bc, we define an effec-
tive exponent �eff�L� as

1/�eff�L� = �ln dS/dJ2L − ln dS/dJL�/ln 2. �8�

Similar to Bc, �eff�L� appears to approach the Ising value �

=1 only for L��s
�c�, after a nonmonotonic crossover charac-

terized by a plateau at �eff�L��0.8. We shall return to this
point below.

The spin transition, whenever continuous, is expected to
be a KT one. We verify that at the KT transition Rs and �
behave as expected, for example,25

� = 0.63650817819 ¯ +
0.318899454¯

ln L + c
+ ¯ . �9�

In most cases, including the FFXY model, the chiral and the
spin transitions are very close. If ��Jsp /Jch−1, Jsp and Jch
being the location of the two transitions, we find �
=0.0159�2� for the FFXY model �Jch=2.20632�5� and Jsp

=2.2415�5�	, �=0.0025�2� in the �4 model for D=1/2, �
=0.0167�7� in the IsXY model with C=0.

Our FSS analysis definitely shows that the chiral transi-
tion, when it is continuous, belongs to the Ising universality
class. However, the Ising critical regime is reached only after
a crossover region in which effective exponents and RG in-
variant quantities show a behavior that is surprisingly similar
in the FFXY model, in the �4 model with 0�D�2, and in
the IsXY model for −0.5�C�0.2. Figure 4 shows the FSS
curves of Rs��s /L at fixed Rc��c /L plotted versus a res-
caled lattice size Lr�L / l, where l is a rescaling factor that is

FIG. 4. �Color online� Rs at fixed Rc vs Lr=L / l. We set l=�s
�c�

�118 for the FFXY model.

FIG. 2. �Color online� Rs��s /L at fixed Rc��c /L vs 1/L.

FIG. 3. �Color online� �Bc�Bc−BIs at fixed Rc��c /L vs L−7/4.
BIs=1.167923�5� is the value of the Binder parameter at the critical
point in the Ising model �Ref. 29�. The dotted lines correspond to
linear fits of the data for the largest available lattices.
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chosen judiciously for each different model. The optimal
data collapse is obtained for l / lFFXY =4.5,3.2,1.8,1.0 for the
�4 model at D=1/3 ,1 /2 ,1 ,2 and l / lFFXY =2.6,1.1,0.45,
0.089 for the IsXY model at C=−0.5,−0.2,0 ,0.2. Of course,
for L large �s→�s

�c� and therefore, given two different mod-
els, l1 / l2 should correspond to the ratio of the corresponding
spin correlation lengths at the chiral transition. Thus, the
scaling we observe implies that Rs is an approximately uni-
versal function of L /�s

�c�. Using the same length rescalings, a
data collapse is also observed for the helicity modulus, see
Fig. 5, and the spin and chiral Binder parameters. Figure 6
shows the effective exponent 1 /�eff defined by Eq. �8�, as
obtained from Rc, Bc, and Rs, respectively, by using the same
rescaling factors l as determined from Rs. In all cases we
observe an approximate collapse of the data. Note that there
is a rather extended region, Lr�1, i.e., L��s

�c�, in which �eff
computed from the chiral variables Rc and Bc �respectively,
Rs� is approximately 0.8 �respectively, 0.9�. This preasymp-
totic behavior explains previous estimates ��0.8 of the chi-
ral exponent, see, e.g., Refs. 4–9, 11, 12, 14, 15, 19, and 20:
Simulations with lattices in the range L��s

�c� would observe
��0.8 instead of the Ising value. For Lr�1, �eff obtained
from Rc and Bc starts to increase and becomes larger than 1:

the curves of 1 /�eff have a minimum at Lr�2 corresponding
to �eff�1.1 for Rc, and �eff�1.2 for Bc. Then, for Lr�3 they
apparently converge to the Ising value �=1, as already ob-
served for Bc. Thus, very large lattices are needed to fully
observe the Ising behavior, and therefore to confirm the two-
transition scenario, whenever �s

�c��1, as is the case in the
square-lattice FFXY model.

In conclusion, the crossover to the asymptotic Ising be-
havior presents interesting features and appears universal to
some extent. The origin of the apparent scaling behavior is
not clear. It might reflect the nearby presence of a multicriti-
cal point, which could be observed only by performing a
further fine tuning of the Hamiltonian parameters, where chi-
ral and spin modes become critical at the same time. The
identification of this multicritical point remains an open is-
sue.
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