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Experimental evidence suggests that the Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� state may be realized in
the unconventional, heavy-fermion superconductor CeCoIn5. We present a self-consistent calculation of the
field versus temperature phase diagram and order parameter structures for the FFLO states of quasi-two-
dimensional d-wave superconductors. We calculate the spatially nonuniform order parameter, free energy
density, and local density of states for magnetic fields parallel to the superconducting planes. We predict that
the lower critical magnetic field transition between the spatially uniform and nonuniform FFLO state is second
order. We discuss the signatures of the nonuniform FFLO state which should be observable in scanning
tunneling microscopy measurements of the local density of states.
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I. INTRODUCTION

The Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� state is
predicted for clean spin-singlet superconductors as a result of
the competition between pairing correlations, favoring anti-
parallel spin alignment, and the Zeeman effect, favoring par-
allel spin alignment along the field.1,2 The compromise is a
spatially inhomogeneous state of “normal” and “supercon-
ducting” regions. The normal regions are defined by a spec-
trum of spin-polarized quasiparticles. The high-field FFLO
phase was originally suggested for superconductors with fer-
romagnetically aligned impurities,1,2 but it was soon realized
that a FFLO state should develop in superconductors in an
external field if the Zeeman coupling dominates the orbital
coupling.3–5

A number of layered organic superconductors have been
suggested as candidates for FFLO phases.6–11 However, re-
cent interest has focussed on the heavy-fermion material
CeCoIn5.12 This material has quasi-two-dimensional �2D�
metallic planes, and shows evidence of unconventional,
d-wave, superconductivity13,14 with a transition temperature
of Tc=2.3 K. The quasi-2D tetragonal crystal structure con-
sists of alternating layers of CeIn3 and CoIn2. Superconduc-
tivity is believed to develop in the CeIn3 planes. Hence, it
has a Fermi surface sheet which is nearly cylindrical, i.e., a
sheet in which the conduction electrons move primarily in
the 2D metallic planes.15 CeCoIn5 exhibits the necessary
characteristics for the existence of the FFLO state. It is in the
clean limit as indicated by the small normal-state residual
resistivity and the small Sommerfeld coefficient for the low-
temperature specific heat in the superconducting state.13 The
upper critical field is paramagnetically limited, as indicated

by the large ratio of orbital critical field to Pauli critical
field,16 and CeCoIn5 exhibits a critical point where the tran-
sition from the normal to superconducting state changes
from second-order to first order below the temperature T0
=0.7 or 1.3 K, depending on the field orientation.14,16–20 Fi-
nally, several different experiments indicate a second-order
phase transition within the superconducting state, which is
assumed to be the transition into the FFLO state.20–25

For s-wave superconductors it has been predicted that the
upper critical field of the FFLO state depends on the dimen-
sionality of the Fermi surface,26 Fermi liquid interactions,27

orbital effects, and the presence of vortices,6,28 and
impurities.4,29–31 The one-dimensional stripe pattern for the
order parameter originally proposed by Fulde and Ferrell,
and Larkin and Ovchinnikov, has been generalized to include
higher harmonics and more complicated 2D FFLO
lattices.26,32,33 The quasi-one-dimensional �1D� problem has
an exact solution. It was found that the order parameter has a
sinusoidal profile in real space with second-order phase tran-
sitions between the uniform BCS and FFLO state, as well as
between the FFLO and normal state.34,35 In quasi-2D super-
conductors, Burkhardt and Rainer included Fermi liquid ef-
fects and examined self-consistently the FFLO state,27 while
Matsuo et al. formulated their analysis for three-dimensional
�3D� Fermi surfaces.36 In 2D the normal to superconducting
transition at Bc2 is second order, unless Fermi liquid effects
are large. In 3D Larkin and Ovchinnikov considered a sec-
ond order transition at T=0 and Matsuo et al. showed that
the FFLO transition is first order at high temperatures, but
second order at low temperatures. However, “cubic lattice”
modulations with three modulation vectors make this transi-
tion first order all the way down to T=0.37,38 For all dimen-
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sions, the transition at the lower critical field, Bc1, from the
uniform superconducting state to the nonuniform FFLO state
is second order and signaled by the appearance of a single
domain wall.

Generally, both spin and orbital coupling to the field are
present. This leads to the coexistence of the FFLO with vor-
tices; these states have been studied extensively and it is
predicted that the resulting inhomogeneous state has a num-
ber of additional properties, including a change in the order
of the transition as well as additional phase transitions within
the nonuniform phase corresponding to transitions between
states belonging to different Landau levels.6,28,39–46

For d-wave superconductors the FFLO phases are modi-
fied by the intrinsic anisotropy of the order parameter. In the
class of quasi-2D superconductors the upper critical transi-
tion line, Bc2�T�, has a kink at low temperatures correspond-
ing to the discontinuous change in direction of the stripe
modulation with respect to the nodes of the order
parameter.33,41,47,48 However, the reorientation transition, and
the kink, are absent in 3D,49 or if the shape of the Fermi
surface is changed.50 Recent calculations of the spatial
modulation of the order parameter in 2D near Bc2 predict that
the energetically favored state at low temperature and high
field forms a “square lattice” instead of stripe order.33,51 The
interplay between Pauli paramagnetism and the vortex phase
of d-wave superconductors has also been studied in Refs.
41,52.

Theoretical predictions for the properties of the FFLO
phases depend on material properties, including the quasipar-
ticle interactions. Accurate results for the thermodynamic
and transport properties of the FFLO state generally require
self-consistent calculations of the inhomogeneous order pa-
rameter structure, local excitation spectrum, and quasiparti-
cle self-energy. This is often a formidable task as one must
examine a great number of different, but energetically
nearby, states. Most of the theoretical work mentioned above
was limited to the vicinity of the upper critical field, or near
the maximum critical transition temperature, TFFLO, of the
FFLO state.

In this paper we address the stability of the nonuniform
FFLO phases of 2D d-wave superconductors over the field
range from the lower critical field, Bc1, to the the upper criti-
cal field, Bc2. Our analysis is for applied fields parallel to the
superconducting layers. In this geometry the effect of the
magnetic field on the superconducting condensate enters
only through the Zeeman coupling of the quasiparticle spin
to the field. For simplicity we assume a cylindrical Fermi
surface, which is also supported by de Haas-van Alphen
measurements on CeCoIn5.15

The outline of this paper is as follows: In Sec. II we
introduce the theoretical model and the relevant aspects of
the quasiclassical formulation of the equations for inhomo-
geneous superconductors. The B-T phase diagram for two-
dimensional d-wave superconductors is discussed in Sec. III.
This is followed by Sec. IV where we report calculations of
the local density of states in the FFLO phases. We examine
the energetics of the stripe phases and address the question of
how to observe the spatial modulation of the order parameter
structures in Sec. V. Conclusions are provided in Sec. VI.

II. THEORETICAL MODEL

The quasiclassical theory of superconductivity53–55 is well
suited for the study of spatially inhomogeneous states of su-
perconductors varying over distances large compared to the
Fermi wavelength, e.g., the superconducting coherence
length, �0=v f / �2�Tc��kf

−1. For simplicity, we consider a
single component, spin-singlet superconductor for which the
order parameter can be factorized into ��R , p̂�=��R�Y�p̂�.
Here ��R� is a spatially dependent complex amplitude. Y�p̂�
is a momentum-space dependent basis function for an even-
parity, one-dimensional representation of the crystal point
group, where p̂ is the direction of the Fermi momentum. The
basis function is normalized, �Y2�p̂��FS=1, where �¯�FS rep-
resents the angular average over the Fermi surface weighted
by the relative angle-resolved normal-state density of states
on the Fermi surface.

In the following, we consider the FFLO states of a clean
d-wave superconductor with dx2−y2 symmetry described by
the one-dimensional basis function, Y�p̂�=�2�p̂x

2− p̂y
2�

=�2cos 2�p̂. In this case the magnitude of the zero tempera-
ture gap parameter is �0 / �2�Tc�=0.241.56

We solve the Eilenberger equation in a magnetic field B
for the quasiclassical �Matsubara� Green’s function
ĝ�R , p̂ ;�m�,

�i�m	̂3 − �̂ − v̂, ĝ� + iv f · �ĝ = 0, �1�

self-consistently with the order parameter, ��R�. In addition,
the Green’s function must satisfy the normalization condition

ĝ2 = − �21̂. �2�

The quasiclassical Green’s function in Nambu space can be
decomposed into scalar and spin vector components

ĝ = � g + g · � �f + f · ��i
2

i
2�f� + f� · �� − g + g · �* 	 . �3�

Correspondingly, the order parameter matrix in Nambu space
for a spin-singlet superconductor is

�̂�R,p̂� = � 0 i
2�

i
2�* 0
	 . �4�

The Zeeman coupling of the quasiparticle spin with magnetic
field is given by

v̂ = + ��B · � 0

0 �B · �* 	 , �5�

where 
i are Pauli spin matrices and �= �g /2��B is the ab-
solute value of the magnetic moment of a quasiparticle with
negative charge e; �B= 
e
 / �2mc� is the Bohr magneton. Note
that the g factor is a material parameter, as is the Fermi
velocity, which incorporates the high-energy, short-
wavelength renormalizations of the bare electron g factor
into the effective g factor defining the Zeeman coupling of
the quasiparticle to the field.

For a spatially uniform order parameter, �=��p̂�, the
physical solution of the Eilenberger equation for the Green’s
function ĝ�p̂ ;�m� is
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where

i�± = i�m � B, B = �B , �6�

D±�p̂� = �
��p̂�
2 − �i�±�2, �7�

and b̂ is the direction of the uniform magnetic field.
The uniform solution is easily generalized to the Fulde-

Ferrell �FF� state in which the order parameter has the spa-
tially varying phase, ��R , p̂�=��p̂�exp�iq·R�. In this case
the solution is obtained by replacing the frequency in Eq. �6�
by i�±→ i�±−�, where �= 1

2v f ·q. The Green’s function is
then obtained from the uniform solution by a uniform gauge

transformation ĝ�R , p̂ ;�m�= Ûĝ�p̂ ;�m�Û† where Û
=exp�i q·R	̂3 /2�. The linearized form of these solutions are
used to obtain the upper critical field, Bc2�T�, for the FFLO
states, as well as the order parameter and thermodynamic
functions for the homogeneous phase below Bc1�T�.

Obtaining the Green’s function for a nonuniform order
parameter is more challenging, and generally requires nu-
merical solution of Eilenberger’s equation. Schopohl57,58 and
Nagai59,60 introduced an efficient and numerically stable
method for solving Eilenberger’s equation by transforming it
to a Riccati-type equation. We use the Riccati method as
described by Eschrig.61 From the solutions to the Riccati
equation we can construct the components of the Green’s
function. The diagonal Green’s functions, g and g, determine
the quasiparticle excitation spectrum, while the off-diagonal
Green’s functions, f and f, determine the order parameter
through the BCS gap equation. For pure spin-singlet d-wave
pairing

��R�ln
T

Tc
= T �

�m�0
� dp̂

2�
Y�p̂� f�R,p̂;�m� + f��R,p̂;�m�*

− 2
���R�Y�p̂�


�m
 � . �8�

The gap equation is solved self-consistently together with the
Riccati equations.

There are often many nearly degenerate order parameter
configurations. In order to examine the relative stability of
different order parameter solutions, we also calculate the free
energy obtained from a quasiclassical reduction of the
Luttinger-Ward functional62,63

FS�B,T� − FN�B,T� =� dR � f�R� , �9�

where the difference functional is

� f�R� =
1

2
�

0

1

d� T�
�m

NF� dp̂

2�
Tr�̂�ĝ� −

1

2
ĝ	 . �10�

NF is the density of states per spin at the Fermi level of the
normal state. Note that ĝ� is an auxiliary propagator obtained
from the solution to the transport equation with the physical
order parameter scaled by the dimensionless coupling param-
eter, 0���1,

�i�m	̂3 − ��̂ − v̂, ĝ�� + iv f · �ĝ� = 0. �11�

The zero-temperature value of the free energy of a uni-
form 2D d-wave superconductor differs from the one of an
s-wave superconductor not only by the angular Fermi surface
averages, but also by an extra term due to the nodal regions
of the order parameter

�F�T = 0� = − NF �
��p̂�
2�FS

2
− B

2�
− NF�B

�B
2 − 
��p̂�
2��B

2 − 
��p̂�
2��FS. �12�

Consequently, the Pauli limiting field of an isotropic s-wave
superconductor is �BP=1.25Tc. While for a d-wave super-
conductor �BP=1.19Tc, due to the nodal regions on the
Fermi surface and in particular due to the second bracket in
Eq. �12�.

III. PHASE DIAGRAM

Various aspects of the phase diagram for the FFLO states
of a 2D d-wave superconductor, particularly the region near
Bc2, are discussed in the literature. We extend those studies
down to the lower critical field, Bc1. We consider one-
dimensional order parameter modulations resulting in one-
dimensional stripes. Taking into account 2D modulations
could result in a modified phase diagram at ultrahigh fields
and ultralow temperatures.33

The form of the order parameter amplitude for the FFLO
states in an infinite system is then

��x,p̂� = ��p̂�f�x� , �13�

where f�x+��= f�x� is periodic with wavelength �=2� /q,
and x is the projected distance along q; x=q·R /q. However,
we have to choose an antiperiodic boundary condition for a
single domain wall solution, f�x+L�=−f�x�, with system size
L��0. The perodic function f�x� can be either real or com-
plex and is a generalization of the Fulde-Ferrell state with a
complex order parameter solution

�FF�R,p̂� = ��p̂�ei q·R, �14�

or the Larkin-Ovchinnikov state with a real solution,

�LO�R,p̂� = ��p̂�sin�q · R� . �15�

In the vicinity of Bc2, the gap equation Eq. �8� can be linear-
ized, if one assumes that the transition into the normal state
is of second order. Therefore the LO state, whose order pa-
rameter solution is a linear superposition of FF solutions
with wave vectors ±q, has the same instability line Bc2 as the
FF state.
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The wave vector q, or the period �, are implicit functions
of temperature and magnetic field. In the s-wave case all
directions are equivalent and the modulation, q, can point
along any direction in real space. Thus, the translational in-
variance is broken spontaneously in the FFLO state. In a
d-wave superconductor the intrinsic anisotropy of the order
parameter in momentum space favors specific directions for
the broken translational symmetry. When q points along the
nodal direction of Y�p̂�, we refer to this FFLO phase as the
�110� stripe orientation, and when q is along the antinodal
direction it is the �100� orientation.

Finally, in order to calculate the phase diagram we need to
compute self-consistently the order parameter and find the
free energy as a function of the triplet of parameters, T, B, �.
The physical FFLO state that is realized at a given tempera-
ture and field, �T ,B�, corresponds to a period � that mini-
mizes the free energy. The resulting phase diagram of FFLO
states is shown in Fig. 1.

We find that the real �Larkin-Ovchinnikov� order param-
eter is favored over the complex �Fulde-Ferrell� order param-
eter everywhere in the nonuniform FFLO region of the phase
diagram. The upper critical fields, Bc2, for different stripe
orientations shown in Fig. 1 �solid and continuing into dotted
lines� cross at T*�0.06Tc, resulting in a kink in the upper
transition line, in agreement with previous work.33,41,47,48 On
the other hand, the lower critical field, Bc1, for the stripe
orientation along �110� �line with circles� is always lower
than the critical field for the stripe orientation along �100�

�short-dashed line�. This indicates a first order transition be-
tween states with different orientation of stripes �long-dashed
line�. Except for a small region in the FFLO phase diagram
at ultrahigh fields and ultralow temperatures, where the �100�
phase becomes favorable, the spatial modulation along the
�110� direction is more stable.

The order parameter profiles for a series of magnetic
fields in the LO phase are shown in Fig. 2. As in the s-wave
case, the period of the FFLO state decreases with increasing
magnetic field. The transition between the uniform supercon-
ducting and FFLO states is second order and is signaled by
the appearance of a single domain wall. The lower critical
field transition is analogous to the s-wave scenario,27,36

which contradicts the claim of a first order transition by Yang
and Sondhi.48 The upper critical field transition from the
FFLO to the normal state is also second order with the am-
plitude of the order parameter vanishing continuously with
increasing magnetic field.

Figure 3 shows the second order instability line from the
normal state into the nonuniform FFLO state for different
orientations of the stripes with respect to the antinodal direc-
tion, denoted by the angle �0. This transition is obtained by
linearizing Eqs. �1� and �8� with respect to the order param-
eter ��R , p̂�=�0Y�p̂�exp�i q·R�. One of two special direc-
tions of q for the order parameter modulation, i.e., �100� and
�110�, yields the highest instability fields for all tempera-
tures.

In the left panel of Fig. 4 the dimensionless instability
wave vector Q=q�0 of the nonuniform LO state is plotted as
a function of temperature for the different transitions shown
in Fig. 3. The right panel of Fig. 4 shows the zero-
temperature variation of the critical field Bc2 and wave vector
q as a function of the stripe orientation �0. The evolution of
the upper critical field and instability wave vector with stripe
orientation and temperature is the basis for the phase dia-
gram shown in Fig. 1.

FIG. 1. �Color online� The phase diagram of the FFLO state of
a two-dimensional d-wave superconductor. The Larkin-
Ovchinnikov �LO� state is stabilized in the high-B, low-T region of
the phase diagram. The solid lines are second order phase transition
lines that determine the upper critical field, Bc2, and separate the
normal and FFLO states below TFFLO�0.56Tc. Below T�0.06Tc a
first order transition �long-dashed line� occurs between order pa-
rameter modulations along �110� and �100� directions. At the lower
critical field, Bc1, a second order transition �circles-solid� occurs
between the uniform and nonuniform �110�-oriented LO phase. The
unphysical transition line from the uniform state into the
�100�-oriented nonuniform state is shown for comparison �short-
dashed�. The Chandrasekhar-Clogston phase transition line between
the uniform superconducting and normal state would be of first
order below TFFLO �dot-dashed�, but is unphysical, while it is of
second order and physical above TFFLO �thick dot-dashed�. The cor-
responding order parameter modulations for a field scan between
points �a� and �d� are shown in Fig. 2.

FIG. 2. �Color online� Order parameter modulations at T
=0.15Tc for different points in the LO state as indicated by �a�–�d�
in Fig. 1. The period of the order parameter decreases with increas-
ing field B. At the lower magnetic field, Bc1, a transition from the
uniform to nonuniform superconducting state occurs at position �a�,
which is signaled by a single domain wall �kink�. We define the
superconducting coherence length �0=v f / �2�Tc� and dimensionless
magnetic field b=�B / �2�Tc�, with the zero-temperature order pa-
rameter �0 / �2�Tc�=0.241.
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IV. QUASIPARTICLE DENSITY OF STATES

Regions in which the order parameter changes sign, as in
the LO phase, have an associated spectrum on low-energy
quasiparticles, which in this case is also spin-polarized. The
local quasiparticle density of states �LDOS� is easily calcu-
lated from the retarded Green’s function ĝR�R , p̂ ;��, which
is determined from Eq. �1� using the self-consistently deter-
mined order parameter and analytic continuation to real en-
ergies from the upper half plane: i�m→�+ i0+. The spatial
and angle-resolved densities of states �DOS� for spin-up and
spin-down excitations along the magnetic field are defined
by

N↑�↓��R,p̂;�� = −
1

�
Im�gR ± gR · b̂� . �16�

In Figs. 5–8 we show the evolution of the LDOS and spa-
tially averaged DOS for spin-up and spin-down excitations
for T /Tc=0.15 as a function of magnetic fields and position
in space. The spin-down DOS are shown as solid lines, while
the spin-up DOS are indicated by dashed lines.

Figure 5 shows the angle-averaged, spin-dependent
LDOS for a single domain along the nodal �110� direction.
This configuration is in many ways equivalent to the scenario
of the order parameter suppression near a �110� interface in a
clean d-wave superconductor, cf. Barash et al.64 There is a
strong Andreev bound state at the position of the domain
wall, arising from the change of the sign of the order param-
eter along quasiparticle trajectories crossing the domain wall
�middle panel�. In a magnetic field the Andreev bound state
is no longer pinned to the Fermi level, but is shifted to �
=B=�B �−�B� for spin-up �spin-down� quasiparticles. As
we move away from the domain wall the bound state decays
and the bulk DOS is eventually restored �lower panel�, albeit
with weak resonances at �= ±B.

Andreev bound states and resonances are characteristic
features of the FFLO state. They exist as a result of sign
changes of the order parameter, and are visible in the DOS
for the periodic �110� stripe phases as well, see Fig. 6. The

FIG. 3. �Color online� Second order instability lines between
normal and FFLO state as function of relative orientation �0 of
one-dimensional stripes, i.e., order parameter modulations. For tem-
peratures above T*�0.06Tc, the modulation along �110� has the
highest instability field, while below this temperature the orienta-
tion �100� is energetically favored. The thin-dotted line is the un-
physical critical field, or “supercooled transition,” if one assumes a
second order transition between the normal and uniform �q=0� su-
perconducting state.

FIG. 4. �Color online� Dimensionless wave vector Q=q�0 of
order parameter modulation along the instability lines in Fig. 3. Left
panel: T dependence of Q for different orientations, with �0

=0° ↔ �100� and �0=45° ↔ �110�. Right panel: Angular depen-
dence of Q �dots� and upper critical field Bc2 �solid line� at T=0.

FIG. 5. �Color online� Angle-averaged, spin-dependent local
density of states �LDOS� for a single domain wall solution. �Top�
Profile of order parameter at T /Tc=0.15 and b=0.175. The panels
below show LDOS at locations �a� and �b�. �Center� LDOS at po-
sition �a�, where order parameter is zero, i.e., at the domain wall.
The Andreev bound states are shifted from zero energy by +b for
spin-up and −b for spin-down electrons. �Bottom� LDOS at position
�b�, far from the domain wall, i.e., in bulk of d-wave supercon-
ductor. The Andreev states are bound to the region where the order
parameter is suppressed and are very weak far from the domain
wall.
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resonance broadens due to hybridization of the energy levels
associated with adjacent domain walls. Consequently the
sharp bound state for a single domain wall broadens into a
band that fills the low energy region below the maximum gap
to the continuum spectrum. The quasiparticle resonance is
visible as a broad peak centered at �= ±B, even in the spa-
tially averaged DOS as shown in Fig. 7. Note also the evo-
lution of the spectrum with increasing magnetic field �from
bottom to top panel�. As the field increases the resonance
broadens and the DOS approaches the normal-state value
N��� /Nf =1, as is expected for a second-order transition to
the normal state.

Evidence of the FFLO state could be obtained from scan-
ning tunneling microscopy by direct observation of the An-
dreev resonances organized along one-dimensional stripes,
similar to the spectroscopic observation of vortex arrays in
type II superconductors.65 Since the quasiparticle resonance
spectrum and distribution in space depend on the magnetic
field, these states should be easily differentiated from reso-
nances arising from scattering by impurities or
interfaces.66–68 For the same reasons, point-contact spectros-
copy, similar to recent measurements performed on
CeCoIn5,69,70 but for magnetic fields in the FFLO phase
�B�10 T�, should be able to identify the characteristic sig-
natures of the FFLO state.

In Fig. 8 we show the DOS for stripes oriented along
�100�. In contrast to the �110� orientation, there is a much
richer spectrum along the �100� direction. Additional singu-

larities are visible at � / �2�Tc��0.02, 0.12, 0.28, 0.38. These
singularities originate from quasiparticles that propagate
nearly parallel to the stripes. For these trajectories there is a
broad dip in the order parameter amplitude that produces
bound states due to multiple Andreev reflections from the
“walls” of this “order parameter well.” These resonances
generally occur at finite energy, in contrast to the topological
bound states which are pinned to zero energy in zero field.
The bound states are further shifted by the field, and the
topological bound states—shifted by the Zeeman field—
arising from trajectories crossing the stripes are also visible
in the spectrum.

The spectrum for �100� stripes is similar to the LO state in
s-wave superconductors because quasiparticles propagate
along trajectories with similar order parameter profiles for
directions perpendicular and parallel to the stripes. However,
the anisotropy of the d-wave gap function in momentum
space leads to more singularities below the maximum gap
compared to the isotropic s-wave case.

Finally, we note that Maki, Won and collaborators51,71,72

calculated the spin-averaged DOS for the �100� striped
FFLO state near the upper critical field at T=0. Their result
for the spatially averaged DOS, expanded to second order in
the order parameter, is qualitatively different from our self-
consistently calculated DOS at T /Tc=0.15 and b=0.2 �see
Fig. 8�; sufficiently so that a direct comparison is not pos-
sible.

FIG. 6. �Color online� Angle-averaged LDOS for a periodic so-
lution inside the LO state. �Top� Profile of order parameter at
T /Tc=0.15 and b=0.200. The panels below show LDOS at loca-
tions �a� and �b�. �Center� LDOS at position �a�, where order pa-
rameter vanishes. The broadened Andreev bound states, quasiparti-
cle resonances, are shifted from zero energy by +b for spin-up and
−b for spin-down electrons. �Bottom� LDOS at position �b� at maxi-
mum of order parameter. The Andreev bound states decayed and
broadened even more.

FIG. 7. �Color online� Spin-up/down DOS averaged over a
single period of the order parameter for three different b fields in
the LO state. A broad bound state at � / �2�Tc�=b is seen at lower
fields, but continues to broaden as b increases. Finally, the DOS
becomes flat and “normal”-like. Here T /Tc=0.15 and the corre-
sponding upper critical field is bc2=0.25.
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V. FREE ENERGY DENSITY

The bound state and resonance spectra associated with the
FFLO phases shown in Figs. 6 and 8 for the quasiparticle
density of states also lead to structure in the free energy
densities. For the stripe orientation along �110� see Fig. 9,
and for �100� stripes see Fig. 10. The free energy density
exhibits additional structure for stripes oriented along �100�
compared to �110�. At the domain walls the free energy den-

sity is that of the normal state, while it is minimum where the
magnitude of the order parameter reaches its maximum. The
overshooting behavior of the free energy density within a
few coherence lengths away from the domain wall, as seen
for a single domain wall in the lower left panels of Figs. 9
and 10, accounts for the energy gained compared to the uni-
form superconducting state.

The free energy density plots for a single domain wall
shown in the lower left panels of Figs. 9 and 10 illustrate the
subtle differences in energy between order parameter modu-
lations along �110� and �100� directions. Only a self-
consistent calculation of the nonuniform order parameter can
resolve such detail.

VI. CONCLUSIONS

We presented self-consistently calculated phase diagram
of the FFLO state of a two-dimensional d-wave supercon-
ductor within the quasiclassical theory. We found that the
Larkin-Ovchinnikov state is favored over the Fulde-Ferrell
state in two dimensions. The oscillations of the order param-
eter amplitude along the nodal �110� direction for the gap
function cos 2� is stable over most of the FFLO phase dia-
gram. However, for one-dimensional stripes the state with
�100� orientation is stable in the ultrahigh B region of the
phase diagram and below T*�0.06Tc. Both Bc2 and Bc1 tran-
sitions are of second order. The order parameter vanishes
continuously at the upper critical field Bc2. At the lower criti-
cal field Bc1 a single domain wall, similar to a Bloch domain
wall, signals the onset of the nonuniform FFLO state.

The local density of states calculations suggest that the
Andreev resonance spectrum may be used to identify experi-
mentally the intrinsic structure of the FFLO phases. In par-
ticular, the topological Andreev bound state is shifted from
zero energy by an applied magnetic field. All the quasiparti-
cle resonances live in regions where the order parameter is

FIG. 8. �Color online� An example of a spatially averaged DOS
for �100� modulated order parameter at T=0.15Tc and b=0.200.
Note that the physically stable solution has �110� modulation. �Up-
per left� Profile of periodic order parameter with three marked po-
sitions. �Lower left� DOS at the domain wall �x=0�, the Andreev
bound state is clearly seen at �=B. �Lower right� DOS at distance
x=� /8 from domain wall, the Andreev bound state is slightly sup-
pressed. �Upper right� DOS at the maximum of order parameter, the
Andreev bound state is completely suppressed. In addition to the
broadened Andreev bound state at �=B there are singularities due
to multiple Andreev reflections.

FIG. 9. �Color online� �Upper left� Profile of order parameter for
a single domain wall along �110�. �Lower left� Profile of free energy
density � f for single domain wall. �Upper right� Profile of order
parameter for periodic domain walls along �110�. �Lower right�
Profile of free energy density � f for periodic domain walls.

FIG. 10. �Color online� �Upper left� Profile of order parameter
for a single domain wall along �100�. �Lower left� Profile of free
energy density � f for single domain wall. �Upper right� Profile of
order parameter for periodic domain walls along �100�. �Lower
right� Profile of free energy density � f for periodic domain walls.
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suppressed. Thus their spatial distribution depends on the
wave length of the nonuniform modulations, which are con-
trolled by the strength of the magnetic field. Besides the
characteristic energy dependence of the resonances, their
spatial periodicity in the FFLO state enables us to tell them
apart from random impurities in scanning tunneling micros-
copy measurements.

Finally, we note that the phase diagram calculated for the
model two-dimensional d-wave superconductor does not re-
semble the experimental phase diagram of CeCoIn5. Thus,
the identification of the observed phase transition in CeCoIn5
with a FFLO phase of a d-wave superconductor is either
incorrect, or inconclusive and a more detailed model for the
FFLO phases in this system needs to be implemented, e.g., a
model which includes impurity scattering effects, Fermi liq-

uid effects �e.g., exchange interactions�, orbital magnetiza-
tion effects as well as more realistic Fermi surface topology.
All of these materials effects are known to result in changes
to the order and the location of the phase transition lines.
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