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We use the renormalization-group method to study the magnetic field influence on the Bose-Einstein con-
densation of interacting dilute magnons in three-dimensional spin systems. We first considered a model with
SU�2� symmetry �universality class z=1� and we obtain for the critical magnetic field a power law dependence
on the critical temperature, �Hc�T�−Hc�0���T2. In the case of U�1� symmetry �universality class z=2� the
dependence is different, and the magnetic critical field depends linearly on the critical temperature, �Hc�T�
−Hc�0���T. By considering a more relevant model, which includes also the system’s anisotropy, we obtain for
the same symmetry class a T3/2 dependence of the magnetic critical field on the critical temperature. We discuss
these theoretical predictions of the renormalization group in connection with experimental results reported in
the literature.
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I. INTRODUCTION

Bose-Einstein condensation �BEC� remains one of the
most important macroscopic effects predicted a long time
ago by quantum mechanics for an ideal Bose gas. Lately, the
interest in BEC was renewed by the practical realization of a
condensate phase in weak interacting Bose systems realized
in ultracooled diluted alkali atomic gases.1 Further, a BEC of
fermionic pairs was achieved in trapped fermionic systems
under attractive fermion-fermion interaction.2 The limitation
of these experiments is due to a reduced number of particles
which undergo BEC. Recently, BEC was associated with the
magnetic transition observed in different quantum spin sys-
tems. A particular class of such materials is formed by the
XCuCl3 dimer compounds �with X being Tl, K, or NH4�.3,4 In
the ground state these materials are spin singlets which are
magnetically inactive. If a high-magnetic field is applied,
they undergo a transition into a magnetically ordered state, a
transition which can be understood as a condensation of ex-
citations which behaves as bosonic quasiparticles.

One particular example is TlCuCl3. The quantum magne-
tism in this compound is attributed to the spin-1 /2 Cu2+ ions
positioned in the double chains of Cu2Cl6. The ground state
of TlCuCl3 was found to be a singlet with an excitation gap
��7.5 K.5 The gap has been associated with the weak an-
isotropic antiferromagnetic �AF� intra-dimer coupling in the
double chain. Magnetic susceptibility experiments at differ-
ent temperatures for different directions of the applied mag-
netic field exhibit broad maxima at T=38 K and a decreasing
behavior toward zero susceptibility with decreasing
temperature.4 At very low temperatures, the magnetic sus-
ceptibility for different values of the applied magnetic field
behaves quite differently. At fields of the order of 1 T, the
magnetic susceptibility decreases exponentially to zero, a
proof for the existence of a ground state gap. On the other
hand, for a magnetic field of 7 T an anomaly in the magnetic
susceptibility was reported around T=4 K. This is an indica-

tion that the ground state must be gapless at high magnetic
fields. The system has a three dimensional character and in
an external magnetic field H, the singlet-triplet gap � is re-
duced to �−�BgH, and vanishes at a critical field Hc
=� /�Bg. Inelastic neutron scattering measurements proved
the existence of the elementary magnonic excitations with a
strong dispersion in all three directions.6,7 The observed gap,
�=0.7 meV, which is much smaller than the intradimer in-
teraction J=5 meV, and the small critical field Hc=5.6 T,
make this material a perfect candidate to study the magnetic
field induced phase transition. Another argument in favor of
the possible phase transition was the evidence for a Gold-
stone mode8 observed also by inelastic neutron scattering
experiments.9 Neutron diffraction experiments at fields H
�Hc showed that the field induced AF order in the plane
normal to the applied field appears at the same time with the
uniform moments.10 Sound attenuation experiments were as-
sociated to a “relativistic”-like form of the excitations energy
spectrum, E�k�=��2+k2 / �2mef f� �mef f =2/J2�, a relation
which was used to explain the connection between the tran-
sition temperature and the concentration of magnons.11 The
main conclusion of all these experimental approaches is that
TlCuCl3 undergoes a magnetic ordering in high magnetic
fields. The temperature dependence of the critical magnetic
field can be summarized by �Hc�T�−Hc�0���T�, where from
the experimental data fit ��1.7–2.2.

Various theoretical models were used to investigate the
BEC of magnons in quantum spin liquids. In the mean field
approximation most of the experimental features of the phase
transition cannot be reproduced, in particular, the critical
temperature dependence on the magnetic field being almost
flat.12 The possibility of a magnetic field induced phase tran-
sition in quantum spin liquids was first discussed in terms of
BEC by Giamarchi and Tsvelik.13 This possibility was inves-
tigated using the Hartree-Fock approximation introduced by
Popov.14 The initial system is mapped into a dilute Bose
liquid with a magnetic field dependent chemical potential
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�=g�B�H−Hc�, and the total number of magnons N is asso-
ciated with the total magnetization M, M =g�BN.15 The
theory predicts �Hc�T�−Hc�0���T3/2, a result which is not in
complete agreement with experimental data. The model was
further on investigated by Misguich and Oshikawa16 by in-
cluding a more realistic dispersion relation6 and the shape of
the critical temperature curves as function of the critical
magnetic field was well reproduced with a single adjustable
parameter.

The possible phase transition was numerically investi-
gated by Monte Carlo simulation.17–19 Nohadani et al.17

found that the value of the critical temperature exponent � is
in general greater that the Hartree-Fock value �=1.5, but is
close to it as the magnetic field approaches its critical zero
temperature value. Kawashima18 argued that the Hartree-
Fock value �=1.5 may be incorrect at finite temperature, but
is the correct value in the T=0 K limit, namely for the situ-
ation when the phase transition is actually a quantum phase
transition �QPT�. The BEC of magnons as a QPT at T
=0 K was further investigated by Monte Carlo simulation by
Nohadani et al.19 The model considered a control parameter
g=J� /J, where J is the intradimer exchange interaction, and
J� is the inter-dimer coupling. The experimental data gives
for these couplings the values J=60–70 K and J�
=40–53 K. However, those values can be controlled by ex-
ternal pressure. The resulting T=0 K phase diagram consists
of three different regions, regulated by the g ratio. At low
magnetic fields and small control parameter g the system is a
dimer spin liquid, i.e., is in a magnetically disordered state.
This phase is characterized by a SU�2� symmetry with a
dynamical critical exponent z=1. At intermediate magnetic
fields H�Hs �Hs is the saturation field� and sufficiently large
value of g, the ground state is partially spin polarized for
H�Hc �Hc is the critical field� and has a long-range antifer-
romagnetic order transverse to the applied magnetic field di-
rection. In this case the phase symmetry is only U�1� with a
corresponding dynamical critical exponent z=2, a value as-
sociated to the quadratic dispersion of the bosonic excita-
tions. At large fields H�Hs �Hs�J+5J��, all spins are fully
polarized.

Here we consider a renormalization group �RG� approach
of the QPT associated to the BEC of magnons in spin dimer
systems. It is well known that the presence of a QPT will
influence the system’s properties even at finite temperatures.
The exact temperature range in the vicinity of the T=0 K
phase transition is unknown, however, as in any phase tran-
sition a critical region will be present. We will consider sepa-
rately the phases identified by Monte Carlo simulation, and
show that different values for the critical temperature expo-
nent � are obtained in the RG analysis. We will show that in
the phase with a SU�2� symmetry �=2, whereas for the
phase with U�1� symmetry �=1. If one considers a more
realistic model with a U�1� symmetry and strong anisotropy,
�=3/2. This behavior suggests the existence of a narrow
crossover temperature interval close to T=0 K �T�1 K�
where the critical temperature coefficient complies with the
Hartree-Fock value �=3/2. At higher temperature, still in
the critical region, the symmetry of the system changes and
the value of the temperature critical exponent is higher �

�2. We will discuss those results in connection with the
numerical calculations and experimental data.

II. RENORMALIZATION-GROUP ANALYSIS

Following Hertz20 and Millis,21 we describe the critical
behavior of a magnon dilute gas in terms of an effective
Ginzburg-Landau-Wilson theory of the order parameter field
��k ,	� which represents the fluctuations of the staggered
magnetization of the system.

In the general theory of QPT’s the total action will consist
on two terms, S���=S2���+S4���. The quadratic part,
S2���, takes the form

S2��� =
1

2�
k

�†�k��r0�H� + k
 + �i�n�m���k� , �1�

where k	�k ,�n� with �n=2n�T �kB=1�, ��k� is a bosonic
field describing the magnetization fluctuations, and r0�H�
measures the distance from the quantum critical point. In the
presence of an external magnetic field the control parameter
r0�H� will acquire a field dependence. The form of the action
was extensively discussed by Fisher and Rosch22 both on a
phenomenological basis and starting from a Hubbard-type
model of electrons moving in the presence of a magnetic
field. In the following we will consider to have a Zeeman
type H dependence of the control parameter, r0�H���H
−Hc�. The dimensionality of the system is d=3, and 
 and m
will take different values according to the studied phase, i.e.,

=2 and m=2 meaning that the dynamical critical exponent
z=1 for the SU�2� symmetry, and 
=2 and m=1 with a
dynamical critical exponent z=2 for the U�1� symmetry. The
interacting contribution to the action, S4���, will be of stan-
dard form

S4��� =
u0

16 �
k1,. . .,k4

��k1���k2��†�k3��†�k4�


��k1 + k2 + k3 + k4� , �2�

and describes interactions between the considered fluctua-
tions. The total action will remain invariant under a standard
transformation of momenta, frequency, and fields, i.e., k�
=kb, �n�=�nbz, where z is the dynamical critical exponent,
and ��=�b−�d+z+2�/2.23

The scaling equations for the parameters T, r, and u have
the general form:24,26

dT�l�
dl

= zT�l� , �3�

dr�l�
dl

= 2r�l� + K3F1�r�l�,T�l�� , �4�

du

dl
= �4 − �d + z��u�l� −

5

2
K3F2�r�l�,T�l��u2�l� , �5�

where F1�r�l� ,T�l�� and F2�r�l� ,T�l�� are complicated func-
tions of parameters T and r. Their values in the low tempera-
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ture domain and at the critical point �r=0� are given in Ref.
24 as F1�T�l��=coth�1/ �2T�l��� /2 and F2�T�l��=1/4. Also,
K3 is a constant whose value is 1 / �2�2�. Equations �3�–�5�
will be solved to analyse the system behavior in the critical
region for two situations. First we will analyze the SU�2�
symmetry situation when the dynamical critical exponent z
=1, and then the U�1� symmetry case when z=2.

A. SU(2) symmetry

One possible phase identified by Monte Carlo simulations
was characterized by the limit of low magnetic fields and
small coupling ratios J� /J, being a magnetically disorder
phase, i.e., a dimer spin liquid. In this case the dynamical
critical coefficient value is z=1. Two of the renormalization
group equations, namely �3� and �5�, can be solved exactly
with the following solutions

T�l� = Tel �6�

and

u�l� =
1

C0�l + l0�
, �7�

where C0=5K3 /8 and l0=1/ �C0u0�. The remaining equation
�4�, the one for the control parameter r, will be solved con-
sidering a solution of the form r�l��r0 exp�2l�h�l�, leading
to

r�l� = e2l
r0 +
K3

4
u0 + K3Ir

�3��l�� −
K3u�l�

4
, �8�

where

Ir
�3��l� = �

0

l dx exp�− 2x�u�x�
exp�1/T�x�� − 1

. �9�

To study the influence of the criticality on the thermodynam-
ics of the SU�2� phase we introduce the scaling field tr�l�
defined as

tr�l� = r�l� +
K3

4
u�l� , �10�

a field which will be used to stop the renormalization pro-
cess. Based on Eqs. �7� and �8� we get

tr�l� = e2l�tr�0� + K3��2�u0T2� , �11�

where tr�0�=r0−r0c with r0c=−K3u0 /4, and ��x� is the Rie-
mann zeta function. The renormalization procedure will be
stopped at l= l*�1, given by tr�l��=1. To find l* we rewrite
tr�l�=e2ltr�T� and after simple calculations one finds

l� � ln
1

T
. �12�

We can define a critical line whose equation is given by
tr�T�=0 which permits us to calculate the critical field Hc�T�
as

Hc�T� = Hc�0� − K3u0��2�T2. �13�

Accordingly, in the SU�2� symmetry phase we can identify
the exponent of the critical temperature dependence on the
magnetic field to be �=2, a value which is close to the one
reported in the literature.

B. U(1) symmetry

Another possible phase identified by Monte Carlo simu-
lations of the quantum phase transition in spin dimer liquids
has U�1� symmetry and is present for intermediate applied
magnetic fields and a sufficiently large value of the ratio
J� /J. In this case the dynamical critical exponent value is z
=2, and the renormalization group equations �3�–�5� are
similar to those of the weakly interacting Bose gas.25,26

Equation �3� has a trivial solution of the form

T�l� = Te2l. �14�

We consider now equation �5� which gives us the renormal-
ization of the interaction parameter. If we introduce �=2
−d�0 �d=3� this equation can be rewritten in the form

du�l�
dl

= �u�l� −
K3

4
u2�l� , �15�

and admits the following solution

u�l� =
u0 exp�− 
�
l�

1 + K3�exp�− 
�
l� − 1�/4
. �16�

One can proceed now to the solution for the renormalized
control parameter r. In the U�1� symmetry case this equation
will admit the following solution:

r�l� = e2l�r0 +
K3u0

4
+

K3Tu�l�
2

ln
 1

1 − exp�− 1/T�l����
−

K3u�l�
4

. �17�

As in the previous situation we introduce the scaling field
tr�l�=r�l�+K3u�l� /4 and we will stop the renormalization
procedure at tr�l*�=1. With this definition, based on Eq. �17�,
the general form of the scaling field become

tr�l� = e2l�tr�0� +
K3u�l�

2
T ln
 1

1 − exp�− 1/T�l���� ,

�18�

where tr�0�=r0−r0c with r0c=−K3u0 /4. We stop the scaling
procedure at l= l*�1, where once again l* is the solution of
tr�l��=1. In this case the equation is more complicated, how-
ever, in the low temperature regime we can approximate its
solution. If we rewrite tr�l�=e2ltr�T� with

tr�T� � r0 − r0c +
K3T

2
u0 ln

1

u0
, �19�

we finally find
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l* �
1

2
ln

1

T
. �20�

The critical line, identified from tr�T�=0, will give us the
critical magnetic field Hc�T� as a function of temperature

Hc�T� = Hc�0� − 
 u0

4�2 ln
1

u0
�T . �21�

In the case of U�1� symmetry the relation between the criti-
cal field and temperature is different from the case of SU�2�
symmetry and we identified in this situation the critical tem-
perature exponent to be �=1.

III. INFLUENCE OF ANISOTROPY

According to Monte Carlo calculations at sufficiently
large fields the system has a ground state which is partially
spin polarized and has antiferromagnetic long-range order
transverse to the magnetic field direction. The fact that the
magnetic properties of the system depend on direction sug-
gests that anisotropy may play an important role when the
system is in this partially polarized phase. To take in account
such effects, we consider that the interaction term in the total
action corresponding to the U�1� symmetry phase has the
following form:18,19

S4��� =
1

16 �
k1,. . .,k4

��k1���k2��†�k3��†�k4��k1+k2;k3+k4


 �u0��n1+�n2;�n3+�n4
+ v0��n1;�n3

��n2;�n4
� , �22�

where the coupling constants u0 and v0 describe interactions
between the magnetization fluctuations in different directions
of the system. Using the same procedure as in the previous
cases the renormalization group equations can be obtained as

dT�l�
dl

= 2T�l� , �23�

dr�l�
dl

= 2r�l� +
K3

2
��v�l� + 2u�l��F1�T�l�� + v�l�T�l�� ,

�24�

du�l�
dl

� �u�l� −
K3

4
u2�l� , �25�

dv�l�
dl

� �v�l� . �26�

The last two equations, the ones corresponding to the renor-
malized coupling constants u�l� and v�l�, have been written
in the lowest order, an approximation which is assumed valid
in the low temperature domain. Equation �23� admits the
trivial solution T�l�=Te2l. The first coupling constant, u�l�,
has the same form no matter if one considers or not the
anisotropy, given by Eq. �16�. Equation �26� admits the
trivial solution v�l�=v0e−
�
l. The solution for the remaining
equation which is giving us the renormalized phase transition
control parameter, r, can be written as

r�l� = e2l�r0 − r0c +
K3

2
�

0

l

dl�v�l��T�l��

+
K3

2
�

0

l

dl��v�l�� + 2u�l���F1�T�l���� , �27�

where r0c=K3�v0+2u0� /8. We can introduce again the scal-
ing field tr�l�=r�l�+K3�v�l�+2u�l�� /8 which based on the
solution for r can be written as

tr�l� = e2l�r0 − r0c +
K3v0

2�
T�e−
�
l − 1�

+
K3

4
T�v�l� + 2u�l��ln
 1

1 − exp�− 1/T�l���� ,

�28�

where ��0 for d=3. To calculate the value of the stop scal-
ing parameter l* we consider tr�l��=1 and, in the lowest or-
der, we obtain l� as

l� �
1

2
ln

1

T
. �29�

Equation �28� for the scaling field can be rewritten in the
form tr�l�=e2ltr�T� where tr�T� can be evaluated as

tr�T� = r0 − r0c +
K3v0T

2
�

+

K3

4
�v0 + 2u0�T3/2 ln
 1

v0 + 2u0
� .

�30�

In the anisotropic U�1� case the temperature dependence of
the critical magnetic field will be calculated in the limit u0
�v0 from tr�T�=0 as

Hc�T� � Hc�0� − 
 u0

2�2 ln
1

2u0
�T3/2. �31�

A similar result was predicted using different calculation
methods and numerical evaluation in Refs. 18 and 19. Equa-
tion �31� predicts an important role for the anisotropy in the
case of U�1� symmetry, as the critical temperature exponent
changes from �=1 to �=3/2. The later value is close to the
lowest observed experimental value, i.e., 1.7, and identical to
the value reported by Monte Carlo studies.

IV. DISCUSSIONS

The idea of BEC in solid state systems was associated
with electronic Cooper pairs in superconductors, excitons in
semiconductors, and more recently with magnons in spin liq-
uid dimer compounds. The occurrence of a condensate phase
in these compounds was investigated by various theoretical
methods, from mean field to renormalization group approxi-
mations. In the case of spin liquid dimer compounds the
BEC of magnons is induced by magnetic fields, the critical
field associated to the BEC being temperature dependent and
characterized by a critical exponent �, defined as �Hc�T�
−Hc�0���T�. The exact value of the critical exponent � can
vary from 1.7 to 2.2 according to experimental data. A mean
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field analysis gives �=1.5, and for some time it was believed
that such approximation was enough to explain all relevant
physics of the phase transition.

Here we applied the renormalization group method to
study the possible BEC of magnons. We started our analysis
from the premise that a quantum phase transition, despite
being characterized by a T=0 K critical temperature, will
influence the system properties even at finite temperatures.
Accordingly, we analyze the phase transition in the vicinity
of a quantum phase transition, in the low temperature limit.
The possible quantum phase transition in a spin liquid dimer
was investigated by Monte Carlo simulations considering a
model which includes also the system’s anisotropy.19 As
function of anisotropy the phase diagram of a spin liquid
dimer will consists of three different regions, in each of them
the system being in a different symmetry class.19 At low
magnetic fields, the system is in a magnetically disordered
state. As the fields increases, a partially spin polarized state
will develop and the symmetry of the system will change
accordingly. At high magnetic fields the system is in a long-
range order antiferromagnetic phase. To take into account all
these possibilities, we analyzed the influence of magnetic
fields and temperature on the BEC of magnons in systems
with different symmetry. In the case of a magnetically disor-
dered spin liquid dimer, when the symmetry of the system is
in the SU�2� class and the dynamical critical exponent is z
=1, the critical exponent is �=2. On the other hand, when
the partially ordered phase is induced by the magnetic field,
the system’s symmetry changes to U�1�, and the dynamical
critical exponent becomes z=2. In this situation, we calcu-
lated �=1, a value which was never observed in real experi-
ments. However, in this partially ordered state anisotropy
plays an important role, as the phase is characterized by a

large J� /J ratio. When anisotropy is taken into account by
considering direction dependent interactions in the action,
the value of the critical coefficient � changes from 1 to 1.5,
a value which is close to the lowest reported experimental
data. The influence of anisotropy was considered by Fischer
and Rosh22 including additional terms in the free action, the
final result for the temperature critical exponent being �
=1.5, the same value we obtained. The crossover problem
was also considered in a sigma model framework to explain
some phases of the organic insulator �TMTTF�2PF6 as func-
tion of temperature, magnetic field, and pressure.27,28 A simi-
lar idea was used to explain nuclear magnetic resonance ex-
perimental data in superconducting spin-ladder compounds
such as Sr2Ca12Cu24O41.

29

In conclusion, we showed that the renormalization group
analysis of the possible BEC of magnons in spin liquid
dimers is a more appropriate investigation method. This
method can account for the change in the critical exponent �
from 1.5 to 2, according to the phase symmetry. The results
are in good agreement with the experimental data in TlCuCl3
samples. More recently a similar behavior was reported also
in Cs2CuCl4 samples.30 Such a change in the critical expo-
nent cannot be explained by mean field approximations. On
the other hand the ground state of TlCuCl3 is strongly influ-
enced by pressure.31 Accurate experimental data obtained for
various values of the applied external pressure still support
previous results for the critical exponent, namely �=2.6.31

Finally, we mention that recent experimental data showed
that the occurrence of the BEC of magnons can be also in-
duced by hydrostatic pressure.32 The dependence of the criti-
cal field on pressure, and the pressure dependence of the
transition temperature are suggesting a similar theoretical de-
scription.
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