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Dynamical structure factor of a nonlinear Klein-Gordon lattice
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The quantum modes of a nonlinear Klein-Gordon lattice have been computed numerically [L. Proville, Phys.
Rev. B 71, 104306 (2005)]. The on-site nonlinearity has been found to lead to phonon bound states. In the
present paper, we compute numerically the dynamical structure factor so as to simulate the coherent scattering
cross section at low temperature. The inelastic contribution is studied as a function of the on-site anharmonic-
ity. Interestingly, our numerical method is not limited to the weak anharmonicity and permits one to study

thoroughly the spectra of nonlinear phonons.
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I. INTRODUCTION

The scattering of neutrons,' x-rays,” and electrons’ pro-
vides numerous insights into condensed matter and molecu-
lar physics. In particular, the inelastic scattering allows one
to probe the dynamics of crystals and molecules. The dy-
namical structure factor, S(q, ) which is proportional to the
scattering cross section can be calculated by solving the
Schrédinger equation for the lattice modes (within the Born
approximation), so this quantity is essential for bridging
theory to experiment. However the lattice eigenmodes may
be figured out exactly only in the harmonic lattice model (see
for instance Refs. 1 and 4) and thus the anharmonic contri-
butions to the energy are neglected, although they stem from
the atomic interaction potential. The standard harmonic treat-
ment of lattice dynamics has well-known flaws in solids’ and
consequently, the discrete lattice anharmonicity has been a
matter of intensive theoretical research in different contexts
(for instance see Refs. 6-17). In order to examine the effect
of anharmonicity on S(g,w), some approaches have been
attempted in different quantum lattice models, e.g., the Hub-
bard model for bosons'®!? and the Klein-Gordon model with
a weak on-site anharmonicity.?? The latter is often quoted as
nonlinear Klein-Gordon lattice (KG) and, noteworthy, it may
account for the intrinsic anharmonicity of molecular
crystals,®2!=25 molecule bonds,?®?’” or metals where intersti-
tial gaps are filled with light particles, as metal hydrides.?8-3!
It is the reason why we proposed a numerical method?? that
is tractable for different type of nonlinearity, to compute the
nonlinear quantum modes. In the present paper, our previous
developments are used to evaluate the coherent dynamical
structure factor (DSF) of the KG lattice, at low temperature.
The contribution to the DSF of the nonlinear quantum
modes, known as either the phonon bound states®-7-21.22.28 o
else the quantum breathers,'!4-16-20 jg the central purpose of
our work. As the DSF standard derivation is obtained in the
harmonic approximation,'* treating the anharmonicity as a
perturbation, we propose a different scheme where this ap-
proximation is not required. For instance, the Bloch identity,
which is a key for the conventional calculation, is not in-
voked in our theory. We simply introduce a Taylor expansion
of the DSF with respect to the atomic displacements, com-
puting numerically the coefficients of the series. Our method
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is tested by comparison to the standard analytical calculation
on the purely harmonic lattice. Our approach allows us to
deal with different strength of the anharmonicity. When the
on-site nonlinearity dominates the intersite coupling, the
nonlinear quantum modes lead to some anharmonic reso-
nances well separated from the multiphonon continua, in the
inelastic spectrum. These anharmonic resonances have the
same order as for the fundamental phonons whereas the un-
bound multiphonons yield a DSF at least one order below.
On the other hand, their dispersion is found to decrease dra-
matically with the value of the energy transfer, which differ-
entiates them from the broad phonon resonance. By way of
contrast, when the intersite coupling is larger than the on-site
nonlinearity, the anharmonicity of the spectrum is weak com-
pared to the phonon dispersion. In such a quasiharmonic lat-
tice, the dynamical response of the biphonon (a two-phonon
bound state) may yet exhibit a significant magnitude, still
much larger than the two phonon, even though the biphonon
resonance occurs at an energy transfer that approaches the
unbound phonons band. Actually, the biphonon signature is
found to dominate the two-phonon DSF provided that the
lattice nonlinearity is not strictly zero. Alongside our numer-
ics, a perturbation theory is developed and proves accurate
for strongly nonlinear lattices. We also show how the model
parameters may be adjusted so as to work out the energy
landscape of the inner particles as well as their interactions.
Finally, the present study will serve as a basis for future
simulations of the KG incoherent scattering cross section.

After a brief introduction to the nonlinear KG lattice, the
DSF is derived in Sec. II. In Sec. III, our results are detailed
and commented while the Sec. IV summarizes them and
draws some perspectives.

II. COHERENT DYNAMICAL STRUCTURE FACTOR
OF THE NONLINEAR KG LATTICE

We assume that some light particles form a regular net-
work, whether it is inside a molecule or a crystalline solid.
Were the particle dynamics independent, the Hamiltonian
would have read

2
p
Hy=2 {—I+V(x1)}, (1)

1 2m
where x; and p; are displacement and conjugate momentum
(i.e., [x;,p;]=Hhi) of a particle at site [. For sake of simplicity,
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we choose to work on a one-dimensional lattice with a single
direction for the motion of atoms, denoted by the unit vector
u, which is named as polarization in the followings. The
single dimension proved relevant in several concrete
studies.?>? The local potential V(x;) may then be expanded
as a fourth order series: V(x)=a,x]+azx;+aux). Some
higher order terms could be added with no difficulties for our
numerics, so as to simulate eventually a specific shape of V.
In truth, the interaction between nearest neighbors, that may
be direct or mediated by the heavy atoms that compose the
skeleton of a material, involves a displacement coupling that
is modeled by a quadratic term. So the Hamiltonian of the
particle ensemble now reads

H=Hy—c 2 (x—x)% (2)
Lj=(0)

where c is the coupling parameter and the symbol ({)) de-
scribes the first neighbors of the site labeled by /. Introducing
the dimensionless operators P; and X;, the Hamiltonian can
be reformulated as follows:

2
H= hQE —+A2X2+A3X3+A x4+2xl§‘,x
7=

3)

where the fundamental frequency (), as well as the dimen-
sionless coefficients As, A4, and C have been defined in Ref.
32. The total number of sites is denoted by N, the lattice
parameter by a, and the orientation of the chain is defined by
a unit vector v. We introduce i, the eigenstates of H, and
particularly the ground state s, the phonons ¢,,,(k) and the
biphonons (k). These states are computed numerically3?
as well as their eigenvalues Egg, E,;(k), and E,(k), respec-
tively. The wave momentum, denoted by k, verifies k
=(2ak/Nagy)v where k is an integer. The ground state wave
momentum Kk, takes its value in the reciprocal lattice, k
=(27ko/ag)v where k; is an integer. Apart when it will be
noted, k is fixed to zero. The lattice is assumed to be main-
tained at very low temperature, i.e., kT <E, so the scatter-
ing induces some excitations solely from t;¢. The transition
probability is proportional to the DSF:*

1 .
S@og) = | 2 Wase ™) % @)
J

where w(/,(k)=(E¢(k)—El/,Gs)/ fi, q is the scattering vector and
r; represents the atomic position at site j. That position can
be expressed as r;=jagv+LXu, where L=\%/(m(}) is the
length scale of vibrations, fixed to a reasonable value of 3%
of ay. The polarization vector u is the principal axis of
atomic displacement around the equilibrium position (jayv).
We now spell out our method for computing the DSF. As,
strictly speaking the Bloch identity does not hold for a non-
linear lattice,* we propose a derivation which differs from the
conventional one. Since £ is much smaller than a, the ex-
ponential function in Eq. (4) can be expanded as a Taylor
series with respect to the weakest of its arguments, the term
proportional to L:
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S(q, wyx)
— zei[(I'Vlfao
J
E(l[q ull)
p!

p

<¢GS|XP| lﬂ(k» (5)

This development holds provided that the order of the expan-
sion is large enough. The series convergence has been tested
by increasing the order up to reach the desired precision. The
agreement to the standard analytical calculation on the
purely harmonic lattice (see Sec. III) is a necessary condition
of validity that has been fulfilled too. In the left hand side of
Eq. (5), the bracket (Ps|XT| (k) can be replaced by
Wos¥} ki), e
cause 0f the translational invariance. The sum over the sub-
script j in Eq. (5) gives zero for all q, aside from the wave
vectors that match the momentum conservation [(q—K)-v]
=0. This condition, as well as the conservation of the energy
are supposed to be satisfied for a given state (k). The cal-
culation of S(q, w¢) can then be reduced to the determination
of the bracket D[y(k),p]=(igs|X5|¢(K)), since one may
check that

(i[q-ull
S(q, wyx) = N (q-x)v] > —q
>~ p!

Dy(k), ]
(6)

We study the variation of the DSF along a single direction
which the angles with respect to u and v are «, and «,,
respectively. Then S(q,w,) depends only on the magnitude
of the momentum transfer |q| along that direction and the
conservation law fixes |q|cos(a,)=[k-v]. This condition can
be achieved whether |a,|# /2 which may be reasonably
assumed for a low-angle scattering. In a same manner, when
|a,|=/2 the inelastic part of the structure factor is identi-
cally null because [q-u]=0 (excepted for the elastic DSF
which then equals N). Consequently, we assume that |a,|
=|a,| # /2 which keeps the physics of our problem, avoid-
ing the unimportant cases. We denote by ¢ the scalar product
[q-u] for a vector q that matches the conservation law, so
that we have also g=[Kk-v]. Then, the DSF reads

Ly
2” )Dw(q) K

p

S(q’ wg&(q)) =N (7)

Since the optical modes are characterized by a weak value
of C in Eq. (3), the first step of our treatment is concerned
with a perturbation theory with respect to the intersite cou-
pling. At C=0, namely the anti-continuum (e.g., uncoupled,
atomic or molecular) limit,!° the phonon states and the pho-
non bound states can all be written as some Bloch waves*
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1 N
B, (k)= TVE eilkevlai Dol P (8)
N

where ¢, ; is an on-site wave function that depends only on
X;. 'Actually, ) is the ath eigenstate of the on-site Hamil-
tonian

PZ
hy = ?’ +AX +AX) + ALXT. 9)

To a first order in C, the lattice ground state g is simply
given by the product By=11,¢,; while Eq. (8) gives a phonon
for a=1 and a biphonon for @=2. Let us denote by V,,, the
projection of the state ¢, onto the nth on-site harmonic os-
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cillator eigenstate |n) and develop the bracket G(a,0,p)

=(olX?[ -

G(a,0,p)= 2 VouVaulm|XP|n), (10)

n=0,m=0

where the subscript has been dropped for ease. We point out
that for C=0, we have D[Ba(k),p]zG(a,O,p)/\W and
D(By,p)=G(0,0,p). One more thing has to be done before
reaching our goal, is to compute (m|X?|n). To that purpose,
the Bose-Einstein operators [i.e., a*= V’E(X —iP) and a
=\2(X+iP)] are used to expand X”. We wrote a Fortran pro-
gram which realizes the expansion, respecting the commuta-
tion rule, [a,a*]=1. For example, the output for p=10 is

X'"0= é[a”o +a'%+10(a*ad® + a*a) + 45(a?a® + a™¥a® + a*® + a®) + 120(a*3d” + a*7d?) + 360(a*a’ + a*'a) + 210(a**a®
+a*%a®) + 1260(a*?a® + a™®a®) + 630(a*® + a®) + 252a7a> + 2520(a™a® + a*3a’) + 3780(ata + a*a®) + 3150(a™ + a*

+a™a®) +47252a%a* + 2a4a? + 4at?a® + a*? + a® + 2a*a) + 12600(a*a’® + ata + ata) + 945]. (11)

The writing of X? would take more than one full page for
values of p larger than 30. Our program allows us to com-
pute the bracket (m|X”|n) up to the power p=60, for different
integers m and n. The association of this program with the
numerical diagonalization of /; [Eq. (9)] which fixes the co-
efficients V,,, in Eq. (10),% permits us to compute the coef-
ficients G(«,0,p) that can be tabulated for different model
parameters. Finally, to a first order in C, one obtains

igl)?
2(q')
p P

2

S(q?wBa(q)) = G(a”o,P) (12)

for the inelastic scattering where the momentum conserva-
tion imposes g=2mk/(Na,), whereas the elastic response is
given by

2

(iqL)’ ’ (13)

p!

>

p

S(g,0)=N G(0,0,p)

where g=2mky/a, [k and k, range over integers]. Formally,
these results are given for a one-dimensional lattice but they
can be extended to higher dimensional lattice by summing
over the coordinates and polarizations. To a first order in C,
the frequency wg () can also be evaluated by

0 (= UVa= Y0 -2C X G(,0,1)*cos(qag)], (14)

where the coefficient vy, is the eigenenergy of /; [Eq. (9)]
associated to ®,. For the perfect harmonic lattice, the first
order in C in the standard calculation'* of S(g, ) is equiva-
lent to Egs. (12) and (13).

When C is large, the Hamiltonian in Eq. (3) must be di-
agonalized numerically after expanding in a suitable basis.
We worked with a Bloch wave basis®? given by

1 I
B[Hjaj](k) = \/—E e_l[k Vlaoi X Hl¢al,l+j’ (15)

(M) J

where A[H/_aj] ensures the normalization. Each eigenstate,

characterized by a wave vector K, can be written as a linear
combination of those Bloch waves

Yk = 2 Wiyt o B (K). (16)
Mja;

where the subscript I1;«; identifies a single Bloch wave in
Eq. (15). The numerical diagonalization has been carried out
for different lattice sizes with no noticeable discrepancy in
the eigenspectrum in increasing N. In Fig. 1, the same energy
cutoff on the Bloch wave basis has been fixed for both N
=23 and N=33. Apart on their wave vector, the eigenvalues
are found to be independent of N. In Fig. 1(a), the optical
phonon branch is plotted whereas, in Fig. 1(b), the energy
region of the first overtone is plotted for same parameters as
in (a). One notes clearly the biphonon branch and the two-
phonon band, thoroughly described elsewhere.”>!7-20:3233 [n-
terestingly, for small enough nonlinear parameters, the anhar-
monicity of the lattice is negligible compared to the phonon
branch width and the biphonon branch disappears [see Fig.
1(c)]. The bracket D(,p) can now be written as follows:

D[yAk).p]

= 2 Wy s W (B s1(0)X0|Bi
(I, 11;8)) Yos 1B 7% iPi T

X (K)), (17)

where the last term in the right hand side can be detailed
further
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FIG. 1. (Color online) energy spectrum of a chain composed of
N unit cells, N=33 (full circles) and N=23 (empty circles): (a) the
optical phonon branch for model parameters C=0.05, A;=0.12 and
A,=0.01; (b) the two-phonon energy region for the same param-
eters as (a); (c) the same as in (b) but for C=0.05, A;=0.05 and
A,4=0.01. The Y axis unit is (). The wave vector is reported on the
X axis, whose unit is (7/ag) and ranges over the lattice first Bril-
louin zone.

1 ,
<B[H ./3.](0)|Xg|B[H .a,](k)> = E o-ilkevlagn;
il 77 \/A[Hjaj]A[Hj'Bj] n.y
X Hlijé(aHnl’Ban)G
X (al+nzs al+n1 ’p) . (1 8)

This equation concludes our computation task on the KG
lattice dynamical response to the scattering of a external
beam of light or particles. Our numerical treatment, includ-

PHYSICAL REVIEW B 72, 184301 (2005)

ing the diagonalization of H and the computations of Egs.
(7), (17), and (18) takes few hours on a conventional desktop
PC. The convergence of the series in Eq. (7) has been tested
by comparing our results for different development orders,
e.g., 30, 40, 50, and 60. As expected, the smaller is the scat-
tering vector, the better is the precision. For a momentum
transfer that ranges over 30 lattice Brillouin zones, the dif-
ference between the DSF computed with series orders 50 and
60 is less than 1%.

III. RESULTS AND DISCUSSIONS

Figure 2 shows our typical result that is a three-
dimensional (3D) plot of the inelastic S(q,w) for a nonlinear
lattice whose model parameters are those of Figs. 1(a) and
1(b). Three noteworthy resonances emerge with same order
of magnitude. These three resonances correspond to the
eigenenergies of the nonlinear phonon states, i.e., the
phonons, biphonons, and triphonons. The binding energy of
the biphonon, evaluated at the center of the Brillouin zone
(BZ) is around a few percent of the fundamental phonon
excitation. Several model parameters have been tested and
lead to qualitatively similar results. For instance, besides the
different values of the energy transfer, the biphonon and
triphonon resonances occur in a lattice with a quadratic-
quartic on-site potential, i.e., A3=0 in Eq. (3). In the bi-
phonon and triphonon resonances, one may recognize some
peaks that will be examined further. In order to analyze our
results more quantitatively it is, though, easier to work with
a two-dimensional (2D) plot that represents the S(g,w) pro-
file versus the projection g=[q-u] of the scattering vector q.
In order to verify the accuracy of our computations, pre-
sented in Sec. II, we compare our numerical results to the
exact analytical ones that are achieved in a purely harmonic
lattice. In that case, the profile of the Debye-Waller factor,
i.e., S(¢,0)/N is plotted in Fig. 3 and shows a convincing
agreement since our numerical results scarcely differ from
the analytical ones. It ensures us that our series expansion
of S(¢q,w) has converged. Only the nonzero values of
the Debye-Waller have been retained in the plot, i.e., ¢
=2mky/ay. A similar accord is obtained for the inelastic
part of S(g,w) (see further in the same section). The calcu-
lation made in a standard harmonic approximation* gives a
Gaussian dependency of the Debye-Waller factor S(¢,0)/N
=exp[-2W(q)] where 2W(q)=(qL)* (s X;|/s)|. In this
expression, the  bracket is simply given by
1/(2N)2 1/ w,,(K) where ,,,(K)=11+2C cos(K-a,) and K
ranges in the first BZ. When the nonlinear parameters are no
longer negligible in Eq. (3), we note, in Fig. 3 that the
Debye-Waller of a nonlinear lattice differs from the har-
monic one. The Gaussian form is yet roughly conserved so
there is no qualitative changes involved by the on-site anhar-
monicity. Our perturbation theory proves sufficient under the
condition that the intermolecular coupling is not too large. In
agreement with our results, the earlier study of Thompson*
concluded that a cubic-anharmonic term involved a negli-
gible correction upon the Debye-Waller factor. The calcula-
tion of Thompson is, in fact, a second order perturbation in
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FIG. 2. (Color online) A 3D plot of the inelastic S(g, ) as a function of the dimensionless energy transfer w and the scalar product ¢
=[q-u] of the transfer momentum q and the polarization u. The parameters are the same as in Figs. 1(a) and 1(b). The figure is easier to

depict in color.

the cubic term, which is thus assumed to be weak enough for
the perturbation theory to be valid. Not surprisingly, it leads
to a correction that is also weak. However, as we shall see,
the most significant contribution of the nonlinearity to the
DSF spectra proves to be inelastic and is due to the phonon
bound states.

In a same manner as for the elastic scattering, our numeri-
cal computation of the inelastic DSF is compared to the ex-
act calculation* in the case of a harmonic lattice. The contri-
bution of phonon states is then given by

IQQ@I T i T i T T T ! T L
0.8 8@ .
R _
Z 0.6 Q\@ _
s | G ]
=)
A 041 b\@ -
_ 5@ _
®
02+ &
0 10 20 30 40 50

scattering vector [q.u]

FIG. 3. (Color online) A plot of the Debye-Waller factor
[S(g,w=0)/N] vs the scalar product g=[q-u], for different model
parameters. Each symbol corresponds to a Bragg peak. Our numeri-
cal results are reported for C=0.05, A;=A,=0 (diamonds), and C
=0.05, A3=0, A4;=0.2 (triangles). The exact formula derived in a
harmonic model (dashed line) confirms the former while the latter
has been computed within a perturbation theory (circles) too. The X
axis, which unit is 7/a bears the scattering vector g over a range
of 60 Brillouin zones.

2
Sla-op(@)]= 3o expl- 20, (19)
ph

with same notations as previously used in the same section.
The obtained agreement, demonstrated in Fig. 4, confirms
the validity of our theoretical approach and consequently the
convergence of our series development. The DSF profile ap-
pears as being continuous because the lattice size is large
enough to blur the discreteness of the Fourier space at the
scale of Fig. 4, which ranges over 60 BZ. Apart from the
S(q, w) ripple, the perturbation theory captures quite well the
main variations of the envelope of S(q,w,,). This ripple
stems from the dispersion of w,;, and so, its amplitude in-

0.4 T — = - =" T T T T T T
| FrTr 11714

| o
i I 3.8x10°" A ot
L HEEC U AVA YA B
030 T T W Sasad't 4 il
3.2x10" [/ Ak
I~ N = PR R T R
So02l 3010169514 16 18 |
= [q.u]
0.1 -
0 L i -
0 10 2 30 40 50 60

scattering vector [q.u]

FIG. 4. (Color online) A plot of the coherent inelastic S(gq, w)
profile versus g=[q-u], for phonon in a harmonic lattice: C=0.05,
A3=A4=0. The thin dashed line has been obtained by a perturbation
theory. The thin solid line corresponds to our numerical treatment
and the thick dashed line to a plot of the exact formula (see Ref. 4)
(the two latest curves are hardly distinguished in the graph). In the
inset, the area in the dot-dashed rectangle is magnified. The X axis
unit is 7/ ay.
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FIG. 5. (Color online) A plot of the coherent inelastic S(q, )
profile versus g=[q-u], for phonon, biphonon, and two-phonon
states. The model parameters are: (a) C=0.05, A3=0.12, and A,
=0.01; (b) C=0.05, A3=0.05, and A4;=0.01. The dashed lines cor-
respond to our perturbation theory and the solid lines to our numeri-
cal treatment. The X axis unit is 7/a, and the scattering vector ¢
ranges over 60 Brillouin zones. The inset shows a magnification of
the two-phonon contributions.

creases with C to become some peaks for the acoustic
phonons in a harmonic lattice.*® When the sign of C is in-
verted in our model (C becomes negative), the local minima
of S(¢,w,,) are shifted at the edges of the lattice Brillouin
zones instead of being in the middle when C>0. In Fig. 4,
the DSF resonance involved by the two-phonon states is also
plotted. It is usually termed multiple scattering and is one
order of magnitude smaller than the one-phonon process. If
the anharmonicity of V cannot be neglected, the profile of the
one-phonon resonance in S(g,w) shows no qualitative
changes compared to the harmonic lattice [see Figs. 4 and
5(a)]. However, the response of the biphonon, whose profile
is denoted by S(gq,w,;), appears clearly at higher energy
transfer than one phonon [see Figs. 2 and 5(a)]. The reso-
nance associated to the biphonon is one order of magnitude
larger than for the unbound phonon states and has same order
as S(q,w,;). A gap is opened between the biphonon branch
and the two-phonon band [Fig. 1(b)] so the biphonon reso-
nance occurs for an energy transfer which does not match the
harmonics of the fundamental phonons. As mentioned above,
that energy gap is also called the binding energy of the
biphonon.” It is also worth noting that the maximum of the
S(q,w,;) envelope is reached for a scattering vector that dif-
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fers from the envelope maximum of S(g,®,;). This maxi-
mum occurs, indeed, at larger g for the biphonon. The
S(q,wp;) envelop can be evaluated within the perturbation
theory [see Figs. 5(a)] which provides a rather satisfactory
approximation, although the S(g, wp,;) ripple has a larger am-
plitude than for phonons. To interpret our results, it is needed
to dwell on the ripple of the biphonon contribution to the
DSE. As for the phonon, this ripple is related to the disper-
sion of the biphonon branch. In the case where the binding
energy of biphonon is not very large, say no more than a few
percent of the phonon energy, the different bottoms of the
S(g,wy;) ripple occur at center of the successive BZ while
the tops are reached at the BZ edges. According to several
tests, it is a systematic feature which, in contrast to phonon,
does not depend on the sign of C. Moreover, as shown in the
insets of Figs. 5(a) and 5(b), the minima of S(g, w,;) and the
maxima of the two-phonon resonance correspond one to one.
That may be explained as follows. In our perturbation theory
the biphonon states are approximated by the Bloch waves
that bear a single on-site excitation, @=2 in Eq. (8). In case
C#0, since the biphonon binding energy is not very large,
these Bloch waves are hybridized with some other Bloch
waves, given by Eq. (15), and particularly those bearing two
on-site excitations a=1, at different sites. The degeneracy
lifting of the latest states yields the unbound two-phonon
band. The ripple of the DSF cannot be analyzed through our
first order perturbation theory [see Figs. 5(a) and 5(b)],
which hints that it is due to the Bloch waves hybridization,
involved by the intersite coupling. The discrepancy of the
perturbation theory Eq. (12) increases as the biphonon gap
decreases [compare Figs. 1(b) and 1(c) to Figs. 5(a) and 5(b)]
because of the hybridization step-up. The gap between the
biphonon branch and the unbound two-phonon band is
smaller at the center of each BZ [see Fig. 1(b) and Ref. 32]
because here the width of the two-phonon band is maximum.
The smaller the energy gap is the larger the hybridization is,
so as a result, one finds a larger contribution of the two
on-site excitation Bloch waves into the biphonon eigenstate
at the center of each BZ. The Bloch waves with multiple
excitations at distinct sites yield a zero response to scatter-
ing, S(¢,w)=0. One deduces that the biphonon response
S(g,w,;) is minimum when the contribution of the two on-
site excitation Bloch waves is maximum, i.e., at the center of
each BZ. On the other hand, the unbound two phonons reso-
nance comes to a maximum at the center of each BZ because
of the contribution of the Bloch waves with a single on-site
excitation =2 to the two-phonon eigenstates. Conversely, at
the edge of the lattice Brillouin zones, the Bloch wave hy-
bridization is minimum (because the energy gap is maxi-
mum) so that the biphonon response is maximum and may
even reach the value computed within the perturbation
theory [Fig. 5(b)]. Another interesting point that is made
clear within the previous discussion is why the S(q,wy,)
ripple is not shifted when the sign of C is changed, unlike
S(q,w,,). Indeed, reversing the C sign leaves unchanged the
two-phonon band shape, i.e., the band width is still maxi-
mum at the BZ center. So it is for the biphonon branch which
the dispersion is mainly due to the contribution of the two
on-site excitation Bloch waves? [the dispersion computed

184301-6



DYNAMICAL STRUCTURE FACTOR OF A NONLINEAR ...

within Eq. (14) for =2 is much smaller than the effective
biphonon bandwidth]. So the gap between the biphonon and
two-phonon bands is equally unchanged under the inversion
of the coupling sign, i.e., the energy gap is still maximum at
the BZ edges and minimum at the center. According to our
analysis of the S(g,w,;) ripple, it makes clear why the
maxima and minima of the biphonon DSF are independent of
the sign of C. Our argumentation holds provided that the
biphonon binding energy remains inferior to a few percent of
the fundamental excitations.

When the anharmonicity of V is weak compared to the
phonon bandwidth, the biphonon gap closes and a pseudogap
forms® at the edge of the lattice Brillouin zones. Then the
biphonon branch hardly appears nearby the two-phonon band
[see Fig. 1(c)]. The lattice is said quasiharmonic since the
spectrum anharmonicity vanishes. There is, indeed, no anhar-
monic resonances, neither in the density of state nor, accord-
ingly, in the DSF. That may happen for higher order phonon
bound states as the hardening of the quartic on-site term in V
[Eq. (3)] could compensate the softening of the cubic poten-
tial in a certain range of energy, although that seemingly
perfect harmonicity, the S(g,w) ripple may yet betray the
nonlinearity of V. In truth, at the BZ center, the DSF associ-
ated to the biphonon, referred to as S(g, wy,), has same order
as the DSF of two-phonon states, whose magnitude is one
order below the phonon resonance [see Fig. 5(b)]. In con-
trast, the profile S(g,w,;) reaches its maxima where the
pseudogap opens [see Fig. 1(c)], i.e., at the BZ boundaries
and the ripple alongside each BZ can be seen as a series of
peaks. In Fig. 5(b), the largest peak remains much larger than
the two-phonon response and it has same order as the maxi-
mum of the phonon DSF profile, S(¢,®,,). The maxima of
the biphonon DSF decrease as the nonlinear parameters tend
to zero. However, before reaching that point, we have seen
that the anharmonicity of the energy spectrum vanishes as in
Fig. 1(c). Consequently, we propose to dub the S(g,wy)
peaks by nonlinear Bragg peaks, since they gather two fea-
tures that are opposite to the usual Bragg scattering: first,
they are inelastic peaks and second, they satisfy the Bragg
reflection condition but shifted of a half reciprocal lattice
vector (i.e., 7/ay for the one-dimensional chain). According
to Ref. 35, the pseudogap may occur in lattices with a higher
dimension so that similar results as those presented here can
be expected in different lattices. In spite of the relative sim-
plicity of our model compared to the case encountered in
practice, it indicates that the biphonon may still emerge and
contribute significantly to the scattering, even though the
spectrum seems perfectly harmonic. In Figs. 1(c) and 5(b),
we have chosen intentionally a set of parameters that yields a
eigenspectrum which is almost harmonic. A pseudogap
hardly opens between the biphonon branch and the two-
phonon band. The parameter A5 could be doubled [as in Fig.
2(c) in Ref. 35] without opening a substantial gap which
would permit one to identify the anharmonicity in the energy
density of state. In fact, the larger is the phonon dispersion
the larger is the range of nonlinear parameters that leads to a
quasiharmonicity. In Fig. 6(a) the profile of S(g,w) is plotted
for different values of the energy transfer o, e.g., w,, for
phonon, w; for biphonon and w,,; for triphonon. The triph-
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FIG. 6. (Color online) In (a), the same as in Fig. 5(a) but for
different model parameters: C=0.06, A3=0.17, and A4=0.0231. In
addition, have been plotted the S(g,w) profile for the triphonon and
the integral of S(g,w) over the energy transfer  (dashed line). The
elastic contribution has been skipped. In (b), a plot of the profile of
the S(g,w) integral over the reciprocal lattice (see text), vs the
energy transfer w, for same parameters as in (a). The inset in (b)
shows the corresponding potential landscape V(X j) and its quantum
levels. Our energy unit ) has been fixed to 107 meV.

onon resonance is found to reach a significant magnitude that
is comparable to phonon and biphonon. Such a high order
phonon bound state has been identified in different materials,
e.g., TiH,?® ZrH,” and HC1.?> It is worth noting the triph-
onon spectrum ripple, which originates from the hybridiza-
tion between the bound and unbound phonon states, as for
the biphonon spectrum. This triphonon ripple is shifted of
m/ay compared to the biphonon DSF profile.

If one assumes that the energy resolution is not sufficient
to differentiate the inelastic lattice resonances (as it may be
the case, for instance, in the inelastic x-ray scattering), we
have to integrate our simulation with respect to the energy
transfer w. The elastic contribution is skipped from that in-
tegral so as to distinguish the inelastic part of the DSF. We
computed the corresponding integral and reported the result
as a dashed line in Fig. 6(a). The amplitude and the position
of the maximum of the DSF integral are related to the non-
linear parameters. In a strictly harmonic lattice, that integral
scarcely differs from the phonon response, whereas in Fig.
6(a) we note a clear difference between the dashed line and
the profile S(¢q,®,;,). The of the DSF integral has a form that
might be fitted by a superposition of two Gaussian functions,
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centered at different momenta. It is a standard treatment in
the interpretation of the experimental S(g,w) profile. If the
nonlinear Bragg peaks are large (i.e., when the anharmonic-
ity is weak compared to the phonon dispersion but that is yet
not negligible) they may emerge in the integral as shown for
large ¢ in Fig. 6(a). In a strongly nonlinear lattice, a large
gap separates the biphonon branch from the two-phonon en-
ergy band so the nonlinear Bragg peaks shrink to a ripple.
Then it becomes rather difficult to depict the contribution of
the nonlinear states in the DSF integral, aside from the shift
of the envelop to larger q. On the other hand, if the energy
resolution is sufficient to resolve the energy dispersion of the
phonon branch but the accuracy over the scattering vector is
not to separate the BZ (as it may be the case, for instance, in
the neutron scattering of a powder specimen, since u and v
are randomly distributed), then our calculation must account
for superposition of the contributions of distinct BZ. As in a
one-dimensional lattice the only symmetry is the inversion,
we have to sum the factor 28[g+kq, w(q)] over the reciprocal
vector kg, where g+ky and w(g) are both assumed to match
the momentum and the energy conservation, respectively.
Since S[g+ky,w(q)] decreases exponentially for a large
enough value of (g+k) [see Fig. 6(a)], the sum is ensured to
be finite. Our energy resolution is assumed to be a triangle
function centered at w with a width of 0.02w. The result of
our treatment is shown in Fig. 6(b). We note the three reso-
nances due to the nonlinear states, i.e., the biphonon, the
triphonon and the quadriphonon that are separated from the
broad resonances of either the phonon or the unbound
phonons. It is noteworthy that the amplitude of the nonlinear
resonances has same order as for phonons. Similar calcula-
tions with different model parameters even showed that, for a
stronger anharmonicity the nonlinear resonances may be
even larger in magnitude. The reason for such a behavior is
that the density of state enhances as the eigenstates band-
width decreases. This effect is sharp around the narrow
branches as those of phonon bound states®® [see Fig. 1(b)]
which explains why the biphonon resonance may dominate
the phonon one. The increase in the density of state may be
recognized too in the single phonon response because the
phonon branch is flat at the edge and at the center of the
lattice BZ [see Fig. 1(a)]. Thus one sees two sidebands in the
phonon resonance, at the upper and lower boundary in en-
ergy. The form of the lattice response around the first and the
second overtone energy regions, in Fig. 6(b), is qualitatively
similar either to the infrared adsorption spectra® in crystals as
CO,, N,O, and OCS or to the Raman spectrum of H,
solid.?® Indeed the emergence of a sharp peak, associated to
a biphonon (or to a bivibron??) occurs near a small hill-like
resonance that is due to the unbound phonon states. In our
simulation, a gradual variation of the model parameters so as
to decrease the anharmonicity shows the same behavior as
the pressure-induced bound-unbound transition, at 25 GPa in
H, solid,?® or at 34 GPa in D, solid.** Around that transition,
the biphonon (or bivibron) peak broadens and decreases in
magnitude. In our model, the pressure variation can be simu-
lated by a change of the coupling parameter C due to the fact
that neighboring molecules are moved closer together be-
cause of the external pressure.
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As we did not find in the literature any experiments that
could be related precisely to our previous calculations, we
enhance that whether the inelastic scattering is coherent or
incoherent, the lattice resonances occur at same energy trans-
fer. Thus, it is possible to adjust our model parameters so as
to obtain resonances at same energy as experiments on inco-
herent INS. To illustrate that possibility in Fig. 6(b), we have
chosen the case of metal hydrides shown in Fig. 2 of Ref. 37
where the phonon, biphonon, and triphonon resonances were
clearly identified. Since we are studying the coherent DSF,
an accurate simulation of the spectra obtained by Kolesnikov
et al. for the incoherent INS is out of purpose. The ampli-
tudes and widths of various resonances cannot be simulated.
Moreover, we have currently no means to simulate the fea-
tures of the analyzer. Our parameters adjustment in Fig. 6(b)
has been carried out with an energy unit ()~ 107 meV, a
dimensionless coupling C=0.06 and the nonlinear param-
eters A3=0.17 and A;=0.0231. In that manner, the on-site
nonlinearity and thus the energy landscape of the light par-
ticles, here the deuterium, may be worked out to a better
accuracy than in a purely quadratic model [see the inset in
Fig. 6(b)]. In their studies, Kolesnikov and co-workers?®2%37
recognized the phonon bound states resonances in the INS
spectra of TiH-D and ZrH-D. To analyze their experimental
spectra, the authors compared their data to a simulation made
with a one-dimensional boson Hubbard lattice. This model
shows some similarities to the KG lattice as the single di-
mension and the anharmonicity which leads to phonon
bound states. Thus, one may expect that a similar computa-
tion of the incoherent spectra could be possible.

Although our work is concerned with a one-dimensional
lattice, the results of the present study should hold in higher
dimension where the DSF depends on the lattice symmetries
and polarizations. The extension to higher dimension could
be achieved in our perturbation theory with no particular
difficulty. This approach proves adequate under the condition
that the intersite coupling is very weak. Our numerics, more
accurate, could also be extended to higher dimension but that
would require one either to use a powerful computer or else
a dramatic restriction on the site number, which could yet be
relevant for some molecules as benzene.?

IV. CONCLUSION

The DSF of the nonlinear KG chain has been calculated
for different strength of the on-site anharmonicity. This has
been possible thanks to our numerics that permit us to diago-
nalized accurately the nonquadratic Hamiltonian.*> The DSF
has been expanded as a Taylor series of the atomic displace-
ments, which avoids the use of the conventional harmonic
approximations. We found that the on-site nonlinearity leads
to phonon bound states and consequently to some anhar-
monic resonances in the DSF spectrum, which somehow
confirms other works on different quantum lattices.'3-2° The
treatment of the intersite coupling in a perturbation theory
proved satisfactory to tackle a lattice whose nonlinearity is
stronger than the dispersion. In contrast, when the interaction
between first neighbors dominates the on-site nonlinearity,
which remains however nonzero, the amplitude of the dy-
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namical structure factor makes visible the biphonon, al-
though the energy transfer is almost harmonic. In such a
case, the variation of the biphonon DSF with respect to the
transfer momentum ¢ exhibits some peaks that are much
larger than the multiple scattering. This would hint that, pro-
vided that the DSF could be resolved accurately in ¢, the
nonlinear behavior of certain materials could be worked out,
even though their spectra show no apparent energy anharmo-
nicity.

To approach some concrete cases, the theory requires fur-
ther developments to consider, for instance, the three dimen-
sionality of a realistic sample or the incoherent scattering. In
a first step, this could be achieved within our perturbation
theory. In addition to the possibility of simulating the inco-
herent INS in certain hydrides and molecular crystals, as
those quoted in the present paper, it might be worth studying
the nonlinear surface modes that could be investigated prac-
tically by different technics, e.g., electron scattering or infra-
red adsorption. The low dimensionality of the surface could
give an advantage to achieve a simulation that would be
physically accurate, particularly upon the lattice geometry
and various polarizations. As an example, we note the case
of the CO molecules adsorbed on a Ru(111) surface that has
been studied both theoretically and experimentally.***? As a
low dimensional system, a vicinal surface, which might ex-
hibit a regular one-dimensional nanostructure over several
micrometers, would be the ideal substrate to explore the co-
herent scattering of appropriate nonlinear surface modes. The
behavior of molecules adsorbed on a vicinal surface presents
some specificity (see for instance Refs. 43 and 44, and ref-
erences therein) and thus the feasibility of such a study re-
mains under question, though, the aim would be to carry out
a momentum resolved experiment, as those attempted on the
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PtCl ethylene diamine chlorate,'"* to check whether the pre-
dictions established within the KG model are confirmed in
practice, especially about the biphonon contribution to the
DSF. Another possibility to test our theory would be on the
0, solid'*® where the oxygen cross section is mainly coher-
ent. Although, in the 3 phase of the O, crystal, the intermo-
lecular coupling overpasses the anharmonicity of the O,
stretch,*® our study showed that in such a case the inelastic
scattering due to biphonon could yet be larger in magnitude
than the two-phonon response. Further, the phonon bound
states could emerge at higher energy transfer as found for the
triphonon and quadriphonon in metal hydrides.>” At least
from a theory viewpoint, the 8 phase of the O, solid might
be worth reexamining with recent experimental devices. Fi-
nally, according to the authors of Ref. 31, the potential land-
scape of hydrogen in PdH, that has been worked out from the
INS spectra’! agrees well with a first-principles calculation
made independently.*’*8 On the basis of that successful com-
parison, one may expect that a standard first-principles
theory could be used to calibrate the KG parameters so as to
simulate ab initio the dynamical structure factor.
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