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Thermal equation of state for Pt
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The thermal equation of state of fcc platinum has been evaluated by using the full-potential linear muffin-tin
orbital (FPLMTO) total-energy method combined with a mean-field model of the vibrational partition function
for pressures up to 1000 GPa and temperatures up to 10 000 K. The equation of state at zero temperature was
computed using FPLMTO. For the finite temperatures, the vibrational contributions were obtained by comput-
ing the partition function using the particle in a cell model in the mean field which was constructed from the
sum of all the pair potentials between the reference atom and the others of the system. The calculated
properties are in good agreement with available static and shock-wave experimental measurements.
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I. INTRODUCTION

Platinum is an important pressure standard owing to its
chemical inertness, large isothermal compressibility, and the
large pressure and temperature stability ranges of its ambient
face-centered-cubic (fcc) phase. In addition, platinum’s abil-
ity to absorb infrared radiation makes it a commonly used
laser absorber and internal pressure standard in laser heated
diamond cell experiments designed to measure high pressure
high-temperature phase stability and equations of state
(EOS). As one of the best pressure scales, the EOS of plati-
num has been studied to 660 GPa with a two-stage light gas
gun and by a non-full-potential-based first principles theoret-
ical treatment! combined with some approximation such as
the atomic-sphere approximation? and the approximate ion
Griineisen parameter form due to Slater.> The elasticity and
rheology of platinum under high pressure and nonhydrostatic
stress has also been investigated recently.* Despite the high
quality of the experimental Hugoniot of the platinum, quali-
fying it as an ultrahigh-pressure standard for dynamic experi-
ments, improved accuracy of the isotherm is also needed to
qualify it as a pressure standard for static experiments, espe-
cially at high temperature.

First principles electronic structure methods are routinely
used to compute the zero-temperature internal energy, but
also can be used to calculate the Helmholtz free energy con-
tributions from the ions and electrons. They result in a com-
plete equation of state from which properties such as thermal
expansion coefficients, bulk moduli, specific heat, and ther-
mal Griineisen parameter of the system can be deduced. The
smaller Helmholtz free energy contribution from the elec-
trons usually can be calculated using the finite temperature
density functional approach of Mermin.> However, the con-
tribution from the ions is difficult to calculate accurately be-
cause the volume and temperature dependence of the phonon
frequencies and the density of states are complicated. One of
the most accurate methods for handling this problem, espe-
cially at high temperatures (above the Debye temperature
and below melt), is the particle-in-a-cell (PIC) model.®” The
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advantage of the PIC model over lattice dynamics based on
the quasiharmonic approximation is that the anharmonic con-
tributions from the potential energy of the system are in-
cluded exactly without a perturbation expansion. The PIC
model is essentially an anharmonic Einstein model, and the
3N-dimensional partition function is reduced to a simple
three-dimensional integral.® Calculations using this model
usually are performed on supercells of several hundreds of
atoms for each lattice with periodic boundary conditions.
The PIC model has been demonstrated to match successfully
the thermal properties of iron,’ aluminum,!® and copper!! as
well as the the high-pressure thermoelasticity® and thermal
equation of state'?> of body-centered-cubic tantalum.

In this investigation the isotherms of fcc platinum at dif-
ferent temperatures have been calculated using a full-
potential linear muffin-tin orbital (FPLMTO) total-energy
method'® combined with a pair-potential-based mean-field
approximation (PPBMFA)!? to the thermal contribution to
the Helmholtz free energy based on the PIC model.

II. COMPUTATIONAL METHODS FOR HELMHOLTZ
FREE ENERGY

For a system with a given averaged atomic volume V and
temperature T, the Helmholtz free energy F(V,T) per ion can
be separated as

F(V’T) = EO(V) + Fel(V’T) + Fion(V’T)» (1)

where Ey(V) is the static zero temperature energy, F(V,T) is
the electronic contribution, and F,,(V,T) is the vibrational
contribution. The first two terms on the right-hand side can
be calculated using density functional theory (DFT) general-
ized to finite temperatures by the Mermin theorem.’

Above the Debye temperature, in the PIC model
F..,(V,T) can be expressed approximately as®’
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Fion=_kBT1n|:<27722) f(V7T):|’ (2)
where
SV, T)= |  drexp[- (U(r) - Uy)lksT], (3)
WS

f and kp are Planck’s constant and Boltzmann’s constant,
respectively, m is the mass of each ion, U, is the potential
energy of the system with all ions on ideal lattice sites, and
U(r) is the potential energy of the system with the wanderer
ion displaced by the radius vector r from its equilibrium
position. The key problem for calculating F;,, is to determine
the change of potential energy of the system due to the dis-
placement of the wanderer ion and to perform the integration
over the Wigner-Seitz cell.

In the conventional PIC model the potential energy U(r)
is calculated on supercells of several dozens or hundreds of
atoms (usually N=32-108) for each lattice with periodic
boundary conditions using mixed basis pseudopotential
methods'? or a tight-binding total-energy method,®° whereas
using the PPBMFA!? U(r) can be directly constructed ac-
cording to the symmetry of lattice from the pair potential ¢,
which in turn can be obtained from its relationship with the
total energy of the single-atom unit cell

£ = 53 a(R), @

where a is the lattice constant, R denotes the lattice vectors
of all ions in the system except the wanderer ion, and the site
of the wanderer ion is the zero lattice vector.

In order to obtain the pair potential accurately, we divided
the system into two zones using a sphere of radius R, cen-
tered on the equilibrium position of the reference atom. In
the zone of ||R||> R, the sum of pair potential over R was
replaced by the integral

RCU(
> HRID= |  4al’p(a)pDdl, (5)

RII>Reye ®

where p denotes the number of ions per unit volume (for fcc
Pt p=4/a®) and [ is the distance between two ions. The pair
potential was assumed to be of the form

(1) == xI" + yI", (6)

where x and y are positive constants and m and n are nega-
tive constants. Using these approximations, Eq. (4) was re-
written as

m+3 Y Rn+3
a3 )

™)

After a cutoff radius test, R, was set to a fixed value. The
four parameters x, y, m, and n in the pair potential then were
evaluated by fitting the results for the static total energies
E(a) versus lattice constant to Eq. (7).

=1 3 air)-7(-2

3 cut
IRI=Rey a’\m+3
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Using this pair potential and the same R, the potential
energy difference U(r)—U, in Eq. (3) was calculated using
the approximation

S s(R-th-~ 3 #(RD. ®

1
Ur)-Up==
2 R<R 2 R<R

The integration in Eq. (3) was replaced approximately by a
weighted sum of a small number of special points in the
irreducible zone of Wigner-Seitz cell. Here we used a uni-
form grid of r points which is analogous to the Monkhorst-
Pack grid'* in reciprocal space.

III. EQUATION OF STATE
A. Static equation of state

The static zero-temperature high-pressure properties of Pt
were obtained from first principles by using the FPLMTO
total-energy method.!3 The 6s, 6p, and 5d states were treated
as valence states, the 5p states as semicore states and the
others as core electrons. We used both the local density ap-
proximation (LDA)'S and the generalized gradient approxi-
mation (GGA)'® for the exchange-correlation potential.
Three sets (triple-k basis'’) of LMTO envelopes were used,
and in each channel s-, p-, d-, and f-partial waves were in-
cluded. All calculations reported here used an 18 X 18 X 18
k-point mesh after convergence tests. Spin-orbit interactions
were found to have only a negligible effect on the equation
of state, so our computations were done without spin-orbit
coupling for the valence states and semicore states. The core
states were fully relativistic.

In order to obtain the static pressure accurately we com-
puted the total energy for 67 different atomic volumes rang-
ing from 8.01 to 16.64 A, and the energies were fit to the
Vinet equation'® and the fourth-order Birch equation of
state,' respectively. Pressures were obtained analytically
from the derivatives. The differences of GGA pressures from
the Vinet fit and the fourth-order Birch fit (Fig. 1) are negli-
gible. Similarly, the differences of the LDA pressure from
the Vinet fit and the fourth-order Birch fit are also negligible.
So all the results below were obtained from the Vinet fit.

The zero-pressure properties of the Vinet fit are shown in
Table 1. These results are consistent with the general expec-
tation that the LDA and GGA models will produce volumes
that bound the experimental value. The LDA and GGA bulk
moduli found here also bracket the measured room tempera-
ture value, with the LDA value being 8% larger and the GGA
value being 12% smaller. All of these zero-pressure results
show that the LDA model yields rather good agreement with
the existing zero-pressure data and is clearly preferable to the
GGA model for determining the low pressure EOS of this
particular material.

Because the pressure contribution from the electron exci-
tations and lattice vibrations at ambient temperature is small,
the calculated equation of state at zero temperature is com-
pared directly with room-temperature data in Fig. 2. The
LDA results are also found to be more accurate than the
GGA. All these results serve as a reminder again that there
are a number of systems, such as Au,”® Ta,'> and Pt, for
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FIG. 1. Comparison of GGA pressure from different equations
of state, the Vinet equation (Ref. 18) and the fourth-order Birch
equation of state (Ref. 19).

which the LDA model works better than the presumably
more advanced GGA model. Based on the above analysis,
LDA also should provide more reliable results at high tem-
perature than GGA does. So all the thermal properties below
were calculated using LDA.

B. Thermal equation of state

We divided the pressure at a certain high temperature and
volume into two parts, one is from the Ey(V) and F(V,T),
which were obtained using a self-consistent electronic struc-
ture calculation generalized to a finite temperature by Mer-
min theorem,’ and the other is from F,,,(V,T), which was
calculated using the improved PPBMFA method as described
above. The details of the self-consistent electronic structure
calculation are the same as the case at zero temperature ex-
cept for thermal contributions. The total energy E(V,T) from
electronic structure calculation was fit to the Vinet equation
and the pressure was obtained analytically from

TABLE 1. Theoretical static-lattice, zero-temperature zero-
pressure atomic volumes (V,), bulk moduli (Kj), and pressure de-
rivatives of the bulk moduli (K)) obtained here for fcc Pt using the
LDA and GGA models without spin-orbit coupling, are compared to
previous LMTO calculations and experiments at 300 K.

Vo (A3/atom) K, (GPa) K}
LDA 14.90 300.9 5.814
GGA 15.77 243.3 5.866
LMTO 2664 5.81%
Experiments 15.06" 278b 5.61¢
4From Ref. 1.
"From Ref. 20.
‘From Ref. 21.
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FIG. 2. Static equation of state of Pt. Solid and dashed lines are
LDA and GGA calculations, respectively. Circles are the shock-
reduced 300 K isotherm of McQueen et al. (Ref. 22). Volumes are
given relative to the experimental room temperature volume,
15.06 A3.

P, =3K(1 - 2)z% exp[(1.5K; - 1.5)(1 - 2)], ©)

where z=(V/V,)"3. The fit parameters are given in Table II.

In order to obtain the vibrational contributions to the free
energy accurately, we used 33 additional LDA-energy data
with different atomic volumes ranging from 16.64—
20.96 A3 in addition to the data for the 67 different atomic
volumes ranging from 8.01 to 16.64 A3 at each temperature
to fit the parameters in the pair potential. The temperatures
(besides 300 K) range from 1000 to 10000 K in steps of
1000 K. After a cutoff radius test, we found that it was ac-
curate enough to set R ,=6a, which produced 3588 nearest
ions from the wanderer ion within the sphere, to evaluate the
pair potential. The pair potential is not sensitive to increasing
temperature even at 10000 K and the temperature depen-

TABLE II. Fitted Vinet EOS parameters for the LDA energy at
different temperatures.

T (K) Ey (eV) Vo (A3/atom) K, (GPa) K,
0 -501841.07367 14.90 300.9 5.814
300 —-501841.07149 14.90 301.1 5.813
1000 =501841.05421 14.89 302.2 5.810
2000 —501841.01511 14.88 303.0 5.811
3000  —501840.96658 14.87 303.2 5.817
4000  —501840.90928 14.84 306.7 5.796
5000  —501840.84022 14.81 310.7 5.780
6000  —501840.75833 14.76 316.3 5.757
7000  —501840.66210 14.70 324.0 5.726
8000  —501840.55111 14.63 333.8 5.687
9000  —501840.42433 14.54 345.4 5.642
10000 —501840.28162 14.45 358.6 5.595
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FIG. 3. Comparison of the energy from the LDA calculations
(circles) and from the superposition of the pair potential (crosses)
with the fitted parameters.

dence of potential energy difference U(r)—U, in Eq. (8) is
negligible. So the zero-temperature pair potential was used to
calculate the potential energy difference for all the different
temperatures. The fit values of x, y, m, and n for the zero-
temperature pair potential ¢(I)=—xI"+yl" are 760, 2513,
—5.1572, and —6.3574, respectively and the parameters of the
fit are given in units which gives energy in eV and [ in A.
The quality of the fit is shown in Fig. 3. A uniform 200
X200X200 r-point grid, which is analogous to the
Monkhorst-Pack grid'* in reciprocal space, was used to per-
form the integration in Eq. (3) for Fj,,. At each temperature
100 values of Fj,, with different atomic volumes ranging
from 6.82 to 13.65 A3 were calculated and fit to a fourth-
order polynomial in volume. Then the thermal pressures
from the vibrational contribution were obtained directly from
the negative volume derivative of the polynomial. The ther-
mal pressures (Fig. 4) at a certain high temperature clearly
increase with decreasing volume. It should be mentioned
here that all our results make sense only at temperatures
below the melting point at certain high pressure. (At ambient
pressure the melting temperature is 2041.4 K.) For antici-
pated further use of our thermal pressure data, we present the
analytic representation of the pressure as the function of rela-
tive volume X (X=V/V,),

P2=A0+A|X+A2X2+A3X3+A4X4, (10)

and the values of corresponding parameters A,, A, A,, As,
and A, (Table III), obtained from the negative volume de-
rivative of vibrational free energy. The parameters shown in
Table III are given in units which give pressure in GPa.
The sum of static pressure in Eq. (9) and thermal pressure
in Eq. (10) volume gives the the isotherms in Fig. 5. As a
comparison, the zero-temperature isotherm was also included
in Fig. 5. We compare our isotherm at high temperatures
with the theoretical results of Holmes et al.! (dotted lines) in
Fig. 6. Our results are slightly stiffer than theirs. The calcu-
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FIG. 4. Thermal pressure from the ion vibrational contribution
as a function of volume at different temperatures.

lated 300 K isotherm is also compared with the theoretical
results of Holmes ef al.! and the shock-reduced results of
McQueen et al.?? in Fig. 7. Similarly our results are slightly
stiffer than theirs above 100 GPa. The main reason why our
isotherms are stiffer may be that our full-potential-based
total-energy calculations'® are more sensitive to the compres-
sion than the total-energy calculations using the atomic-
sphere approximation’ used by them. The full-potential-
based total-energy calculations without using the atomic-
sphere approximation, in principle, is more accurate.
Furthermore, we calculated the thermal properties without
using the approximate ion Griineisen parameter 7,,, form
due to Slater,? used by Holmes et al.,! or the assumption
Yion=2.4(V/V,) and electron-Griineisen parameter 7,=0,
used by McQueen et al.?? For these reasons, our results
should be more reliable, especially the 300 K isotherm.

To compare our results of the equation of state of Pt at
high compression and high temperatures with those derived

TABLE III. Parameters for analytic representation of the pres-
sure in Eq. (10) at different temperatures. The parameters are given
in units which give pressure in GPa.

T (K) Ag Ay Ay Az Ay

300 9.7111 -28.8801  43.5109 -32.2936 9.4902
1000 32.7523 -98.4956 149.8067 -112.1764 33.2013
2000 65.5072 -197.0213 299.5981 -224.4228 66.3977
3000 98.2672 -295.5985 449.4428 -336.8440 99.6675
4000 131.0293 -394.2061 599.2904 —449.3934 133.0137
5000 163.7891 -492.8144 749.0622 -561.9815 166.4126
6000 196.5434 -591.3976 898.6856 —674.5177 199.8342
7000 229.2898 -689.9375 1048.1053 -786.9264 233.2507
8000 262.0271 -788.4240 1197.2854 —-899.1518 266.6400

9000 294.7555 —886.8540 1346.2088 -1011.1579 299.9860
10000 327.4756 -985.2308 1494.8741 -1122.9262 333.2791
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FIG. 5. Theoretical isotherms for platinum at different tempera-
tures. The curves correspond (from bottom to top) to temperatures
from 0 to 10 000 K in steps of 1000 K. Volumes are given relative
to the experimental room temperature volume, 15.06 A3.

from the shock data, we also calculated the pressures Py and
temperatures 7y on the Hugoniot for a set of relative vol-
umes ranging from 0.925 to 0.675 by solving the Rankine-
Hugoniot equation®*

Py(Vo=V)=2(Ey - E,), (11)

where Ey is internal energy along the Hugoniot, and E,, and
V, are, respectively, zero-pressure room-temperature energy
and volume of the FPLMTO results. For a given volume V,

1000
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FIG. 6. Our theoretical isotherms (solid lines) for platinum at
high temperatures as compared against the theoretical results of
Holmes et al. (Ref. 1) (dotted lines). Both the solid lines and the
dotted lines correspond (from bottom to top) to 1000 K, 5000 K,
and 10000 K, respectively. Volumes are given relative to the ex-
perimental room temperature volume, 15.06 A3
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FIG. 7. Theoretical 300 K isotherms for platinum as compared
to the shock-reduced 300 K isotherm of McQueen ef al. (Ref. 22)
and the theoretical results of of Holmes et al. (Ref. 1). Volumes are
given relative to the experimental room temperature volume,
15.06 A3.

the temperature on the Hugoniot is varied until Eq. (11) is
satisfied. The agreement of the calculated Hugoniot with ex-
perimental data"?? is excellent in Fig. 8.

IV. SUMMARY

The equation of state of platinum has been calculated to
pressures up to 1000 GPa and temperatures up to 10 000 K,
with and without spin-orbit coupling effects included, using
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FIG. 8. (a) Theoretical Hugoniot for platinum compared to ex-
perimental Hugoniot data of Holmes et al.' and McQueen et al.?
Volumes are given relative to the experimental room temperature
volume, 15.06 A3. (b) Theoretical temperatures along the Hugoniot.
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LDA and GGA. It is shown that spin-orbit coupling effects
are negligible, while density gradient corrections are signifi-
cant. Once thermal effects are accounted for, the LDA model
produces a room temperature isotherm that is in reasonably
better agreement with existing data than the GGA model
does. So the LDA zero temperature isotherm was used as a
starting point for obtaining its counterparts at high tempera-
tures. The pair potential, which was used to construct the
mean field and to compute the vibrational partition function,
has a negligible temperature dependence. The calculated
Hugoniot is in excellent agreement with available shock-
wave experimental measurements, but the calculated iso-
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therms are slightly stiffer than the previous LMTO results!
with the atomic-sphere approximation’ and the ion Grii-
neisen parameter ,,, form due to Slater.3
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