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Traditionally, superconductors are categorized as type I or type II. Type-I superconductors support only
Meissner and normal states, while type-II superconductors form magnetic vortices in sufficiently strong applied
magnetic fields. Recently there has been much interest in superconducting systems with several species of
condensates, in fields ranging from condensed matter to high energy physics. Here we show that the classifi-
cation into types I and II is insufficient for such multicomponent superconductors. We obtain solutions repre-
senting thermodynamically stable vortices with properties falling outside the usual type-I/type-II dichotomy, in
that they have the following features: �i� Pippard electrodynamics, �ii� interaction potential with long-range
attractive and short-range repulsive parts, �iii� for an n-quantum vortex, a nonmonotonic ratio E�n� /n where
E�n� is the energy per unit length, �iv� energetic preference for nonaxisymmetric vortex states, “vortex mol-
ecules.” Consequently, these superconductors exhibit an emerging first order transition into a “semi-Meissner”
state, an inhomogeneous state comprising a mixture of domains of two-component Meissner state and vortex
clusters.
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The formation of vortices in type-II superconductors sub-
jected to a magnetic field is one of the most remarkable
phenomena occurring in condensed matter. In all type-II su-
perconductors �i.e., superconductors where the GL param-
eter, which is the ratio of the magnetic field penetration
length to the coherence length,1 is ��1/�2� these vortices
share a set of properties: an n-quantum vortex is unstable
with respect to decay into n one-quantum vortices, two vor-
tices have purely repulsive interaction, and invasion of vor-
tices under normal conditions is a second order phase tran-
sition characterized by a critical value of the external
magnetic field Hc1.

Vortices as solutions of the GL equations also exist for-
mally in a type-I superconductor ���1/�2�, but these vor-
tices are thermodynamically unstable. The special case �
=1/�2 is also very interesting since, at this value of �, vor-
tices do not interact.2,3 One should note, however, that in real
life systems the situation is more complicated; experiments4

show that in certain materials with ��1/�2 there might ex-
ist a tiny attractive force between vortices at a certain dis-
tance. Such an interaction was reproduced in a modified one-
component GL model with additional terms in the regime5

��1/�2. We should also mention a long-range van der
Waals-type vortex attraction in layered systems produced by
thermal fluctuations or disorder.6

Besides superconductivity, the vortex concept has a direct
counterpart in high energy physics, called the Nielsen-Olesen
string. Such strings have been considered in cosmology7

where they are expected to form during a symmetry breaking
phase transition in the early universe. There also exists a
similar division of semilocal cosmic strings in the Higgs
doublet model into types I and II.8

Recently, multicomponent superconducting systems have
attracted increasing interest in areas ranging through metallic

superconductors, hydrogen in extreme conditions, and color
superconductivity in dense QCD.9–11 Below we consider a
generic two-component superconductor �TCS�, showing that
it allows a novel type of thermodynamically stable vortices,
whose electrodynamics is of Pippard type with respect to one
of the order parameters and which have nonmonotonic inter-
action energy for a wide range of parameters as an intrinsic
feature. We will show that, as a result of this, such a TCS
displays very unconventional magnetic properties which
have no counterparts in single-component systems, and do
not fall into either the standard type-I or type-II classes.

In the simplest case, the TCS �related to the two-Higgs
model12� can be described by the following GL energy den-
sity:

F =
�2

4m1
��� + i

2e

�c
A��1�2

+
�2

4m2
��� + i

2e

�c
A��2�2

+ V���1,2�2� + �	�1
*�2 + �2

*�1
 +
H2

8�
, �1�

where �	= ��	�ei
	 and V���1,2�2�=�	=1,2−b	��	�2+c	 /
2��	�4. In �1�, vortices with phase winding in only one field
have logarithmically divergent energy per unit length if �
=0, and linearly divergent if ��0.9 Here we do not consider
the effect of thermal fluctuations, so we can, without loss of
generality, restrict attention to vortices with 
1−
2=const in
the case �=0. These have finite energy per unit length. Mov-
ing � from zero will merely change the core sizes of such
vortices, so this is a trivial extension. The same applies to
other possible additional potential terms in �1�.

Equation �1� possesses three characteristic length scales:
two coherence lengths �	=� /�4m	b	 and the magnetic field

penetration length �= �c /�8�e�	��̄1�2 /m1+ ��̄2�2 /m2
−1/2,
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where ��̄	�=�b	 /c	. It will also be convenient to define
length parameters �	=c�m	 / ��8�e��̄	��, and thermody-
namic critical magnetic fields for the individual condensates,
Hct�	�=0 / �2�2��	�	�. When the individual condensate �1

is of type II, we denote its first and the second critical mag-
netic fields as Hc1�1�=0 / �4��1

2�	ln��1 /�1�+0.08
 and
Hc2�1�=0 / �2��1

2�, where 0 is the magnetic flux quantum.
Let us consider the magnetic properties of a TCS in sev-

eral regimes. In the simplest cases, when �1��2�� and
when �1��2��, the magnetic properties of the TCS parallel
those of single-component type-I and type-II superconduct-
ors correspondingly. However, we find that if one of the
condensates has �1 /�1�1/�2 while the other has �2 /�2
�1/�2, the TCS in an external field has a much richer phase
diagram.

In the case when �1��1 and �2��2, and Hct�2�, the ther-
modynamic critical magnetic field for the type-I condensate
�2, is much higher than Hc2�1� for the type-II condensate �1,
the system undergoes a first order transition from a normal
state immediately into a TCS state. This is because, at fields
higher than Hct�2�, the system does not allow nontrivial solu-
tions of the linearized GL equation for �1, while, when the
field is lowered below Hct�2�, there appears a transition im-
mediately into a TCS state. In this state the magnetic field is
screened in the bulk of the sample largely due to surface
current �2, and nothing can preclude the appearance of the
second condensate �1 in the bulk of the sample, even if the
applied field is much larger than Hc2�1�.

Now consider the regime occurring when �1 /�1�1/�2;
�2 /�2�1/�2; �2��. Then a vortex solution should have an
extended core associated with the condensate �2 which ex-
ceeds the penetration length. �The key question: whether
such vortices can be thermodynamically stable will be an-
swered below.� For a TCS, the vortex energy consists of the
energies of the cores, the kinetic energy of the Meissner cur-
rent, and the magnetic field energy. The magnetic field en-
ergy and the kinetic energy of the screening current are given
by Fm= �1/8���d3xH2+ �1/8���d3x�eff

2 �curl H�2. Here we
stress that, in the present case, ��2�x��2 varies slowly over
the London penetration length �. The magnetic field is
screened at a distance from the core which is smaller than �2.
This means that only a depleted density of Cooper pairs of
the condensate �2 participates in the screening of the mag-
netic field. Thus, one cannot use the London penetration
length �, but should introduce an effective penetration

length �eff= 	1/�1
2+1/ �̃2

2�x�
−1/2 where �̃2�x�=c�m2 /

��8�e��2�x�����2=c�m2 / ��8�e��̄2��. In the case when
�1��2 and �1 is much smaller than the Pippard length of �2
we have �eff��1 which corresponds to the situation when
the magnetic field is screened mostly by condensate �1. On
the other hand, in the case when �2��1��2��1 the mag-
netic field can be screened at the scale of the Pippard pen-
etration length �=�2

P���2
2�2�1/3 of the condensate �2 �this

expression is valid when �2
P��1�. In the above expression

for Fm, we cut off integrals at the distance �1 from the center
of the core in order to obtain an estimate of the vortex energy
with logarithmic accuracy. Then the energy per unit length of
a one-flux-quantum vortex is

E � � 0

4��eff
�2

ln
�eff

�1
+ Vc1 + Vc2, �2�

where Vc	 are the energies of the cores per unit length which
are of order of magnitude of �core size�� �condensation
energy�. The estimate of the core energy can also be ex-
pressed as
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Consequently, the energy of two cores is Vc1+Vc2
��0 /8���2. Let us now assume that such vortices are ther-
modynamically stable. �Below we demonstrate numerically
that it is indeed the case.� Then a straightforward calculation
of the field Hc1

0 at which it becomes energetically favorable
to let a single vortex into the superconductor gives

Hc1
0 �

0

4�
 1
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2 ln
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�1
� +

0

16�
 1

�1
2 +

1

�2
2� . �4�

However this characteristic field strength cannot be inter-
preted as the first critical magnetic field as in type-II super-
conductors. In fact, in contrast to the type-II regime, invasion
of vortices into a superconductor in the regime in question
should be accompanied by a magnetization jump and be of
first order. This is because the vortex has an extended core at
length scale �2��eff which gives rise to attraction between
vortices U�K0��2r /�2� for r��eff, where K0 is the Bessel
function. The attraction originates in winning in condensa-
tion energy in the condensate �2 when outer cores overlap.
As we shall see below, the interaction potential has a repul-
sive part at a shorter length scale of the order of �eff. Con-
sequently, a lattice of vortices with a spacing determined by
the minimum of the interaction potential is preferred over a
system of widely separated vortices. So the energy of a sys-
tem of n vortices in this regime is minimized when vortices
spontaneously form lattice clusters with overlapping outer
cores. We should observe that Hc1

0 in the present situation is
larger than the thermodynamic critical magnetic field of the
type-I condensate, Hct�2�=0 / �2�2��2�2�. We stress that this
does not mean that at the field of �4� the condensate �2 is
completely depleted, however. This is because, when the ap-
plied field is close to Hc1

0 , the field is mostly screened by the
supercurrent of the condensate �1, which circulates along
the sample’s edge. Thus the vortex system is dilute, or, more
precisely, the intervortex distance is only determined by the
effective attraction. So in contrast to the usual type-I and
type-II behaviors, the TCS in this regime displays a first or-
der transition into an inhomogeneous state consisting of
clusters of vortices, where the order parameter �2 is de-
pleted due to the overlap of outer cores. So superconductiv-
ity in these vortex “droplets” is dominated by the order pa-
rameter �1. Since the vortex density depends on the applied
field, while the intervortex distance is determined by the
nonmonotonic interaction potential, there should be present,
besides these clusters of vortices, domains of two-component
superconductivity in the vortexless Meissner state. We call
this the semi-Meissner state. The transition into the semi-
Meissner state may be viewed as a vortex matter analog of
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the condensation of water droplets or a sublimation process
in classical physics, with the external field playing the role of
“pressure.” At a higher value of an external field the system
will transition from the semi-Meissner state to the regular
Abrikosov lattice. This transition might be rather compli-
cated because of the features of the vortex interaction poten-
tial. That is, the standard argument in favor of triangular
lattice symmetry no longer holds. Different lattice symme-
tries for a given density of vortices are characterized by dif-
ferent numbers of neighbors and different nearest-neighbor
distances, so one might construct a sequence of transitions
between lattices of different symmetries as a function of ex-
ternal field strength. Again an analogy between the external
field strength and the role of pressure in classical physics
might be invoked.

The key question regarding the existence of this transition
and the semi-Meissner state is whether vortices in this re-
gime are stable not only topologically but also thermody-
namically. Below we find an answer to this numerically.

For the purposes of numerical simulation of this system, it
is convenient to rescale the fields. Let A= �2e /�c�A, �	

=e /c��8� /m	��	. Further, we introduce some new param-
eters: �	

2 = �2�e2c2 /�2�m	
2c	, u	

2 = �4b	 /�e2c2m	c	�, so that
the effective potential becomes V	= ��	

2 /8��u	
2 − ��	�2�2.

Then the free energy density in the case �=0 is

16�e2

�2c2 F =
1

2
�� � A�2 + �

	=1,2

1

2
��� + iA��	�2 + V	. �5�

In terms of the new parameters, the three natural length
scales are the inverse masses of the photon and the two
Higgs bosons, that is, �= �u1

2+u2
2�−1/2 , �	 /�2= ��	u	�−1. This

system supports radially symmetric solutions

A = r−1a�r��− sin �,cos ��, �	 = �	�r�eni�, �6�

where a and �	 are real and satisfy the boundary conditions
a�0�=�	�0�=0, a���=−n, �	���=u	. This ansatz reduces
the field equations to an ODE system,

a� −
a�

r
− �n + a���1

2 + �2
2� = 0,

�	� +
�	�

r
− �n + a�2�	

r2 +
�	

2

2
�	�u	

2 − �	
2� = 0, �7�

solutions of which may be found by means of a shooting
method similar to that used in Ref. 13 �see remark14�. Figures
1�a�–1�c� were generated using this scheme, employing a
fourth-order Runge-Kutta method with variable r step for the
numerical integration, and with r0=0.01, r1=2, r�=8. The
regime of most interest is the one where �1 /�2����2 /�2.
To explore the dynamical issues of interest, we would like to
make the disparity between �1 and �2 as extreme as possible.
There is a numerical limit to the disparity of length scales we
can achieve �see remark15�, but the phenomena of interest
can be demonstrated within that limit.

Figure 1�a� shows the profile functions of a single two-
component vortex in the neither type-I nor type-II regime,
where the electrodynamics is of Pippard type in respect of

component �2. Note the disparity in healing lengths of the
two condensate fields. Figure 1�b� shows the energy of a
single two-component vortex as a function of �2, with � and
�1, fixed, normalized by E0, the energy of a one-component
vortex with the same � and �=�1. Figure 1�c� shows the
energy per vortex of n=1, n=2 and n=3 cocentered vortices
at fixed �1, �2, �, as a function of ��̄1� / ��̄2�, normalized by
E0, the energy of a single one-component vortex with the

same � and �=�1. When ��̄1�= ��̄2�, the n=1 vortex is fa-

vored, but as ��̄1� / ��̄2� increases, first the n=2 vortex then
the n=3 vortex become energetically favored. This is a very
interesting property since such an effect has no counterpart
in type-II or type-I one-gap superconductors �N=1 Abelian
Higgs model�. We should note that the n=2,3 cocentered
solutions are unstable with respect to formation of nonaxi-
symmetric n-quantum vortex molecules, as we shall now see.

To compute the interaction energy of a vortex pair 	shown
in Fig. 1�d�
, one must go beyond the radially symmetric
ansatz and resort to a lattice minimization method �see
remark16�. Note that the intervortex force is attractive at long
range but has a repulsive core, as predicted. The only stable
static two-vortex we find in this regime has nonzero vortex
separation and broken axial symmetry. For an isolated one-
quantum vortex, we find numerically that when �1����2
and �1 is much smaller than the Pippard length of the con-
densate �2, the vortex energy per unit length tends asymp-
totically to the energy of a vortex in a single condensate �1
plus the core energy of the vortex of condensate �2. Noting
that the thermodynamical critical magnetic field of �1 is
proportional to ��1�1�−1, while the core energy of the vortex
in �2 is proportional to �2

−2, this proves the thermodynamical
stability of the neither type-I nor type-II vortices whose elec-
trodynamics is of Pippard type, and the existence of the
semi-Meissner state.

In conclusion, superconductivity in multicomponent sys-
tems has recently attracted much interest in the physics of
condensed matter and beyond. Here we show that, in contrast

FIG. 1. �a� Numerical solution for the neither type-I nor type-II
vortex. �b� The energy of a double-core vortex as a function of the
disparity of the two coherence lengths. �c� Nonmonotonic ratio of
energy per unit length to number of flux quanta for axisymmetric
n-quantum vortices. �d� Nonmonotonic interaction potential for
double-core vortices.
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to ordinary superconductors, multicomponent systems allow
for thermodynamically stable vortices even in the Pippard
regime. Moreover, their magnetic properties in a certain
range of parameters do not allow one to classify such a su-
perconductor as type-II or type-I. Rather, it should legiti-
mately be placed in a separate class. Such a type of super-
conductivity should be relevant for a variety of systems. For
example, it is well known that disparity of coherence lengths
occurs naturally in two-band superconductors, e.g., MgB2
and Mg1−xAlxB2, while type-II superconductors not belong-
ing to the regime we consider in this paper have significant
disparity in coherence lengths.17 Analogous situations might
appear in mixtures of condensates with different pairing

symmetries. Another candidate for this type of superconduc-
tivity is the projected liquid metallic state of hydrogen10

where this regime is expected to be realized under certain
conditions. A similar situation might also occur in the color
superconducting state in quark matter.11 Certain features of
the considered state should be preserved and might be ex-
perimentally accessed for vortex stacks18 in layered systems
when one layer is type II and another is strongly type I.
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