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We study the dissipative properties of a harmonic oscillator subject to two independent heat baths, one of
which couples to its position and the other one to its momentum. This model describes a large spin impurity in
a ferromagnet. We find that some effects of the two heat baths partially cancel each other. Most notably,
oscillations may remain underdamped for arbitrarily strong coupling. This effect is a direct consequence of the
mutually conjugate character of position and momentum. For a single dissipative bath coupled linearly to both
position and momentum, no underdamped regime is possible for strong coupling. The dynamics of purity loss
for one and two wave packets is also investigated.
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The harmonic oscillator provides a scenario where the
physics of a quantum particle coupled to a heat bath can be
investigated analytically.1–3 Thus its study may shed light on
physical effects that have been found in less tractable mod-
els. Recently, Novais et al.4 have investigated, by means of
perturbative renomalization group methods, the equilibrium
dynamics of a quantum magnetic impurity in a ferromagnet
and have found that the symmetric coupling of the magnon
bath to the x and y spin components �z being the magnetiza-
tion direction� effectively decreases the strength of the cou-
pling. For this property they have coined the term quantum
frustration, since it may be interpreted as the inability of the
spin bath to simultaneously measure two noncommuting ob-
servables such as the x and y components �Sx and Sy� of the
impurity spin. An important consequence is that spin coher-
ence may be longer lived than it would if only one of the
spin components were coupled to the dissipative bath. This
effect could be relevant for quantum information, as it would
provide a mechanism for quantum spins to remain coherent
for long times.

Here we investigate the effect of quantum frustration in a
different but exactly tractable physical system, namely, a har-
monically oscillator coupled separately, through its position
and momentum, to two independent oscillator heat baths.5 In
the symmetric limit, this model describes the behavior of a
large spin magnetic impurity in a ferromagnet. Another in-
stance of a physical system that interacts, through position
and momentum, with two different baths is a Josephson junc-
tion, where the relative particle number �proportional to the
electric dipole� couples to the radiation field while the rela-
tive phase interacts with the quasiparticle field.6 Those two
environments have different spectral properties. To investi-
gate a more symmetric coupling, we consider a harmonic
oscillator whose position and momentum interact linearly
with two independent Ohmic baths.7 We find that the two
baths do cancel in some but not all respects. A degree of
cancellation is revealed by the persistence of underdamped
oscillations for arbitrarily strong dissipation provided that the
two baths couple with comparable strength. Quantum purity
is weakened by the presence of a symmetric second bath

although its decay is slowed. Since a symmetrically damped
harmonic oscillator behaves like a large spin in a ferromag-
net, we refer to such a mixed situation as quasiclassical frus-
tration.

We investigate the following model Hamiltonian:6

H = Vq�q + �q� + Vp�p + �p� + �
k

�qkaqk
† aqk + �

k

�pkapk
† apk,

�1�

�q = igp�p + �p��
k

Cpk�apk
† − apk� ,

�p = igq�q + �q��
k

Cqk�aqk
† − aqk� , �2�

where �q , p�= i and gq ,gp are sufficiently well-behaved func-
tions. For general gq ,gp the two equations in Eq. �2� cannot
be decoupled without generating interactions between the
two baths. However, if one of the coupling functions, say gp,
equals 1, then ��p ,�q�=0 and it becomes possible to remove
both fluctuating contributions from the potential terms
through the unitary transformations Up=exp�ip�q� and Uq

=exp�i�q+�q�p�q��dq��. One arrives at the Hamiltonian

H = Vq�q� + �
k

�qk�aqk +
Cqk

�qk
�q

dq�gq�q���2

+ Vp�p� + �
k

�pk�apk +
Cpk

�qk
p�2

, �3�

where the shorthand notation 	a	2
a†a has been used.
At this point it is important to specify what we mean by

coupling to position or momentum. Those are the particle
variables to which the environment couples as a set of oth-
erwise independent harmonic oscillators. This is the case,
e.g., in �3�, where the bath oscillators would remain indepen-
dent if q and p were c numbers. On the contrary, this is not
the case in �1�, where, due to the nonlinear character of Vq
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and Vp, the bath oscillators do interact with each other.10 A
popular example is that of a charged particle interacting with
the photon field.6 When the velocity-coupling model is
adopted, it must be accompanied by a diamagnetic term that
contains an interaction between photons. By contrast,
through a canonical transformation, the photon field interacts
with the particle position without an explicit interphoton in-
teraction. Thus, within the precise convention we propose
here, the electromagnetic field couples to the position of a
charged particle.

We focus on the case of a harmonic oscillator �Vq�q�
=�qq2 /2, Vp�p�=�pp2 /2� with gq=gp=1

H =
�q

2
q2 + �

k

�qk�aqk +
Cqk

�qk
q�2

+
�p

2
p2

+ �
k

�pk�apk +
Cpk

�pk
p�2

. �4�

This is the model of dissipative coupling that displays the
highest degree of symmetry between q and p. Hence it is
interesting to study frustration in a physical system other
than a quantum spin in a ferromagnet. The two baths of
independent harmonic oscillators are described by the spec-
tral densities

Jn��� = 2�
k

	Cnk	2��� − �nk�, n = p,q . �5�

We assume a power-law behavior at �=0 and write Jn���
=2�n��n / ��ph

�n−1��, where the introduction of the frequency
�ph renders the coupling constants �n dimensionless. More-
over, large cutoff frequencies �n are assumed to exist for
both environments.

The Hamiltonian �4� is equivalent to that of a magnetic
impurity of large spin �l embedded in a ferromagnetic
environment, with the correspondence q�Sx /��2l and
p�Sy /��2l in the limit of large spins.8 Such large spins can
be found in, e.g., magnetic particles.9

Eliminating the bath variables, the Heisenberg equations
of motion for q and p are obtained,

q̇�t� = �pp�t� + �t

dsKp�t − s�ṗ�s� + Fp�t� ,

− ṗ�t� = �qq�t� + �t

dsKq�t − s�q̇�s� + Fq�t� , �6�

where Kn�t�
�0
	Jn���cos��t�d ln � and Fn�t�

=�kCnkank exp�−i�nkt�+H.c. In Fourier space, Eq. �6� reads

�J̃q��� − �q�q + i�p = Fq, �7�

− i�q + �J̃p��� − �p�p = Fp, �8�

where J̃n��� is the symmetrized Riemann transform

f̃��� = �2P�
0

	 f����
�����2 − �2�

d�� − i sgn���
�

2
f�	�	� . �9�

The oscillation modes are given by the zeros of the poly-
nomial ��0
��q�p�


−1��� = �0
2 − �2 − �qJ̃p��� − �pJ̃q��� + J̃q���J̃p��� ,

�10�

where 
��� is the generalized susceptibility.
We further assume that the two heat baths are Ohmic:

Jn���=2�n� /�. For �n→	, this implies J̃n���→ i�n�.
Then the eigenfrequencies are given by

�0
2 − i��q�p + �p�q�� − �1 + �q�p��2 = 0, �11�

the solutions being

�± =
�0

�1 + �q�p�1/2 �− i� ± �1 − �2� , �12�

� 

�q�p + �p�q

2�0�1 + �q�p�1/2 . �13�

The transition from ��1 to �1 marks the crossover from
underdamped to overdamped oscillations. The condition
��1 requires �criterion A�

	�q�p − �q�p	 � 2�0. �14�

The underdamped region satisfying �14� lies in a stripe of
width �=4��1+�4�−1/2 with �= ��q /�p�1/2, limited by the
graphs of the functions f��q�= ��q±2���−2. The stripes of
underdamped oscillations in the ��q ,�p� plane are plotted in
Fig. 1 for �=1/3 ,1 ,3. A remarkable consequence is that,
given a value of, e.g., �q, one may drive the system from the
overdamped to the underdamped regime by increasing �p.

FIG. 1. Stripes of underdamped oscillations in the ��q ,�p� plane
for three different values of the parameter �, for q and p coupled to
different baths. Inset: the shaded region denotes underdamping for a
single bath coupled to q and p.
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For �=1, the oscillator is underdamped if �q�p, i.e., if the
couplings to the two baths are of comparable strength. When
�q=�p
� the dimensionless parameter � becomes,

� = ��1 + �2�−1/2 � 1. �15�

Thus, in the fully symmetric case, the oscillator remains un-
derdamped for all values of the coupling strength. This is in
contrast with the case of one noise ��p=0�, which requires
�q�2� to be underdamped. Conversely, if �q=0, the condi-
tion is �p�2�−1. The inset of Fig. 1 shows the underdamped
region for an oscillator coupling through q and p to a single
heat bath.8 Surprisingly, the behavior is qualitatively differ-
ent in that underdamping is always lost for sufficiently large
coupling.

Another interesting quantity is Dq���
 Im 
qq��� /�,
where 
qq��� is the Fourier transform of ��q�t� ,q�0���. For
Ohmic environments,

Dq��� =
�q�p

2 + �p�1 + �q�p��2

��1 + �q�p��2 − �0
2�2 + ��q�p + �p�q�2�2 .

�16�

Following Ref. 4, we may view the presence of a peak in
Dq��� as a signature for the existence of coherent dynamics
�criterion B�. This occurs for

�q
3�p

4 � �2�q�p
2 + �p�0

2��0
2. �17�

In the symmetric case, this translates into ���3. For an
oscillator coupled to a single bath through its position ��p

=0�, the requirement is �q��2�. Finally, if �q=0, Dq���
always displays a peak.11

A third possible condition for the existence of coherent
dynamics is that, in Eq. �12�,

	Im �±	 � 	Re �±	 . �18�

�criterion C�. This yields

�q
2�p

2 + �p
2�q

2 � 2�0
2. �19�

In the symmetric case, the condition �19� becomes ��1.
For �p=0, it becomes �q��2�, while for �q=0, it reads
�p��2�−1.

In Table I, the coherence signatures for the main three
particular cases are summarized. Criteria A and C are sym-
metric in q and p, but not criterion B. The general trend
�particularly clear if one considers A and B� is that, starting
from a single dissipative bath coupled to, e.g., q, the intro-
duction of a second bath that couples to p with the same

spectrum and comparable strength favors coherent and un-
derdamped dynamics. For example, an oscillator with �=1
that is driven from �p=0 to �p=�q=�, with �q fixed at a
value �2��q��3, will cross over from incoherent to coher-
ent behavior under both criteria A and B.

We have noted the striking result that, in the symmetric
case, the oscillator is underdamped for all values of �. How-
ever, criteria B and C indicate that the oscillator lies deep in
the underdamped region only if � is small. Such a limitation
is also patent in the �possible� maximum of Dq��� /Dq�0� as
well as in the ratio 	Re �±	 / 	Im �±	=�−1. Both quantities stay
well above unity only if � is small. A related point is that, as
�→	, the ratio Dq��� /Dq�0� does not saturate but rather
decays as �0

2 /�2�2 for nonzero �.
An oscillator initially prepared in a pure coherent state

that at t=0 begins to interact linearly with an oscillator bath
is described by a reduced density � that remains Gaussian at
all times. Then the purity P�t�
Tr��2� is given by

P−2�t� = 4�q2��p2� . �20�

At long times, �q2� and �p2� reach their equilibrium val-
ues, which contain contributions from both baths as well as
hybrid terms that vanish if any of the two baths disappear.6

For simplicity, we focus on the zero temperature, weak cou-
pling case. Then,

�q2� =
1

2�
−

�q

2�2 + �p�ln
�p

�0
−

1

2
� + O��q,�p� , �21�

and similarly for �p2�. The two baths have opposite effects on
�q2�, but for �n��0 the logarithmic divergence from the
p-coupled bath overwhelms the squeezing of q favored by
the q-coupled environment. An impure mixture results

P	
−2  1 +

2�q

�
�ln

�p

�0
− 1� + 2�p��ln

�q

�0
− 1� + O��q,�p�

� 1. �22�

The dynamical evolution of the purity P�t� is cumber-
some in the general case, but it becomes tractable in the
symmetric problem. We find ��q=�p=��

P�t�  � e−�t, 0 � t � �−1

P	�1 +
2�

�1 + �2�3/2

e−t/�

t2 � , �−1 � t → 	 , �
�23�

with �−1=��0 / �1+�2�= 	Im �±	. The fast decay on the scale
of �−1 comes from the choice of decoupled initial
conditions12 and from the concurrence of two baths.13 For
t��−1, the system evolves slowly towards equilibrium. The
divergence of � for �→	 might be interpreted as robustness
against purity loss. However, it should be noted that such a
slowing down merely reflects a dilation of all time scales
with increased friction. For instance, 	Re �±	=�0 / �1+�2�
vanishes even faster.

We have also investigated the decay of the purity P�t�
when at t=0 the system is prepared in a linear superposition
of two coherent states centered at q= ±a /2 with zero average

TABLE I. Condition for coherent dynamics according to three
different criteria �left column, labeled A, B, C�, for three particular
cases �upper row�. The symmetric limit includes the assumption �
=1. The general case is given in main text.

symmetric only �q only �p

��1 �A� always �q�2� �p�2�−1

Dq��� has peak �B� ���3 �q��2� always

	Im �±	� 	Re �±	 �C� ��1 �q��2� �p��2�−1
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momentum.14 For the symmetric case, we find8

P�t� =
P�t�

2
�1 +

cosh2�a2

4
���t�P�t� −

1

2
��

cosh2�a2/8�
� , �24�

where ��t� is a complicated function that evolves from
��0�=1 to limt→	 ��t�=0, and the single wave-packet purity
P�t� is given in �23�. As expected, P�t� /P�t�→1 as a→0,
and P�t� /P�t�→1/2 as a→	.

Interestingly, the structure of �24� is such that, as time
passes and ��t�P�t� evolves from 1 to 0, the ratio P�t� /P�t�
starts at unity, as corresponds to a pure state, then decreases
and finally, at long times, goes back to unity. When a is large
P�t� /P�t� decays rapidly on a time scale �1/4a2� to 1 /2.
There it stays for a time that increases with distance as
��−1 ln a. Afterwards it returns to one. The ratio 1/2 can be
rightly interpreted as resulting from the incoherent mixture
of the two wave packets. Thus it comes as a relative surprise
that P�t� /P�t� becomes unity again at long times, as if co-
herence among the two wave packets were eventually recov-
ered. The physical explanation lies in the ergodic character
of the long time evolution, with both wave packets evolving
towards the equilibrium configuration described in Eqs.
�20�–�22�. Once the two initially separate wave packets be-
gin to overlap, they regain mutual coherence. Due to the
symmetry of the problem, a similar result would have been
obtained if the oscillator had started from a superposition of
two coherent states located in the same region of real space
but with different average values of the momentum.

In summary, we have found features that are reminiscent
of an effective particle-bath decoupling, such as the persis-
tence of underdamped oscillations for arbitrarily large values
of � in the case of a symmetric oscillator and the slowing
down of purity decay for a Gaussian wave packet. Another
feature is that two initially separate wave packets regain rela-
tive coherence at long times because they recombine. The
situation is reminiscent of the quantum frustration exhibited
by a magnetic quantum impurity albeit in a more limited
form.4 The main difference between the two problems is the
dimensionality of the particle Hilbert space. Evolving in the
continuum, the quantum oscillator can be considerably de-
graded by the effect of the environment, as shown in �23�. It
is only when the two wave packets recombine because of
ergodicity that relative purity is recovered. By contrast, the
spin-1 /2 magnetic impurity lives in a two-dimensional
space. The only possible effect of the environment is to flip
the spin. Thus, in any representation, two initially orthogonal
states quickly overlap and tend to preserve mutual coher-
ence. The net result is an increased decoupling from a sym-
metrically dissipative environment. The requirement of low
dimensionality suggests that strong frustration is a genuinely
quantum effect.
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