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We develop a correction to the density matrix used in density matrix renormalization group calculations to
take into account the incompleteness of the environment block. The correction allows successful calculations
using only a single site in the center of the system, rather than the standard two sites, improving typical
computation times by a factor of two to four. In addition, in many cases where the ordinary density matrix
renormalization group method can get stuck in metastable configurations, the correction eliminates the stick-
ing. We test the method on the Heisenberg S=1 chain.
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Since the density matrix renormalization group �DMRG�
was developed,1,2 it has gradually been applied to more and
more difficult systems, such as wide ladders and two-
dimensional �2D� clusters, and systems with long-range in-
teractions. One of the problems arising in these systems is
the possibility that the simulation gets stuck far from the
ground state.3 Several approaches have been developed to
overcome this problem, such as controlling the starting wave
function through potentials or quantum numbers, with the
controls later removed. Nevertheless, there has remained
much room for improvement. In 1D short-range systems, the
standard DMRG finite system algorithm avoids convergence
problems remarkably well because of the presence of the
second center site in the block configuration. However, the
extra site increases the computation time and memory re-
quirements. An alternative to utilizing the extra site, which
works better in the more difficult cases, has not been avail-
able. In this paper we describe such an alternative method,
which relies on a correction to the reduced density matrix in
order to retain a broader variety of states.

In the top panel of Fig. 1 we show the “superblock” con-
figuration for the standard finite-system algorithm, where the
lattice is divided into two large blocks, the system and the
environment blocks, both with truncated bases, with two
sites between them. The algorithm for a single DMRG step
consists of finding the ground state for this “superblock;”
obtaining the density matrix for the system block plus site;
diagonalizing this density matrix; and then changing basis to
the most probable eigenvectors of the density matrix. This
step replaces the system block, described by m states, by a
block one site larger, but also described �approximately� by
m states. One then shifts the dividing line between the sys-
tem and environment by one site, in order to add another site
to the system block, and repeats the process. When the sys-
tem block encompasses the whole system, the direction is
reversed and the roles of system and environment blocks are
reversed. A sweep consists of one pass back and forth
through the system. In a simple 1D spin system one often
obtains convergence to very high accuracy, e.g., an accuracy
in the energy of order 10−10, with one or two sweeps through
the lattice.

In this description, it is apparent that one of the two sites
in the center is crucial to the algorithm. The role of the other
site is to increase the dimension and also the accuracy of the

environment, particularly at the point where it connects to
the system. One can leave out this extra site, i.e., use an
environment block with the site already a part of it, as shown
in the bottom panel of Fig. 1. This decreases the computation
time for a step by roughly the number of states in a single
site. However, one finds that even in 1D systems, the
progress toward the ground state is much slower, and often
stops altogether far from the true ground state. This can be
understood in various ways. For example, suppose the
ground state has total z component of spin Sz=0, and also
suppose the environment block is poor and only has states
with Sz=0. Then the renormalized system block will only
have states with Sz=0, and no fluctuations in the spin will
develop between the two blocks. In fact, any limitation on
the quantum numbers present in the environment translates
into a restriction on the states appearing in the renormalized
system block. The distribution of states between various
quantum numbers in the environment also translates directly
to the renormalized system block. Note that if the environ-
ment block has m states, then the maximum number of non-
zero eigenvalues of the density matrix is also m, and the
number of states never increases unless states are added “ar-
tificially” despite having density matrix eigenvalues of zero.
Simple fixes, such as adding extra random states with a
larger range of quantum numbers, improve but do not fix the
very poor convergence of the single site algorithm.

The essential problem here arises when a particular fluc-
tuation between the system and environment which should
be present is not because the environment block does not
have the relevant states. Hence, the fluctuation is not repre-
sented in the density matrix and the new system block will
not possess its relevant states for that fluctuation. Later, when
the roles of system and environment are reversed, the rel-
evant states again do not appear. In a 1D system with short

FIG. 1. Standard two-site DMRG method �top� and the single
site method.
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range interactions the extra environment site does a very
good job of ensuring that the most relevant fluctuations are at
least approximately present in the environment, so that sub-
sequent sweeps can build in the fluctuations to high accuracy.

In wide ladders or systems with longer range interactions,
the addition of a single site to the environment is not always
adequate. There may be missing fluctuations which are far
from the extra site, and so are never built in. Even in these
cases the extra site allows m to increase sensibly and as one
lets m→� one obtains exact results. However, for practical
values of m one may find unacceptably slow convergence.

In this paper we describe an approximate correction to the
density matrix to describe the key states which have been left
out because the environment block is inadequate. With this
correction, the single site superblock configuration converges
well. In addition, convergence in more difficult systems is
dramatically improved, in either the single site or two site
configurations. We present two different derivations of the
correction, and give examples using the S=1 Heisenberg
chain.

We first give a simple, rough argument. Consider the
power method for finding the ground state: iterate �n+1
= �1−�H��n, where � is a small constant. As long as �0 is not
orthogonal to the exact ground state, and � is small enough,
the power method is guaranteed to converge to the ground
state. Consequently, if the basis represents both � and H�
exactly, and we minimize the energy within this basis, we
expect exact convergence. The crucial point is the need to
enlarge the basis to represent H�. Within the standard
DMRG basis obtained from �, after solving for the ground
state, H�=E�, and nothing is changed by adding H� to the
basis. To go beyond the basis, we need to construct the parts
of H� as the basis is built up. The crucial terms of H� come
from the terms of H that connect the system and environment
blocks.

For the current superblock configuration, write the Hamil-
tonian in the form

H = �
�

t�Â�B̂�. �1�

Here the Â� act only on the system block �including the site

to be added to it�, and the B̂� act only on the environment
block �plus its site�. All the terms that do not connect the
blocks are contained in two terms of the sum which have
either A or B equal to the identity operator, so that this form
is completely general. �The other term in each case is the
block Hamiltonian.� In order to put H� into the basis, we

need to target, in addition to �, the terms Â�� for all �. Let
the states of the system have indices s, p, and q, and the

states of the environment e. The state Â�� can be written as

�
se

�
p

Asp
� �pe�s��e� . �2�

Targeting this wave function means adding into the density
matrix a term

��ss�
� = a��

epq

Asp
� �pe�qe

* As�q
� *, �3�

where a� is an arbitrary constant determining how much
weight to put into this additional state. The total contribution
of all the terms is

�� = �
�

a�Â��Â�†, �4�

where � is the density matrix determined in the usual way,
only from �. This is the form of the correction that we use,
with a�=a�10−3−10−4.

As a second derivation, we utilize perturbation theory.
First, imagine that the environment block, but not the system
block, is complete. We obtain the ground state exactly for
this superblock, and then transform to the basis of density
matrix eigenstates for the system block, and then also do the
same for the environment block. Then the wave function can
be written in the form

��� = �
s

�s�Ls��Rs� , �5�

where Ls, Rs label the states of the left and right blocks. The
reduced density matrix is

� = �
s

�Rs������Rs� = �
s

��s�2�Ls��Ls� . �6�

Now consider the realistic case where the environment
block is not complete. Assume the incompleteness takes the
simple form that some of the �Rs� are missing, labeled s̄,
whereas s are present. Let P be a projection operator for the
environment block P=�s�s��s�, and take P̄=1− P. Let the
unperturbed ground state, with energy E0 and density matrix
�0, be obtained using the incomplete environment basis. We
take as a perturbation the terms in the Hamiltonian that
couple to the states s̄, namely,

H� = �
�

t�Â��P̄B̂�P + PB̂�P̄� . �7�

The first order perturbative correction to the wave function
due to H� is

���� = �
�

t��E0 − H0�−1Â�P̄B̂���� , �8�

where H0=H−H�.
In order to make progress we assume that each perturba-

tion term A�P̄B̂� acting on the ground state creates a set of
nearly degenerate excited states, with average energy E�.
This assumption is equivalent to saying that the spectral
function associated with each term is dominated by a narrow
peak at E�. This significant approximation is reasonable be-
cause the correction to the density matrix is only used to
enlarge the basis, to improve DMRG convergence. Corre-
spondingly, we approximate �E0−H0�−1 as �E0−E��−1

�1/��. This gives
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���� 	 �
s

�s�
�

t�

��

Â�P̄B̂��Ls��Rs� . �9�

There are no first order corrections to the density matrix from

����, since P̄���=0. The lowest order correction to � can be
written as

�� = �
ss�

�s�s�
* �

���

t�

��

t��

���
Â��Ls��Ls��Â

�†Ms����s, �10�

where

Ms����s = �Rs��B̂
��†P̄B̂��Rs� . �11�

Here if A is the unit operator, the term adds nothing to the
basis. If B is the unit operator, Ms����s vanishes. For the
nontrivial pairs of operators A and B, this matrix element
somewhat resembles a correlation function and it is natural
to assume that the diagonal terms are dominant, where �
=�� and s=s�. We expect the off-diagonal terms ���� to
describe coherence between different perturbation terms
which would tend to reduce the number of basis functions
needed to describe the system block; therefore, ignoring the
off-diagonal terms is a conservative assumption. Accord-
ingly, we take

Ms����s 	 �ss�����b�. �12�

This gives Eq. �4� with a�=b��t��2 /��
2 , and where we omit

block-Hamiltonian terms.
In practice, we take a� to be a small constant a indepen-

dent of �. Construction of the correction to � take a calcula-
tion time for a single step proportional to m3 times the num-
ber of connecting terms, which is typically significantly
smaller than the other parts of the DMRG calculation, al-
though the scaling is the same. Larger values of a introduce
more “noise” into the basis, speeding convergence, but also
limiting the final accuracy. Note that it is just as easy to
apply the correction within the two-site method as the single-
site method, which may be useful in some very difficult
cases. We do not present results for this combination here.

As a test calculation, we consider the S=1 Heisenberg
model

H = �
j

S� j · S� j+1, �13�

where we have set the exchange coupling J to unity. The
corrections consist of the following: For each boundary site i
of a block, i.e., a site directly connected to the other block,
we add into the density matrix

�� = a�Si
+�Si

− + Si
−�Si

+ + Si
z�Si

z� . �14�

For a chain with open boundaries, there is one site i; for
periodic boundaries, there are two. One could argue that this
expression should be adjusted with factors of 2 between the
z term and the other two terms, but this is not likely to make
a significant difference. Note that the S+, S− terms automati-
cally increase the range of quantum numbers �i.e., total Sz�
with nonzero density matrix eigenvalues. Figure 2 shows the
convergence of the energy for a 100-site chain with open

boundaries as a function of the sweep, keeping m=50 states,
relative to the numerically exact result obtained with m
=200 and 10 sweeps. One can see the excellent convergence
of the standard approach. The single-site method without
corrections does not do too badly in this case, but still gets
stuck significantly above the two-site energy. Adding the cor-
rections, in this case with a=10−4, dramatically improves the
convergence, making the single-site method converge nearly
as fast as the two-site method. The two-site method is
roughly a factor of three slower than the single-site method.
Thus, even in this simple 1D case where the standard ap-
proach works extremely well, there are advantages to using
the corrected single-site method.

The results change significantly if we consider periodic
boundary conditions. Here we consider the same superblock
configuration as with open boundary conditions, but simply
add in the connection to the Hamiltonian between the first
and last sites. There are better configurations for periodic
boundaries, such as considering it to be a ladder with the
interchain couplings turned off except at the ends. These
other configurations are superior only in the sense of im-
proved convergence with the number of sweeps, not im-
proved with respect to the number of states for a large num-
ber of sweeps. This naive configuration thus provides a
difficult test for the single site method with corrections. In
Fig. 3, we show the results for the same three cases as in Fig.
2. In this case, in the early sweeps, both uncorrected methods
are stuck, ignoring the extra link between the first and last
sites. The extra link eventually appears in the basis, but there
is still sticking two or three times in higher energy states. In
contrast, the corrected single-site method never gets stuck
and shows excellent convergence.

A very useful DMRG technique is the extrapolation of the
energy with the truncation error, i.e., the weight in the states
which are thrown out. If the truncation error were measured
exactly, with a complete basis for the environment, then the

FIG. 2. Error in the total energy for a 100 site Heisenberg spin-
one chain, keeping m=50 states per block, and using open bound-
aries terminated with S=1/2 spins to remove the S=1/2 end states
�98 S=1 sites+2 S=1/2’s�. The results are displayed for each half-
sweep corresponding to reaching either the left or right end of the
system. The two-site method is the standard DMRG approach. The
numerically exact energy was determined with the two-site method,
using m=200.
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energy error would be proportional to the truncation error,
allowing a linear extrapolation to zero truncation error. In
practice, the apparent truncation error from the two-site
method may often be an underestimate, but one often finds
that it is very consistent and still allows excellent extrapola-
tion, even on fairly wide ladders. The truncation error within
the corrected single-site method depends on a: as a→0, the
apparent truncation error goes to zero and is unrelated to the
exact truncation error. However, if a is not too small, linear-
ity and excellent extrapolation are possible.

Figure 4 shows results for the 100-site periodic system
with a larger value of a, 10−2, suitable for extrapolation. The
results show excellent linearity. The extrapolation gives
−140.148 416, off by 1.2�10−5, whereas the sweep with m

=340 gave −140.148 279, off by 1.2�10−4. The reference
energy used was 100 times the infinite energy per site,
−1.401 484 038 971�4�.4 We have found that typically an or-
der of magnitude improvement in the estimate for the energy
is obtained by extrapolation in good cases; here we see simi-
lar improvement. In performing these extrapolations one al-
ways needs to check the linearity for the system being stud-
ied.

In summary, we have demonstrated a correction to the
density matrix which allows the single-site DMRG method
to converge well, and which improves the convergence dra-
matically for hard-to-converge systems.
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FIG. 3. Error in the total energy for a 100 site Heisenberg spin-
one chain, with periodic boundaries. The number of states kept per
block is indicated, and is the same for all three methods; four
sweeps were made for each m. The correction parameter a was
taken to be 10−4 for sweeps 1–8, and 10−6 for later sweeps. A
somewhat slower convergence is visible for a=10−6. The corrected
single site method using m=4000 states gives a slightly lower total
energy, due to exponentially small finite size effects, of
−140.148 403 903 92.

FIG. 4. Error in the total energy for the system of Fig. 3 versus
the truncation error, with a=10−2. In this run two sweeps for each
value of m were made. The points shown are for m=80, 100, 120,
160, 200, 260, and 340. The line is a linear extrapolation, weighted
with a standard deviation for each point assumed to be proportional
to the truncation error at that point.
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