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In this paper we analyze the properties of a dc superconducting quantum interference device �SQUID� when
the London penetration depth � is larger than the superconducting film thickness d. We present equations that
govern the static behavior for arbitrary values of �=�2 /d relative to the linear dimensions of the SQUID. The
SQUID’s critical current Ic depends upon the effective flux �, the magnetic flux through a contour surrounding
the central hole plus a term proportional to the line integral of the current density around this contour. While
it is well known that the SQUID inductance depends upon �, we show here that the focusing of magnetic flux
from applied fields and vortex-generated fields into the central hole of the SQUID also depends upon �. We
apply this formalism to the simplest case of a linear SQUID of width 2w, consisting of a coplanar pair of long
superconducting strips of separation 2a, connected by two small Josephson junctions to a superconducting
current-input lead at one end and by a superconducting lead at the other end. The central region of this SQUID
shares many properties with a superconducting coplanar stripline. We calculate magnetic-field and current-
density profiles, the inductance �including both geometric and kinetic inductances�, magnetic moments, and the
effective area as a function of � /w and a /w.
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I. INTRODUCTION

The research in this paper has been motivated by several
important recent developments in superconductivity: �a� the
fabrication of thin-film superconducting quantum interfer-
ence devices �SQUIDs� made of high-Tc superconductors,1

�b� the study of noise generated by vortices in active and
passive superconducting devices,1–10 and �c� linewidth reduc-
tion in superconducting devices to eliminate noise due to
vortices trapped during cooldown in the earth’s magnetic
field.11–16

The fact that the London penetration depth � increases as
T increases and diverges at Tc is an important consideration
for high-Tc SQUIDs operated at liquid-nitrogen temperature.
When � is larger than the film thickness d, the physical
length that enters the equations governing the spatial varia-
tion of currents and fields is the Pearl length17 �=�2 /d. Ac-
cordingly, the equations governing the behavior of active or
passive thin-film superconducting devices depend upon the
ratio of � to the linear dimensions of the device. In particu-
lar, the equations governing SQUIDs involve not just the
magnetic flux up through a contour within the SQUID, but
the effective flux �, which is the sum of the magnetic flux
and a term proportional to the line integral of the current
density around the same contour. While the effective flux �
is similar to London’s fluxoid,18 which is quantized in mul-
tiples of the superconducting flux quantum �0=h /2e, we
show in the next section that � is not quantized. We also
give in Sec. II the basic equations, valid for any value of �,
that govern the behavior of a dc SQUID.

A vortex trapped in the body of the SQUID during
cooldown through the superconducting transition tempera-
ture Tc in an ambient magnetic field generates a magnetic

field and a screening current that together make a sizable
vortex-position-dependent contribution �v to the effective
flux �. If such a vortex remains fixed in position and the
temperature remains constant, this simply produces a harm-
less bias in �. On the other hand, both vortex motion due to
thermal agitation and temperature fluctuations generate cor-
responding fluctuations in �v and noise in the SQUID out-
put. In Sec. II we show that to calculate �v, it is not neces-
sary to calculate the spatial dependence of the vortex-
generated fields and currents. Instead, one may determine �v

with the help of the sheet-current distribution of a circulating
current in the absence of the vortex.

In Sec. III we apply the basic equations of Sec. II to
calculate the properties of a model linear SQUID, which has
the basic topology of a SQUID but is greatly stretched along
one axis, such that the central portion resembles a coplanar
stripline. The advantage of using such a model is that simple
analytical results can be derived that closely approximate the
exact numerically calculated quantities in the appropriate
limits. In addition to calculating the field and current distri-
butions for several values of �, we calculate the total induc-
tance, geometric inductance, kinetic inductance, and mag-
netic moment when the SQUID carries a circulating current.
We calculate the field and current distributions, magnetic
moment, and effective area Aeff=�f /Ba when a perpendicu-
lar magnetic induction Ba is applied and the effective flux �f

is focused into the SQUID. Finally, we calculate the field and
current distributions and the magnetic moment for the zero-
fluxoid state when the junctions are short circuited and the
sample remains in the state with �=0 when a perpendicular
magnetic induction Ba is applied.

In Sec. IV we present a brief summary of our results.
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II. BASIC EQUATIONS

Our purpose in this section is to derive general equations
that govern the behavior of a dc SQUID consisting of thin
superconducting films of thickness d less than the weak-field
London penetration depth �, such that the fields and currents
are governed by the two-dimensional screening length or
Pearl length17 �=�2 /d. We calculate both the current I= I1
+ I2 through the SQUID �see Fig. 1� and the circulating
current19 Id= �I2− I1� /2 and describe how to calculate the
critical current Ic of the SQUID for arbitrary values of the
SQUID’s inductance L. For this case, the contributions from
line integrals of the current density to the effective flux in the
hole cannot be neglected, and the kinetic inductance makes a
significant contribution to L. When a perpendicular magnetic
induction Ba is applied, we calculate how much magnetic
flux is focused into the SQUID’s hole; this flux also can be
expressed in terms of the effective area20 of the hole. We also
show how to calculate how much magnetic flux generated by
a vortex in the main body of the SQUID is focused into the
hole.

Consider a dc SQUID in the xy plane, as sketched in Fig.
1. We suppose that the SQUID is symmetric about the y axis,
which lies along the centerline. The maximum Josephson
critical current is I0 for each of the Josephson junctions,
shown as small black squares. The currents up through the
left and right sides of the SQUID can be written as I1= I /2
− Id and I2= I /2+ Id. When the magnitude of I, the total cur-
rent through the SQUID, is less than the critical current Ic,
the equations that determine I= I1+ I2 and the circulating cur-
rent Id= �I2− I1� /2 can be derived using a method similar to
that used in Ref. 21. We begin by writing the local current
density j in the superconductors �i.e., the main body of the
SQUID and the counterelectrode� as18

j = − �1/�0�2��A + ��0/2�� ��� , �1�

where A is the vector potential, �0=h /2e is the supercon-
ducting flux quantum, and � is the phase of the order param-
eter. The quantity inside the brackets, which is gauge invari-
ant, can be thought of as the superfluid velocity expressed in
units of the vector potential. From the point of view of the
Ginzburg-Landau theory, implicit in the use of this London-
equation approach is the assumption that the applied fields
and currents are so low that the magnitude of the order pa-
rameter is not significantly reduced from its equilibrium
value in the absence of fields and currents.

To obtain the SQUID equations, we integrate the vector
potential around a contour C that passes in a counterclock-
wise direction through both junctions, the main body of the
SQUID, and the counterelectrode as shown in Fig. 1 and
write the result in two ways. Since B=��A, this integral
yields, on the one hand, the magnetic flux in the z direction

�
S

Bz�x,y�dS , �2�

where S is the area surrounded by the contour C and Bz�x ,y�
is the z component of the net magnetic induction in the plane
of the SQUID produced by the sum of a perpendicular ap-
plied field Ba and the self-field Bsz�x ,y� generated via the

Biot-Savart law by the supercurrent density j�x ,y�. On the
other hand, for those portions of the contour lying in the
superconductors, we eliminate the line integrals of A in favor
of line integrals of j using Eq. �1�. We then express the line
integrals of �� in terms of the values of � at the junctions.
Equating the two expressions for the line integral of A, we
find that the effective flux � in the z direction through the
SQUID is given by

� = ��0/2����1 − �2� , �3�

where

� = �
S

Bz�x,y�dS + �0�2�
C

j · dl , �4�

with the integration contour C now passing through both
superconductors but excluding the junction barriers. These
equations are equivalent to Eq. �8.67� in Ref. 21. The gauge-
invariant phase differences across the junctions b and a are,
respectively,22

�1 = �bc − �bs − �2�/�0��
bc

bs

A · dl , �5�

�2 = �ac − �as − �2�/�0��
ac

as

A · dl , �6�

where bc labels a point on the counterelectrode side of the
junction b and bs labels the point directly across the insulator
in the SQUID washer, and ac and as label corresponding
points for junction a. According to the Josephson
equations,22 the junction supercurrents are I1= I0 sin �1 and
I2= I0 sin �2. In the above derivation we have assumed that
the linear dimensions of the Josephson junctions are much
less than the Josephson penetration depth �J,

22 and that the
applied fields are sufficiently small that the Josephson cur-
rent densities and gauge-invariant phase differences are very
nearly constant across the junction areas.

FIG. 1. I enters the main body of the SQUID from the counter-
electrode below through two Josephson junctions �small black
squares, labeled a and b� and divides into the currents I1= I /2− Id

and I2= I /2+ Id as shown.
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The magnetic moment m=mẑ generated by the currents in
the SQUID is23

m =
1

2
� r � jd3r . �7�

It can be shown with the help of the London fluxoid quan-
tization condition,18

�
S�

Bz�x,y�dS + �0�2�
C�

j · dl = n�0, �8�

where n is an integer and C� is a closed contour that sur-
rounds an area S� within the body of the SQUID, that if there
are no vortices present �i.e., when n=0�, the expression for �
in Eq. �4� is independent of the choice of contour C. Any
convenient path can be chosen for C, provided only that the
path remains in the superconducting material in the body of
the SQUID and the counterelectrode. On the other hand,
when there are vortices in the main body of the SQUID, the
quantity � increases by �0 each time the contour C is moved
from a path inside the vortex axis to one enclosing the vortex
axis. Thus, without specifying the precise contour C, � is
determined only modulo �0. However, this is of no physical
consequence, because the gauge-invariant phases �1 and �2,
which also enter Eq. �3�, are also determined only modulo
2�. The final equations determining the currents I and Id are
independent of the choice of contour C and remain valid
even when vortices are present in the main body of the
SQUID.

When the thickness d of the SQUID is much larger than
�, the contours C and C� can be chosen to be at the midpoint
of the thickness, where j is exponentially small, such that the
line integrals of j can be neglected. The resulting equations
are then the familiar ones found in many reference books,
such as Refs. 21 and 24–29. However, we are interested here
in the case for which d	�, such that the fields and currents
are governed by the two-dimensional screening length or
Pearl length17 �=�2 /d. The term in Eq. �4� involving j then
must be carefully accounted for. For this case, j is very
nearly constant over the thickness and it is more convenient
to deal with the sheet-current density J�x ,y�= jd, such that
Eqs. �4� and �8� take the form30

� = �
S

Bz�x,y�dS + �0��
C

J · dl �9�

and

�
S�

Bz�x,y�dS + �0��
C�

J · dl = n�0. �10�

For the general case when the SQUID is subject to a
perpendicular applied magnetic induction Ba, carries a cur-
rent I unequally divided between the two arms, I1= I /2− Id
and I2= I /2+ Id, where the circulating current19 is Id= �I2

− I1� /2, and contains a vortex at the position rv in the body of
the SQUID, the effective flux � in the z direction can be
written as the sum of four independent contributions:

� = �I + �d + �f + �v. �11�

The first term on the right-hand side of Eq. �11� is that
which would be produced by equal currents I /2 in the y
direction on the left and right sides of the SQUID shown in
Fig. 1:

�I = �
S

BI�x,y�dS + �0��
C

JI · dl , �12�

where BI�x ,y� is the z component of the self-field generated
via the Biot-Savart law by the sheet-current density JI�x ,y�,
subject to the condition that the same current I /2 flows
through the two contacts a and b. For a symmetric SQUID,
JI�x ,y�, the y component of JI�x ,y�, is then an even function
of x, and JI�x ,y� and BI�x ,y� are odd functions of x. As a
result, both terms on the right-hand side of Eq. �12� vanish
by symmetry, and �I=0. Since � ·JI=0 except at the con-
tacts a and b, we may write JI=−�I /2�� �GI, where GI

= ẑGI, such that JI�x ,y�= �I /2�ẑ��GI�x ,y�. The contours of
the scalar stream function GI�x ,y�=const correspond to
streamlines of JI�x ,y�, and we may choose GI=0 for points
ri= �xi ,yi� all along the inner edges of the superconductors
and GI=1 for points ro= �xo ,yo� all along the outer right
edges and GI=−1 for points ro= �xo ,yo� all along the outer
left edges.

The second term on the right-hand side of Eq. �11� is due
to the circulating current19 Id= �I2− I1� /2 in the counterclock-
wise direction when unequal currents flow in the two sides of
the SQUID shown in Fig. 1:

�d = �
S

Bd�x,y�dS + �0��
C

Jd · dl , �13�

where Bd�x ,y� is the z component of the self-field generated
via the Biot-Savart law by the circulating sheet-current den-
sity Jd�x ,y� when a current Id flows through contact a from
the counterelectrode into the body of the SQUID, passes
around the central hole, and flows through contact b back
into the counterelectrode. The magnetic moment md gener-
ated by the circulating current is proportional to Id as can be
seen from Eq. �7�. Since � ·Jd=0 except at the contacts a
and b, we may write Jd=−Id� �Gd where Gd= ẑGd, such
that Jd�x ,y�= Idẑ��Gd�x ,y�. The contours of the scalar
stream function Gd�x ,y�=const correspond to streamlines of
Jd�x ,y�, and we may choose Gd=0 for points ri= �xi ,yi� all
along the inner edges of the superconductors and Gd=1 for
points ro= �xo ,yo� all along the outer edges. Once a numeri-
cal result for �d is found, the result can be used to determine
the inductance L of the SQUID via L=�d / Id, as was done
for a circular ring in Ref. 31. The resulting expression for L
is the sum of the geometric and kinetic inductances.

The third term on the right-hand side is a flux-focusing
term due to the applied field:

�f = �
S

Bf�x,y�dS + �0��
C

Jf · dl , �14�

where Bf�x ,y� is the z component of the net magnetic induc-
tion in the plane of the SQUID produced by the sum of a
perpendicular applied field Ba and the z component of the
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self-field Bsf�x ,y� generated via the Biot-Savart law by the
sheet-current density Jf�x ,y� induced in response to Ba, sub-
ject to the condition that no current flows through the junc-
tions a and b. In other words, the desired fields are those that
would appear in response to Ba if the junctions a and b were
open circuited. Since � ·Jf=0, we may write Jf=−��Gf,
where Gf= ẑGf, such that Jf�x ,y�= ẑ��Gf�x ,y�. The con-
tours of the scalar stream function Gf�x ,y�=const correspond
to streamlines of Jf�x ,y�, and we may choose Gf=0 for all
points �x ,y� along the inner and outer edges of the supercon-
ductor. Once a numerical result for �f is found, the result can
be used to determine the effective area20 of the SQUID’s
central hole, Aeff=�f /Ba, as was done for a circular ring in
Ref. 31.

To prove that the effective area is also given by Aeff
=md / Id,32 we consider the electromagnetic energy cross term
Efd=��Bf ·Bd /�0+�0�2jf · jd�d3r, where the integral extends
over all space. Here, Bf�r�=Ba�r�+Bsf�r�=��Af�r�, where
ja�r�=��Ba�r� /�0 is the current density in the distant coil
that produces a nearly uniform field Ba in the vicinity of the
SQUID, jf=��Bsf /�0 is the induced current density in the
SQUID, and Bsf is the corresponding self-field under the
conditions of flux focusing, i.e., when jf=0 through the junc-
tions. Also, Bd=��Ad is the dipolelike field distribution
generated by the circulating current Id with density jd in the
SQUID; at large distances from the SQUID,23 Ad=�0md
�r /4�r3. We evaluate Efd in two ways, making use of the
vector identities � · �A�B�=B · ���A�−A · ���B� and
� · ��j�=�� · j+�� · j, and applying the divergence theorem,
first with A=Ad, B=Bf, �=�d, and j= jf, from which we ob-
tain Efd=Bamd, and then with A=Af, B=Bd, �=�f, and j
= jd, from which we obtain Efd=�fId with the help of Eq. �3�.
Since �f=BaAeff, the effective area obeys Aeff=md / Id.

The fourth term on the right-hand side of Eq. �11� is due
to a vortex at position rv= x̂xv+ ŷyv in the body of the
SQUID:

�v�rv� = �
S

Bv�x,y�dS + �0��
C

Jv · dl , �15�

where Bv�x ,y� is the z component of the self-field generated
by the vortex’s sheet-current density Jv�x ,y� via the Biot-
Savart law when no current flows through the junctions a
and b. The desired fields are those that would appear in re-
sponse to the vortex if the junctions a and b were open
circuited. Since � ·Jv=0, it is possible to express Jv�x ,y� in
terms of a scalar stream function, as we did for Jf�x ,y� and
Jd�x ,y�. However, as shown below, it is possible to use en-
ergy arguments to express �v�x ,y� in terms of the stream
function Gd�x ,y�.33

To obtain �v�r� when a vortex is at the position r= x̂x
+ ŷy, imagine disconnecting the counterelectrode in Fig. 1
and attaching leads from a power supply to the contacts a
and b. The power supply provides a constant current Id in the
counterclockwise direction, and the sheet-current distribution
through the body of the SQUID is given by Jd�x ,y�= Idẑ
��Gd�x ,y�, as discussed above. We also imagine attaching
leads from a high-impedance voltmeter to the contacts a and

b. If the vortex moves, the effective flux �v changes with
time, and the voltage read by the voltmeter will be34 Vab
=d�v /dt. The power delivered by the power supply can be
expressed in terms of the Lorentz force on the vortex, Jd
� ẑ�0= Id�0�Gd; i.e., the rate at which work is done on the
moving vortex is Id�0�Gd ·dr /dt. Equating this to the power
P= Idd�v /dt= Id��v ·dr /dt delivered by the power supply
to maintain constant current, we obtain the equation
��v�r�=�0�Gd�r�. Thus �v�r�=�0Gd�r�+const, where the
constant can have one of two possible values depending
upon whether the integration contour C is chosen to run in-
side or outside the vortex axis at r= x̂x+ ŷy. Choosing C to
run around the outer boundary of the SQUID, we obtain

�v�r� = �0Gd�r� . �16�

Since Gd�ro�=1 for points r=ro on the outer edges of the
SQUID and Gd�ri�=0 for points r=ri on the inner edges �at
the perimeter of the central hole or along the edges of the
slit�, we have �v�ro�=�0 and �v�ri�=0. The derivation of
Eq. �16� implicitly assumes that the vortex-core radius is
much smaller than the linear dimensions of the SQUID.

We now return to the problem of how to find the currents
I and Id in the SQUID, as well as the critical current Ic. As
discussed above, we have �I=0 for a symmetric SQUID.
For simplicity, we assume first that there are no vortices in
the body of the SQUID, such that �v=0 and �=�f+�d in
Eq. �3�, where �d=LId. From the sum and the difference of
I1 and I2 we obtain

I = 2I0 cos���f

�0
+

�LId

�0
�sin �̄ , �17�

Id = − I0 sin���f

�0
+

�LId

�0
�cos �̄ , �18�

where �̄= ��1+�2� /2 is determined experimentally by how

much current is applied to the SQUID. When �̄=0, the cur-
rent I is zero. As �̄ increases, the magnitude of I increases
and reaches its maximum value Ic at a value of �̄ that must
be determined by numerically solving Eqs. �17� and �18�. A
simple solution is obtained for arbitrary �f only in the limit
�LI0 /�0→0, for which I= Ic=2I0	cos���f /�0�	 and Id=0 at
the critical current. For values of �LI0 /�0 of order unity, as
is the case for practical SQUIDs, one may obtain Ic for any
value of �f by solving Eq. �18� self-consistently for Id for a
series of values of �̄ and by substituting the results into Eq.
�17� to determine which value of �̄ maximizes I. Equations
�17� and �18� have been solved numerically by de Bruyn
Ouboter and de Waele24 �some of their results are also shown
by Orlando and Delin21�, who showed that at Ic

Ic��f� = Ic��f + n�0� = Ic�− �f� , �19�

Id��f� = Id��f + n�0� = − Id�− �f� , �20�

I1��f� = I1��f + n�0� = I2�− �f� , �21�
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I2��f� = I2��f + n�0� = I1�− �f� , �22�

where n is an integer. Hence all the physics is revealed by
displaying Ic��f� over the interval 0
�f
�0 /2, as shown
in Fig. 2.

When a vortex is present, Eqs. �17� and �18� still hold,
except that �f in these equations is replaced by the sum �f
+�v. Thermally agitated motion of vortices in the body of
the SQUID can produce flux noise via the term �v�rv� and
the time dependence of the vortex position rv. From Eq. �16�
we see that the sensitivity of Ic to vortex-position noise is
proportional to the magnitude of ��v�r�=�0�Gd=Jd
� ẑ�0 / Id. Thus Ic is most sensitive to vortex-position noise
when the vortices are close to the inner or outer edges of the
SQUID, where the magnitude of Jd is largest. These equa-
tions provide more accurate results for the vortex-position
sensitivity than the approximations given in Refs. 2 and 35.

So far, we have investigated how the general equations
governing the behavior of a dc SQUID are altered when the
contributions arising from line integrals of the current den-
sity are included. As we have shown in Ref. 31, these addi-
tional contributions are important when the Pearl length � is
an appreciable fraction of the linear dimensions of the
SQUID. We have found that the basic SQUID equations,
Eqs. �17� and �18�, are unaltered, except that the magnetic
flux �sometimes called21 �ext� generated in the SQUID’s cen-
tral hole by the externally applied field in the absence of a
vortex is replaced by the effective flux �f, given in Eq. �14�.
Similarly, we have shown that the total inductance L of the
SQUID has contributions both from the magnetic induction
�geometric inductance� and the associated supercurrent �ki-
netic inductance�. We also have shown in principle how to
calculate the effect of the return flux from a vortex at posi-
tion rv in the body of the SQUID, and we have found that the
effective flux arising from the vortex is �v�rv�, given in Eqs.
�15� and �16�. To demonstrate that all the above quantities
can be calculated numerically for arbitrary values of �, we
next examine the behavior of a model SQUID as described
in Sec. III.

III. LONG SQUID IN A PERPENDICULAR MAGNETIC
FIELD

Here we consider a long SQUID whose thickness d is less
than the London penetration depth � and whose topology is

like that of Fig. 1 but which is stretched to a large length l in
the y direction, as sketched in Fig. 3. SQUIDs of similar
geometry have been investigated experimentally in Refs. 14
and 36–39. We treat here the case for which the length l is
much larger than the width 2w of the body of the SQUID,
and we focus on the current and field distributions in and
near the left �−w	x	−a� and right �a	x	w� arms and
near the center of the SQUID, where to a good approxima-
tion the current density jy is uniform across the thickness and
depends only upon x, and the magnetic induction B=��A
depends only upon x and z. In the equations that follow, we
deal with the sheet-current density, whose component in the
y direction is Jy�x�= jy�x�d.

The self-field magnetic induction generated by Jy�x� is
BJ�x ,z�=��AJ�x ,z�, where AJ�x ,z�, the y component of the
vector potential obtained from Ampere’s law, is

AJ�x,z� =
�0

2�
� Jy�x��ln

C

�x − x��2 + z2

dx�. �23�

The integration here and in the following equations is carried
out only over the strips, and C is a constant with dimensions
of length remaining to be determined. In the presence of a
perpendicular applied field Ba= ẑBa=��Af, the total vector
potential is A=AJ+Af, where Af= ŷBax.

A. Formal solutions

We now use the approach of Ref. 40 to calculate the in-
plane magnetic-induction and sheet-current distributions ap-
pearing in Eqs. �11�–�14� in Sec. II. For all of these contri-
butions we shall take into account the in-plane �z=0� self-
field contribution AJ�x�=AJ�x ,0� to the y component of the
vector potential, where

AJ�x� =
�0

2�
� Jy�x��ln

C

	x − x�	
dx�. �24�

We first examine the equal-current case and consider the
contributions BI�x�, the z component of BI�x�, and JI�x�, the
y component of JI�x�, due to equal currents I /2 in the left
and right sides of the SQUID. Since JI�−x�=JI�x�, the corre-
sponding y component of the vector potential is also a sym-

FIG. 2. Ic /2I0 vs �f /�0, calculated from Eqs. �17� and �18�, for
�LI0 /�0=0, 1, 2, 3, 4, and 5 �bottom to top�.

FIG. 3. Sketch of central portion of the long SQUID considered
in Sec. III.
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metric function of x: AI�−x�=AI�x�, where the subscripts I
refer to the equal-current case. There are no flux quanta be-
tween the strips ��I=0�, and the second term in the brackets
on the right-hand side of Eq. �1� vanishes; ��0 /2����=0.
However, the constant C must be chosen such that JI�x�=
−AI�x� /�0� in the superconductor. Combining this equation
with Eq. �24�, making use of the symmetry JI�−x�=JI�x�, and
noting that I=2�a

wJI�x�dx, we obtain

I

2�
ln

b

C
= �

a

w � 1

2�
ln

b2

	x2 − x�2	
+ ���x − x���JI�x��dx�

�25�

for a	x	w. Here b can be chosen to be any convenient
length, such as the length l or w, but not C. We now define
the inverse integral kernel Ksy�x ,x�� for the symmetric-
current case via

�
a

w

Ksy�x,x��� 1

2�
ln

b2

	x�2 − x�2	
+ ���x� − x���dx�

= ��x − x�� . �26�

Applying this kernel to Eq. �25�, we obtain

JI�x� =
I

2�
ln� b

C
��

a

w

Ksy�x,x��dx�. �27�

Since I=2�a
wJI�x�dx, we find

ln� b

C
� = ���

a

w �
a

w

Ksy�x,x��dx dx�, �28�

such that

JI�x� =
I

2
�

a

w

Ksy�x,x��dx���
a

w �
a

w

Ksy�x�,x��dx�dx�.

�29�

For a
x
w, the stream function is

GI�x� =
2

I
�

a

x

JI�x��dx�, �30�

and for −w
x
−a, GI�−x�=−GI�x�. The corresponding z
component of the magnetic induction BI�x� can be obtained
from the Biot-Savart law or, since BI�x�=dAI�x� /dx, from
Eq. �24�. Note that BI�−x�=−BI�x�. Although the kernel
Ksy�x ,x�� depends upon b, we find numerically that JI�x� and
BI�x� are independent of b.

We next examine the circulating-current case and con-
sider the contributions Bd�x�, the z component of Bd�x�, and
Jd�x�, the y component of Jd�x�, due to a circulating current
Id; the current in the y direction on the right side of the
SQUID is I2= Id and that on the left side is I1=−Id. The
vector potential is still given by Eq. �24�, except that we add
subscripts d. However, since Jd�−x�=−Jd�x�, the vector po-
tential is now an antisymmetric function of x; Ad�−x�
=−Ad�x�. The circulating current is generated by the fluxoid
�d �see Eq. �13�� associated with a nonvanishing gradient of

the phase � around the loop. The second term inside the
brackets on the right-hand side of Eq. �1�, ��0 /2����, is
−ŷ�d /2l for a	x	w and ŷ�d /2l for −w	x	−a. Thus,
Jd�x�=−�Ad�x�−�d /2l� /�0� for a	x	w. Combining this
equation with that for Ad�x�, noting that the inductance of the
SQUID is L=�d / Id, and making use of the symmetry Jd
�−x�=−Jd�x�, we obtain

LId

2l
= �0�

a

w � 1

2�
ln� x + x�

x − x�
� + ���x − x���Jd�x��dx�

�31�

for a	x	w. We now define the inverse integral kernel
Kas�x ,x�� for the asymmetric-current case via

�
a

w

Kas�x,x��� 1

2�
ln� x� + x�

x� − x�
� + ���x� − x���dx� = ��x − x�� .

�32�

Applying this kernel to Eq. �31� and noting that Id
=�a

wJd�x�dx, we obtain

Jd�x� = �Id�
a

w

Kas�x,x��dx� �33�

and

L = 2��0l , �34�

where

� = 1��
a

w �
a

w

Kas�x,x��dx dx� �35�

is a dimensionless function of a, w, and �, which we calcu-
late numerically in the next section. For a
x
w, the stream
function is

Gd�x� =
1

Id
�

a

x

Jd�x��dx�, �36�

and for −w
x
−a, Gd�−x�=Gd�x�.
In this formulation, as in Ref. 31, L=Lm+Lk is the total

inductance. The geometric inductance contribution Lm
=2Em/ Id

2, where Em= l�a
wJd�x�Ad�x�dx is the stored magnetic

energy, and the kinetic contribution Lk=2Ek / Id
2, where Ek

=�0�l�a
wJd

2�x�dx is the kinetic energy of the supercurrent,
can be calculated using Eq. �33� from31,41,42

Lm =
�0l

�Id
2�

a

w �
a

w

ln� x + x�

x − x�
�Jd�x�Jd�x��dx dx�, �37�

Lk =
2�0l�

Id
2 �

a

w

Jd
2�x�dx =

2�0l�

�w − a�

Jd

2�

Jd�2 , �38�

where the angular brackets 
 � denote averages over the film
width. We can show that Lm+Lk=L with the help of Eqs.
�32� and �35�.

The z component of the magnetic induction Bd�x� gener-
ated by Jd�x� can be obtained from the Biot-Savart law, or,
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since Bd�x�=dAd�x� /dx, from Eq. �24�. Note that Bd�−x�
=Bd�x�.

When l
w, the magnetic moment in the z direction gen-
erated by the circulating current Id is �to lowest order in w / l�

md = 2l�
a

w

xJd�x�dx , �39�

where the factor 2 accounts for the fact43 that the currents
along the y direction and those along the x direction at the
ends �U turn� give exactly the same contribution to md, even
in the limit l→�. To next higher order in w / l one has to
replace l in Eq. �39� by l− �w−a�q, where �w−a�q /2 is the
distance of the center of gravity of the x-component of the
currents near each end from this end. For a single strip of
width w−a, one has, e.g., q=1/3 for the Bean critical state
�with rectangular current stream lines� and q=0.47 for ideal
screening ���w�.44

We next examine flux focusing. As discussed in Sec. II, to
calculate the effective area of the slot, we need to calculate
the fields produced in response to a perpendicular applied
magnetic induction Ba, subject to the condition that no cur-
rent flows through either junction. Since this is equivalent to
having both junctions open circuited, the problem reduces to
finding the fields produced in the vicinity of a pair of long
superconducting strips connected by a superconducting link
at only one end, i.e., when the slot of width 2a between the
two strips is open at one end. However, the desired fields

may be regarded as the superposition of the solutions of two
separate problems when the slot has closed ends: �a� the
fields generated in response to Ba, when �=0 �the zero-
fluxoid case� and a clockwise screening current flows around
the slot �second term on the right-hand side of Eq. �41� be-
low�, and �b� the fields generated in the absence of Ba, when
flux quanta in the amount of �f are in the slot and a coun-
terclockwise screening current flows around the slot �first
term on the right-hand side of Eq. �41��. The desired flux-
focusing solution is obtained by setting the net circulating
current equal to zero.

The equations describing the fields in the flux-focusing
case are derived as follows. The z component of the net
magnetic induction Bf�x� is the sum of Ba and the self-field
Bsf�x� generated by Jf�x�. The vector potential Ay�x� is the
sum of Bax, which describes the applied magnetic induction,
and the self-field contribution given by Eq. �24� but with
subscripts f. Since Jf�−x�=−Jf�x�, the vector potential is
again an antisymmetric function of x; Af�−x�=−Af�x�. The
fluxoid �f �see Eq. �14�� contributes a nonvanishing gradient
of the phase � around the loop, such that the second term
inside the brackets on the right-hand side of Eq. �1�,
��0 /2����, is −ŷ�f /2l for a	x	w and ŷ�f /2l for −w
	x	−a. Equation �1� yields Jf�x�=−�Bax+Af�x�
−�f /2l� /�0� for a	x	w. Combining this equation with
that for Af�x� �Eq. �24��, making use of the symmetry Jf

�−x�=−Jf�x�, and introducing the effective area via �f

=BaAeff �see Sec. II�, we obtain

Ba�Aeff − 2lx�/2l = �0�
a

w � 1

2�
ln� x + x�

x − x�
� + ���x − x���Jf�x��dx� �40�

for a	x	w. We again use the inverse integral kernel
Kas�x ,x�� for the asymmetric-current case �Eq. �32�� to ob-
tain

Jf�x� =
Ba

�0
�

a

w �Aeff

2l
− x��Kas�x,x��dx�. �41�

The effective area of the SQUID Aeff is found from the con-
dition that the net current around the loop is zero
��a

wJf�x�dx=0�, which yields

Aeff = 2�l�
a

w �
a

w

x�Kas�x,x��dx dx�. �42�

For a
x
w, the stream function is

Gf�x� = �
a

x

Jf�x��dx�, �43�

and for −w
x
−a, Gf�−x�=Gf�x�. The spatial distribution
of the resulting z component of the in-plane magnetic induc-
tion is given by Bf�x�=Ba+Bsf�x�, where Bsf�x� can be ob-

tained from the Biot-Savart law or by substituting Jf�x� into
Eq. �24� and making use of Bsf�x�=dAf�x� /dx. Note that
Bf�−x�=Bf�x�. The resulting magnetic moment mf in the z
direction can be calculated by replacing Jd by Jf in Eq. �39�.

In the next section we also present numerical results for
field and current distributions in the zero-fluxoid case, in
which I=0, �v=0, and the effective flux is zero: �=�d
+�f=0. Such a case could be achieved by short-circuiting
the Josephson junctions in Fig. 1, cooling the device in zero
field such that initially �=0, and then applying a small per-
pendicular magnetic induction Ba. A circulating current J�x�,
given by the second term on the right-hand side of Eq. �41�,
would spontaneously arise in order to keep �=0, as in the
Meissner state.

B. Numerical solutions

In the previous section we have presented formal solu-
tions for the sheet-current density Jy�x� in Eqs. �29�, �33�,
and �41�, which are expressed as integrals involving the
geometry-dependent inverse kernels Ksy�x ,x�� and Kas�x ,x��.
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As in Ref. 31 for thin rings, these integrals are evaluated on
a grid xi �i=1,2 , . . . ,N� spanning only the strip �but avoiding
the edges, where the integrand may have infinities�, a	 	xi	
	w, such that for any function f�x� one has �a

wf�x�dx
=�i=1

N wif�xi�. Here wi are the weights, approximately equal
to the local spacing of the xi; the weights obey �i=1

N wi=w
−a. We have chosen the grid such that the weights wi are
narrower and the grid points xi more closely spaced near the
edges a and w, where Jy�x� varies more rapidly. We have
accomplished this by choosing some appropriate continuous
function x�u� and an auxiliary discrete variable ui� i− 1

2 , such
that wi=x��ui��u2−u1�. We can choose x�u� such that its de-
rivative x��u� vanishes �or is reduced� at the strip edges to
give a denser grid there. By choosing an appropriate substi-
tution function x�u� one can make the numerical error of this
integration method arbitrarily small, decreasing rapidly with
any desired negative power of the grid number N, e.g., N−2

or N−3.
For the equal-current case, Eq. �25� becomes

I

2�
ln

b

C
= �

j=1

N

�wjQij
sy + ��ij�JI�xj� , �44�

where �ij =0 for i� j, �ii=1, and

Qij
sy =

1

2�
ln

b2

	xi
2 − xj

2	
, i � j ,

Qii
sy =

1

2�
ln

�b2

xiwi
. �45�

The optimum choice of the diagonal term Qii
sy �i.e., with 	xi

2

−xj
2	 replaced by xiwi /� for i= j, which reduces the numeri-

cal error from order N−1 to N−2 or higher depending on the

grid� is discussed in Eq. �3.12� of Ref. 43 for strips and in
Eq. 18 of Ref. 31 for disks and rings. The superscript “sy” is
a reminder that this is for a symmetric current distribution
�JI�−x�=JI�x��. Defining Kij

sy= �wjQij
sy+��ij�−1, such that

�
k=1

N

Kik
sy�wjQkj

sy + ��kj� = �ij , �46�

and applying it to Eq. �44�, we obtain

JI�xi� =
I

2�
ln� b

C
��

j=1

N

Kij
sy. �47�

Since I=2�i=1
N wiJI�xi�, we find

ln� b

C
� = ���

i=1

N

�
j=1

N

wiKij
sy, �48�

such that

JI�xi� =
I

2�
j=1

N

Kij
sy��

k=1

N

�
l=1

N

wkKkl
sy. �49�

It is remarkable that although the parameter b appears in Eq.
�45�, the final result for JI�xi� in Eq. �49� does not depend
upon b. The stream function GI�x� can be evaluated as45

GI�xi� = �
j=1

i

�
k=1

N

wjKjk
sy��

l=1

N

�
m=1

N

wlKlm
sy . �50�

Shown in Fig. 4 are plots of JI�x�, GI�x�, and the correspond-

FIG. 4. Profiles of the sheet current JI�x�, Eq. �49�, stream func-
tion GI�x�, Eq. �50�, and magnetic induction BI�x� for the equal-
current case �Ba=0, I1= I2= I /2�0�. Shown are the examples a /w
=0.3 with � /w=0 �solid lines with dots�, 0.03 �dot-dashed lines�,
0.1 �dashed lines�, 0.3 �dotted lines�, and 1 �solid lines�. Here B /�0

and J are in units I2 /w and G in units I2.

FIG. 5. Magnetic-field lines in the equal-current case for a /w
=0.1 and � /w=0, 0.01, 0.1, and 50 �or ��.
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ing magnetic induction BI�x� vs x for a /w=0.3 and various
values of � /w=0, 0.03, 0.1, 0.3, and 1. The curves for �
=0 exactly coincide with the analytic expressions of Appen-
dix A. The magnetic-field lines for this case are depicted in
Fig. 5.

For the circulating-current case, Eq. �31� becomes

LId

2l
= �0�

j=1

N

�wjQij
as + ��ij�Jd�xj� , �51�

where

Qij
as =

1

2�
ln

xi + xj

	xi − xj	
, i � j ,

Qii
as =

1

2�
ln

4�xi

wi
. �52�

The superscript “as” is a reminder that this is for an asym-
metric current distribution �Jd�−x�=−Jd�x��. Defining Kij

as

= �wjQij
as+��ij�−1, such that

�
k=1

N

Kik
as�wjQkj

as + ��kj� = �ij , �53�

applying it to Eq. �51�, and noting that Id=�i=1
N wiJd�xi�, we

obtain

Jd�xi� = �Id�
j=1

N

Kij
as �54�

and

L = 2��0l , �55�

where

� = 1��
i=1

N

�
j=1

N

wiKij
as. �56�

The stream function Gd�x� can be evaluated as45

Gd�xi� = ��
j=1

i

�
k=1

N

wjKjk
sy. �57�

Shown in Fig. 6 are plots of Jd�x�, Gd�x�, and Bd�x� vs x
for a /w=0.3 and various values of � /w. Note that these
curves look similar to those in Fig. 4, but they all have op-
posite parity, as can be seen from the different profiles B�x�
near x=0. The magnetic-field lines for this case are shown in
Fig. 7.

As discussed in Sec. II, when a vortex is present in the
region a	 	x		w, the sensitivity of the SQUID’s critical cur-
rent Ic is proportional to the magnitude of d�v /dx
=�0dGd /dx=�0Jd�x� / Id. From Fig. 6 we see that when �
�w, this sensitivity is greatly enhanced when the vortex is
close to the edges a and w but that when ��w, the sensi-
tivity is nearly independent of position.

Shown as the solid curves in Fig. 8�a� are plots of the
inductance L vs a /w for various values of � /w=0, 0.03, 0.1,
0.3, and 1. The solid curves in Fig. 9�a� show the same L vs
� /w �range 0.0045 to 2.2� for several values of a /w=0.01,
0.1, 0.4, 0.8, 0.95, and 0.99.

The geometric and kinetic contributions Lm and Lk can be
calculated separately from Eqs. �37� and �38�,

FIG. 6. Profiles of Jd�x�, Eq. �54�, Gd�x�, Eq. �57�, and magnetic
induction Bd�x� for the circulating-current case �Ba=0, −I1= I2�0�.
Shown are the examples a /w=0.3 with � /w=0 �solid lines with
dots�, 0.03 �dot-dashed lines�, 0.1 �dashed lines�, 0.3 �dotted lines�,
and 1 �solid lines�. B /�0 and J are in units I2 /w and G in units I2.

FIG. 7. Magnetic-field lines in the circulating-current case for
a /w=0.1 and � /w=0, 0.01, 0.1, and 50 �or ��.
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Lm =
2�0l

Id
2 �

i=1

N

�
j=1

N

wiwjQij
asJd�xi�Jd�xj� , �58�

Lk =
2�0l�

Id
2 �

i=1

N

�
j=1

N

wiJd
2�xi� , �59�

using Eqs. �54� and �56�. We can show that Lm+Lk=L using
the property of inverse matrices that M ·M−1=M−1 ·M=I,
where I is the identity matrix.

Shown as solid curves in Fig. 8�b� are Lm and Lk vs a /w.
For �=0, when Lk=0, L=Lm exactly coincides with Eq.
�A10�, which may be approximated by Eq. �A11� for a /w
	0.7 �open circles in Fig. 8�a�� and by Eq. �A12� for a /w
�0.7 �open squares in Fig. 8�a��. The dotted curves in Fig.
8�b� for Lm and Lk are those of Eqs. �C3� and �C6� in the
limit � /w→�, when the circulating current density is uni-

form. The dotted curves in Fig. 8�a� are obtained from L
=Lm+Lk using the approximations of Eqs. �C3� and �C6�;
they are an excellent approximation to L for � /w�0.03 ex-
cept for small values of a /w. Improved agreement for small
values of � /w and a /w is shown by the dashed curves in
Fig. 8�a�, which show the approximation of Eq. �B7� for L,
and in Fig. 8�b�, which show the approximation of Eq. �B12�
for Lk.

The solid curves in Fig. 9�b� show Lm and Lk vs � /w. The
geometric inductance Lm depends upon � but only weakly,
varying slowly between its �=0 asymptote �Eq. �A10�, hori-
zontal dot-dashed line� and its �=� asymptote �Eq. �C3�,
horizontal dotted line�. For larger values of a /w, Lm is nearly
independent of �. On the other hand, the kinetic inductance
Lm is approximately proportional to � /w. The straight dotted
lines in Fig. 9�b�, calculated from the large-� approximation
given in Eq. �C6�, are a good approximation to Lm except for
small values of � /w and a /w. The dotted curves in Fig. 9�a�

FIG. 8. �a� Solid curves show the inductance L=Lm+Lk �Eq.
�55�� vs a /w calculated for � /w=0, 0.03, 0.1, 0.3, and 1. See the
text for descriptions of analytic approximations shown by the open
circles, open squares, dots, and dashes. �b� Solid curves show the
geometric inductance Lm �Eq. �58�� vs a /w for � /w=0, 0.1, and 1
and the kinetic inductance Lk �Eq. �59�� vs a /w for � /w=0.03, 0.1,
0.3, and 1. See the text for descriptions of analytic approximations
shown by the dotted and dashed curves.

FIG. 9. �a� Solid curves show the inductance L=Lm+Lk �Eq.
�55�� vs � /w for a /w=0.01, 0.1, 0.4, 0.8, 0.95, and 0.99. See the
text for descriptions of analytic approximations shown by the dotted
and dashed curves. �b� Solid curves show both the geometric induc-
tance Lm �Eq. �58�� and the kinetic inductance Lk �Eq. �59�� vs � /w
for a /w=0.01, 0.1, 0.4, 0.8, 0.95, and 0.99. See the text for descrip-
tions of analytic approximations shown by the dotted, dashed, and
dot-dashed curves.
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are obtained from L=Lm+Lk using the approximations of
Eqs. �C3� and �C6�. Improved agreement for small values of
� /w and a /w is shown by the dashed curves in Fig. 9�a�,
which show the approximation of Eq. �B7� for L, and in Fig.
9�b�, which show the approximation of Eq. �B12� for Lk.

In Eq. �3� of Ref. 41, Yoshida et al. derived an approxi-
mate expression for the kinetic inductance when � /w�1.
We have found that their expression for Lk is not an accurate
approximation to our exact numerical results. To eliminate
the logarithmic divergences due to the inverse square-root
dependence of the current density near the edges, Yoshida et
al. followed an approach used by Meservey and Tedrow,42

and chose a cutoff length of the order of d, the film thick-

ness. When d	�, however, this approach cannot be correct,
because the equations describing the fields and currents in
superconducting strips contain only the two-dimensional
screening length �=�2 /d. The cutoff length therefore must
instead be chosen to be of the order of �, as we have done in
Appendix B.

The magnetic moment in the z direction generated by the
circulating current is, from Eq. �39�,

md = 2�
i=1

N

wixiJd�xi� . �60�

As shown in Fig. 10, this magnetic moment vanishes very
slowly when the gap width and � go to zero, a /w→0 and
� /w→0. This can be explained by the fact that for �=0 and
a	x�w one has Jd�x��1/x �Eq. �A5��. The contribution of
these small x to md, Eq. �60�, stays finite due to the factor x,
but the total current Id, to which md is normalized, diverges
when a /w→0, thus suppressing the plotted ratio md / Id. In-
terestingly, the curves in Fig. 10 coincide with those in Fig.
13; see below. Expressions for md in the limits � /w→0 and
� /w→� are given in Eqs. �A13� and �C7�.

For the flux-focusing case, Eq. �40� becomes

Ba�Aeff/2l − xi� = �0�
j=1

N

�wjQij
as + ��ij�Jf�xj� . �61�

Applying Eq. �53�, we obtain

FIG. 10. The magnetic moment md for the circulating-current
case �Ba=0, −I1= I2= Id�0� plotted versus a /w for various values
of � /w in units 2wlId. These curves coincide with those in Fig. 13
below.

FIG. 11. Profiles Jf�x�, Eq. �62�, Gf�x�, Eq. �64�, and magnetic
induction Bf�x� for the flux-focusing case �Ba�0, I1= I2=0�. Shown
are the examples a /w=0.3 with � /w=0 �solid lines with dots�, 0.03
�dot-dashed lines�, 0.1 �dashed lines�, 0.3 �dotted lines�, and 1 �solid
lines�. B and �0J are in units Ba, and G in units wBa /�0.

FIG. 12. Magnetic-field lines in the flux-focusing case for a /w
=0.1 and � /w=0, 0.01, 0.1, and 0.5.
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Jf�xi� =
Ba

�0
�Aeff

2l
�
j=1

N

Kij
as − �

j=1

N

Kij
asxj� , �62�

where, since �i=1
N wiJf�xi�=0, the effective area is

Aeff = 2�l�
i=1

N

�
j=1

N

wiKij
asxj . �63�

The stream function Gf�x� can be evaluated as45

Gf�xi� = �
j=1

i

wjJf�xj� . �64�

Shown in Fig. 11 are plots of the flux-focusing Jf�x�,
Gf�x�, and Bf�x� vs x for a /w=0.3 and � /w=0, 0.03, 0.1,
0.3, and 1. The first term in Eq. �62� equals the circulating-
current sheet-current density, Eq. �54�, with appropriate
weight factor such that the total circulating current vanishes,
I1= I2=0. The corresponding magnetic-field lines are de-
picted in Fig. 12. Shown in Figs. 13 and 14 are plots of the
effective area Aeff�a /w ,� /w� versus a /w and � /w, respec-
tively, in units of the maximum possible area 2wl. In the
limit � /w→0, Aeff is given by Eq. �A19�, and when � /w
→�, Aeff= l�w+a�. Note in Fig. 14 that Aeff increases with
increasing �, particularly for small gap widths 2a. Flux fo-
cusing is reflected by the fact that for small a /w→0 the
effective area Aeff of the gap tends to a constant, except in the
limit �→0, where it vanishes very slowly, Aeff /2wl

FIG. 13. The effective area Aeff, Eq. �63�, plotted versus the gap
half-width a /w for several values of � /w=0, 0.001, 0.003, 0.01,
0.03, 0.1, 0.3, and 10. The lower right curves show the same data
shifted and stretched along a /w. The dots show the exact result
�A19� in the limit � /w→0. For � /a�10 one has Aeff /2wl��1
+a /w� /2, Appendix C. These curves coincide with Fig. 10 since
Aeff=md / Id.

FIG. 14. The effective area Aeff, Eq. �63�, plotted versus � /w
�range 7�10−6 to 14� for several values of a /w=0, 0.001, 0.003,
0.01, 0.03, 0.1, and 0.2. Same data as in Fig. 13.

FIG. 15. The minimum of the magnetic induction in the flux-
focusing case, Bf�0�=Bf�x=0�, referred to the applied field Ba and
plotted versus the half gap width a /w. Top: The ratio Bf�x=0� /Ba,
tending to unity for a /w→1 and for � /w
1, and diverging for
a /w→0 when �=0. Bottom: The same ratio multiplied by a /w to
avoid this divergence and fit all data into one plot. The lower right
plot depicts the small-gap data two times enlarged along the ordi-
nate, and shifted and five times stretched along the abscissa. The
circles show the approximation Bf�0� /Ba��w /a� / ln�4w /a� good
for a /w
0.3 �Ref. 46�.
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��� /2� / ln�4w /a� �Eq. �A19��. When a /w→0, the enhance-
ment factor Aeff /2al→� and thus diverges even for �=0. In
the limit a /w�1, Aeff�0,� /w� tends to a universal function
�see Fig. 14�. Interestingly, Figs. 13 and 10 show identical
curves; this is because the identity Aeff=md / Id holds for all
values of a /w and � /w, as proved in general in Sec. II.

Figures 15 and 16 show the minimum of the magnetic
induction in the flux-focusing case, Bf�0�=Bf�x=0� �see Fig.
11�, plotted versus a /w and � /w, respectively. The ratio
Bf�0� /Ba�1 tends to unity for a /w→1 and for � /w
1,
and it diverges for a /w→0 when �=0. The curve for �
=0 exactly coincides with the analytic expression Bf�0� /Ba

=wE�k�� /aK�k�� obtained from Eq. �A17�. For a /w�1 this
yields Bf�0� /Ba��w /a� / ln�4w /a�, which is a good approxi-
mation for 0	a /w
0.3.46 The magnetic moment mf for the
flux-focusing case, calculated from Eq. �60� but with Jd�xi�

replaced by Jf�xi�, is shown in Fig. 17. Expressions for mf in
the limits � /w→0 and � /w→� are given in Eqs. �A20�
and �C9�

Shown in Fig. 18 are profiles for the zero-fluxoid case
with plots of J�x� and the corresponding B�x� generated by
an applied magnetic induction Ba�0 when the junctions are

FIG. 16. The minimum field Bf�0�=Bf�x=0� for the flux-
focusing case as in Fig. 15 but plotted versus � /w �range 7
�10−6 to 14� for several values of a /w=0, 0.001, 0.003, 0.01, 0.03,
0.1, and 0.2.

FIG. 17. The magnetic moment mf for the flux-focusing case
plotted versus a /w for various values of � /w in units w2lBa /�0.

FIG. 18. Profiles of the sheet-current density J�x� �second term
in Eq. �62�� and magnetic induction B�x� generated when a perpen-
dicular magnetic induction Ba is applied in the zero-fluxoid case
when �=0, I1=−I2�0, and I=0. Shown are the examples a /w
=0.3 with � /w=0 �solid lines with dots�, 0.03 �dot-dashed lines�,
0.1 �dashed lines�, 0.3 �dotted lines�, and 1 �solid lines�. B and �0J
are in units Ba.

FIG. 19. Magnetic-field lines in the zero-fluxoid case �=0, Ba

�0, and I=0 for a /w=0.1 and � /w=0, 0.01, 0.1, and 0.5.
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short-circuited such that �=0 and I1=−I2�0; for compari-
son see analogous profiles in Sec. 2.5 of Ref. 47 for two
parallel strips and in Sec. IV of Ref. 48 and Sec. 4 of Ref. 31
for rings. That the current density J�x� in the zero-fluxoid
case is given by the second term on the right-hand sides of
Eqs. �41� and �62� can be seen by setting �f=BaAeff=0 in
Eqs. �40�, �41�, �61�, and �62�. Depicted in Fig. 18 are the
examples a /w=0.3 with � /w=0, 0.03, 0.1, 0.3, and 1. Fig-
ure 19 shows the magnetic field lines for this case and Fig.
20 the magnetic moment m. Expressions for J, B, and m for
the zero-fluxoid case in the limits � /w→0 and � /w→� are
given in Appendices A and C.

IV. SUMMARY

In Sec. II of this paper we have presented general equa-
tions governing the static behavior of a thin-film dc SQUID
for all values of the Pearl length �=�2 /d, where the London
penetration depth � is larger than d, the film thickness. The
SQUID’s critical current Ic depends upon the effective flux
�, which is the sum of the magnetic flux up through a con-
tour surrounding the central hole and a term proportional to
the line integral of the current density around this contour.
For a symmetric SQUID there are three important contribu-
tions to �: a circulating-current term �d, a vortex-field term
�v, and a flux-focusing term �f, all of which depend upon
�. Since � is a function of temperature, an important con-
sequence is that all of the contributions to � are temperature
dependent.

The circulating-current term �d can be expressed in terms
of the SQUID inductance L and the circulating current Id via
�d=LId. The SQUID inductance has two contributions, L
=Lm+Lk, where the first term is the geometric inductance
�associated with the energy stored in the magnetic field� and
the second is the kinetic inductance �associated with the ki-
netic energy of the circulating supercurrent�. Both contribu-
tions are functions of �, since they both depend on the spa-

tial distribution of the current density. However, Lm depends
only weakly upon �, because for the same circulating cur-
rent Id, the energy stored in the magnetic field does not vary
greatly as � ranges from zero to infinity. On the other hand,
because the kinetic energy density is proportional to �, Lk is
also nearly proportional to �, with deviations from linearity
occurring only for small values of � /w.

The vortex-field term can be written as �v=�0Gd, where
Gd is a dimensionless stream function describing the circu-
lating sheet-current density Jd. Roughly speaking, when � is
small, Ic is most strongly dependent upon the vortex position
when the vortex is close to the edges of the film, but when �
is large, Ic is equally sensitive to the vortex position wher-
ever the vortex is. Recent experiments49 have used the rela-
tionship �v=�0Gd to determine the vortex-free sheet-current
density Jd�x ,y� from vortex images obtained via low-
temperature scanning electron microscopy.6,9 The experi-
mental data obtained in magnetic fields up to 40 �T are in
excellent agreement with numerical calculations of Jd�x ,y�,
confirming the validity of the above relationship, even in the
presence of many �up to 200� vortices in the SQUID washer.

The flux-focusing term can be expressed as �f=BaAeff,
where Ba is the applied magnetic induction and Aeff is the
effective area of the central hole of the SQUID. Although
Aeff is primarily determined by the dimensions of the
SQUID, it also depends upon the value of �.

To illustrate the � dependence of the above quantities, in
Sec. III of this paper we analyzed in detail the behavior of a
long SQUID whose central region resembles a coplanar
stripline. We numerically calculated the profiles of the sheet-
current density, stream function, and magnetic induction in
the equal-current, circulating-current, flux-focusing, and
zero-fluxoid cases for various representative values of �. We
presented plots of the inductances L, Lm, and Lk, the effective
area Aeff, and the magnetic moments for these cases. Useful
analytic approximations are provided for the � /w→0 limit
in Appendix A, for small � /w and a /w in Appendix B, and
for the � /w→� limit in Appendix C.

We are in the process of applying the above theory to
square and circular SQUIDs, using the numerical method of
Ref. 50.
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APPENDIX A: THE LIMIT � /w=0

In the ideal-screening limit � /w=0, the y component of
the sheet-current density in the strips �a	 	x		w� for the
equal-current case is47

JI�x� =
I

�

	x	
��x2 − a2��w2 − x2��1/2 , �A1�

and the z component of the magnetic induction in the plane
z=0 of the strips is

FIG. 20. The magnetic moment m for the zero-fluxoid case �
=0, Ba�0, and I=0 plotted versus a /w for various values of � /w
in units w2lBa /�0. At a=�=0 one has −m=�w2lBa /�0.
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BI�x�

=�−
�0I

2�

x

��x2 − a2��x2 − w2��1/2 , 	x	 � w , �A2�

0, a 	 	x	 	 w , �A3�
�0I

2�

x

��a2 − x2��w2 − x2��1/2 , 	x	 	 a , �A4��
and the constant C in Eqs. �24�, �25�, �27�, and �28� is C
=
w2−a2 /2.

For the circulating-current case, the y component of the
sheet-current density in the strips �a	 	x		w� in the limit
� /w=0 is47

Jd�x� =
2B0

�0

x

	x	
w2

��x2 − a2��w2 − x2��1/2 , �A5�

and the z component of the magnetic induction in the plane
z=0 of the strips is

Bd�x�

=�− B0
w2

��x2 − a2��x2 − w2��1/2 , 	x	 � w , �A6�

0, a 	 	x	 	 w , �A7�

B0
w2

��a2 − x2��w2 − x2��1/2 , 	x	 	 a , �A8��
where the parameter B0, the magnetic flux �d in the z direc-
tion in the slot, the circulating current Id, and the geometric
inductance Lm are related by

�d = LmId = 2B0lwK�k� �A9�

and

Lm = �0lK�k�/K�k�� , �A10�

where K�k� is the complete elliptic integral of the first kind
of modulus k=a /w and complementary modulus k�=
1−k2.
The geometric inductance is well approximated for small
a /w by

Lm = ���0l/2�/ln�4w/a� , �A11�

neglecting corrections proportional to a2 /w2, and for small
�w−a� /w by

Lm = ��0l/��ln�16/�1 − a2/w2�� , �A12�

neglecting corrections proportional to 1−a2 /w2. In the limit
that �=0, the kinetic inductance vanishes �Lk=0�, and the
inductance in Eq. �A10� becomes the total inductance: L
=Lm. The magnetic moment �see Eq. �39�� can be obtained
from Eqs. 13–16 of Ref. 47:

md = ��lw/K�k���Id. �A13�

For the flux-focusing case, the y component of the sheet-
current density in the strips �a	 	x		w� in the limit � /w
=0 is47

Jf�x� =
2Ba

�0K�k��
x

	x	
E�k��w2 − 2K�k��x2

��x2 − a2��w2 − x2��1/2 , �A14�

and the z component of the magnetic induction in the plane
z=0 of the strips is

Bf�x�

=�−
Ba

K�k��
E�k��w2 − 2K�k��x2

��x2 − a2��x2 − w2��1/2 , 	x	 � w , �A15�

0, a 	 	x	 	 w , �A16�
Ba

K�k��
E�k��w2 − 2K�k��x2

��a2 − x2��w2 − x2��1/2 , 	x	 	 a , �A17��
where E�k�� is the complete elliptic integral of the second
kind of complementary modulus k�=
1−k2 and modulus k
=a /w. The magnetic flux in the z direction in the slot is

�f = �Balw/K�k�� , �A18�

and the effective area Aeff of the slot is

Aeff = �f/Ba = �lw/K�k�� . �A19�

Note that Aeff=md / Id. The magnetic moment generated by
Jf�x� is

mf = − �l�w2 + a2 − 2w2E�k��/K�k���Ba/�0. �A20�

For the zero-fluxoid case, the y component of the sheet-
current density in the strips can be obtained from Sec. 2.5 of
Ref. 47:

J�x� = −
2Ba

�0

x

	x	
x2 − �1 − E�k�/K�k��w2

��x2 − a2��w2 − x2��1/2 . �A21�

The corresponding z component of the magnetic induction
is47

B�x�

=�Ba
x2 − �1 − E�k�/K�k��w2

��x2 − a2��x2 − w2��1/2 , 	x	 � w , �A22�

0, a 	 	x	 	 w , �A23�

Ba
�1 − E�k�/K�k��w2 − x2

��a2 − x2��w2 − x2��1/2 , 	x	 	 a . �A24��
The magnetic moment generated by J�x� is

m = − �l�2w2E�k�/K�k� − w2 + a2�Ba/�0. �A25�

APPENDIX B: BEHAVIOR FOR SMALL �

AND SMALL a

In this section we present some expressions for L, Lk, and
Lm that follow from approximating the circulating-current
distribution for small values of � and a.

When the slot is very narrow �a /w�1�, we approximate
the sheet-current density in the region a	x	w generated by
the fluxoid �d via
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Jd�x� = I0
w


�x2 − a2 + �2��w2 − x2 + �2�
, �B1�

where I0=2�d /��0l and � is a quantity of order �=�2 /d
determined as follows. When l→� and then a→0 and w
→�, an exact calculation yields for x�0

Jy�x� =
2�d

��0l�
�

0

� e−xt/�dt

t2 + 1
. �B2�

We find �0
bJy�x�dx= �2�d /��0l�ln��b /2�� when b
�,

where �=eC=1.781. . ., and C=0.577. . . is Euler’s constant.
From Eq. �B1� we find �0

bJd�x�dx= �2�d /��0l�ln�2b /��
when a=0 and ��b�w. Comparing these two integrals we
obtain �= �4/���=2.246�. Integrating Eq. �B1� from a to w
to obtain Id, we find

Id = I0
w


w2 + �2
�F��a,q� − F��w,q�� , �B3�

where F�� ,k� is the elliptic integral of the first kind and

�a = arcsin
 w2 − a2 + �2

w2 − a2 + 2�2 , �B4�

�w = arcsin
�


w2 − a2 + 2�2
, �B5�

q =
w2 − a2 + 2�2

w2 + �2 . �B6�

Expanding Eq. �B3� for a�w and ��w, using I0
=2�d /��0l, and neglecting terms of order a2 /w2 and �2 /w2,
we obtain

L = �d/Id = ���0l/2�/�ln�4w/�a + ��� − �/w� , �B7�

where �=2.246�. Note that Eq. �B7� reduces to Eq. �A11�
when �=0.

From Eq. �B1� we obtain the approximation

�
a

w

Jd
2�x�dx = I0

2 w

�w2 − a2 + �2�
�fa + fw� , �B8�

where

fa

= �
w


�2 − a2
tan−1 �w − a�
�2 − a2

a�w − a� + �2 , a 	 � , �B9�

w

a2 − �2

tanh−1 �w − a�
a2 − �2

a�w − a� + �2 , a � � , �B10��
fw =

w

w2 + �2

tanh−1 �w − a�
w2 + �2

w�w − a� + �2 . �B11�

Using Eqs. �B3� and �B8�, we obtain from Eq. �38�

Lk = 2�0l
�

w

�w2 + �2�
�w2 − a2 + 2�2�

�fa + fw�
�F��a,q� − F��w,q��2 ,

�B12�

where �=2.246�. Although our intention in using the ansatz
of Eq. �B1� initially was to obtain an improved approxima-
tion to Lk for small values of � and a, we see from Figs. 8�b�
and 9�b� that Eq. �B12� provides a reasonably good approxi-
mation for all values of � and a.

APPENDIX C: THE LIMIT � /w\�

In the weak-screening limit � /w→�, Ksy�x ,x��=�−1��x
−x��, the y component of the sheet-current density in the
strips �a	 	x		w� in the equal-current case is uniform, JI

= I /2�w−a�, the z component of the magnetic induction in
the plane of the strips obtained from the Biot-Savart law is

BI�x� =
�0I

4��w − a�
ln� �x − w��x + a�

�x + w��x − a�
� , �C1�

and the constant C in Eqs. �24�, �25�, �27�, and �28� is C
=w exp�−�� / �w−a��.

For the circulating-current case in the limit � /w→�,
Kas�x ,x��=�−1��x−x��, �=� / �w−a�, the y component of
the sheet-current density in the strips is again uniform, Jd
= Id / �w−a� for a	x	w, and the z component of the mag-
netic induction in the plane of the strips obtained from the
Biot-Savart law is

Bd�x� =
�0Id

2��w − a�
ln� x2 − w2

x2 − a2 � . �C2�

The geometric inductance is, from Eq. �37�

Lm =
�0l

��w − a�2�w2 ln� 4w2

w2 − a2�
− 2aw ln�w + a

w − a
� + a2 ln� 4a2

w2 − a2�� , �C3�

which is independent of �. Equation �C3� is well approxi-
mated for small a /w by

Lm = ��0l/���1 + 2a/w�ln 4, �C4�

neglecting corrections proportional to a2 /w2, and for small
�w−a� /w by

Lm = ��0l/���ln
2

1 − a/w
+

3

2
−

1

2
�1 − a/w�� , �C5�

neglecting corrections proportional to �1−a /w�2. From Eq.
�38� we obtain the kinetic inductance

Lk = 2�0l�/�w − a� . �C6�

When �
w, the total inductance L is dominated by the
kinetic inductance �Lk
Lm�, such that L�Lk. Since Jd is
uniform, the magnetic moment is easily found from Eq. �39�
to be

md = l�w + a�Id. �C7�
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For the flux-focusing case in the limit � /w→�,
Kas�x ,x��=�−1��x−x��, the y component of the sheet-current
density is Jf�x�=Ba�w+a−2x� /2�0� for a	x	w, the effec-
tive area is Aeff= l�w+a�=md / Id, and the z component of the
magnetic induction in the plane of the strips is Bf�x�=Ba

+Bsf�x�, where from the Biot-Savart law

Bsf�x� =
Ba

4��
��w + a�ln� x2 − w2

x2 − a2 �
+ 2x ln� �x + w��x − a�

�x − w��x + a�
� − 4�w − a�� . �C8�

The magnetic moment generated by Jf�x� in this limit is

mf = − �l�w − a�3/6���Ba/�0� . �C9�

For the zero-fluxoid case in the limit � /w→�, the ap-
plied field is only weakly screened, and the z component of
the magnetic flux density is nearly equal to the applied mag-
netic induction, B�x��Ba. The y component of the vector
potential is approximately given by A�x�=Bax, and the y
component of the induced sheet-current density, obtained
from Eq. �1� with �=0, is J�x�=−�Ba /�0��x. To the next
order of approximation, B�x�=Ba+Bs�x�, where the self-field
Bs is found from the Biot-Savart law

Bs�x� =
Ba

2��
�x ln� �x + w��x − a�

�x − w��x + a�
� − 2�w − a�� .

�C10�

The magnetic moment generated by J�x� in this limit is

m = − �2l�w3 − a3�/3���Ba/�0� . �C11�
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