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A correlated fermion system surrounding a finite cavity with virtual levels is considered. The pairing
properties are calculated and the influence of the cavity is demonstrated. To this end the Gell-Mann and
Goldberger formula is generalized to many-body systems. We find a possible enhancement of pairing tempera-
ture if the Fermi momentum times the cavity radius fulfills a certain resonance condition, which suggests an
experimental realization.
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Correlation effects in finite nanostructures are paid grow-
ing attention since it is hoped to exploit transport phenom-
ena. So far, most treatments concentrate on one-particle
properties like electron current and heat conduction through
such devices. The sophistication of experimental devices has
reached such a level that one can also anticipate the exploi-
tation of two-particle correlation effects in finite quantum
structures. The most prominent one in correlated many-body
systems is certainly the occurrence of pairing and supercon-
ductivity, which one can now study on quantum dots.

There is fast experimental progress on studying pairing
properties in such finite systems. If a finite system with dis-
crete levels is coupled to a continuum, a particle scattered on
the system can be trapped for a certain time in such levels,
forming Feshbach resonances. The condensation of pairs
near a Feshbach resonance has been observed1,2 analogously
to superconductivity. The fermion condensation using ultra-
cold atomic 6Li or 40K clouds confirmed that the BCS super-
fluid state has been reached.3,4 There is also clear experimen-
tal evidence for superfluidity in a resonantly interacting
Fermi gas5 which arises near a Feshbach resonance. Though
two-body physics does not allow the occurrence of bound
states there, the many-body effects allow such pairing for
fermionic atoms. Consequently there is a growing theoretical
activity6 with suggestions that even the Fulde-Ferrell-Larkin-
Ovchinnikov state might be observable due to spatially
modulated superfluid phases in atomic fermion systems.7

Though both fields, the transport in nanostructures and the
two-particle correlations like superconductivity in many-
body systems, are heavily explored separately, the combined
problem is rarely attacked.6 The most elaborate treatment has
been performed within a related problem of crystal fields8

and mechanisms of pair breaking.9 In this paper we want to
explore the pairing properties of the many-body system in
the presence of a finite nanostructure and will show how the
pairing and critical temperature are changed.

One can consider such finite quantum structures as a fixed
cavity relative to the much lighter electrons surrounding this
cavity. We will solve this problem of two-electron pairing in
their medium together with the cavity not in the Faddeev
language10 but by coupled-channel scattering theory11 in the
Gell-Mann and Goldberger formulation.12 This will result in

a formula of the total T-matrix of two interacting particles
with external interaction in terms of two separated problems:
�i� two particles interacting only with themselves and �ii� two
particles interacting only with an external potential. To the
author’s knowledge this treatment has not been extended
from two-particle scattering to many-particle correlations in
a surrounding medium. In the first part we extend therefore
the Gell-Mann and Goldberger formula to many-body sys-
tems with the help of Green’s functions analogously to the
derivation without medium.13 This formula is then solved in
the second part of the paper for specific model interactions
between the two electrons and between the electrons and the
cavity.

We will consider the many-body system as well described
by quasiparticles with energy �p and a momentum-dependent
distribution function fp. The cavity is assumed not to influ-
ence the overall homogeneous distribution of the medium.
Denoting the center-of-mass momentum of two particles
with capital letters, P= p1+ p2, and the difference momentum
with small letters p= �p1− p2� /2, the free retarded two-
particle Green’s function describing two freely moving qua-
siparticle in a medium reads

�pP�G0��,t��p�P�� = �2���6��P − P����p − p��

�
1 − fP/2+p − fP/2−p

�� − �P/2+p − �P/2−p + i�
, �1�

with an infinitesimal � ensuring the causality and retarded
character of the function. The Fourier transform �� of the
difference time between the beginning and the end of the
propagation describes the energy of possible excitations in
this system. The quasiparticle distribution functions fp and
energies �p in �1� represent the effect of the correlated me-
dium surrounding the two particles.

Now we consider the interactions V01 and V02 of the two
particles with the external cavity. The correlated two-particle
Green’s function in ladder approximation is then given by
the integral equation
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G1 = G0 + G0�V01 + V02�G1, �2�

where we used operator notation understanding products as
integration about intermediate variables. The interaction of
both particles with the cavity is collected in a first channel
V1=V01+V02 and the interaction between the two particles is
described by a second channel V2=V12. Then we can define
channel Green’s functions

Gi��� = G0��� + Gi���ViG0��� �3�

corresponding to the ith channel T-matrix Ti���=Vi

+ViGi���Vi. The total T-matrix can be written as a sum of
auxiliary T matrices

T��� = �
i

Vi + �
i

ViG0���T��� = �
i

Ti���� , �4�

which read

Ti� = Vi + ViG0T = Ti��� + �
j�i

Ti���G0���T j���� , �5�

where we used �3� and ViGi=TiG0 to derive the equality.
Introducing T1� into T2� in �5� leads to T2�=T2�1+G0T1�
+T2G0T1G0T2� with the help of which we define

Tab � T2��1 + G0T1�−1 = T2 + T2G0T1G0Tab. �6�

Using again �3� one obtains

�1 − V2G1�−1V2 = �1 − T2G0V1G1�−1T2 �7�

and the right hand side of �7� is just the definition of Tab from
�6� using once more T1G0=V1G1. Therefore we see that from
�7� the equation for Tab follows,

Tab = V2 + V2G1Tab. �8�

The total T-matrix �4� can then be written with �5� as

T = T1 + �1 + T1G0�T2� = T1 + �1 + T1G0�Tab�1 + G0T1� .

�9�

This formula together with �8� and �2� is the Gell-Mann and
Goldberger formulation now generalized to correlated many-
body systems via �1�. The original Gell-Mann and Gold-
berger formula is exact for the scattering of two particles in
the presence of a third potential and is equivalent to the
Faddeev equation. Our generalization to many-body systems
treats the correlation effects on the level of the ladder ap-
proximation.

The strategy is to determine first the correlated two-
particle Green’s function in the presence of the cavity �2� in
order to obtain the correlated two-particle T-matrix �8� in the
two-particle channel. The total T-matrix is then constructed
from �9�.

Since we are interested in the pairing properties we will
search for the onset of pairing as a critical temperature where
the correlated T-matrix �8� has poles at twice the chemical
potential according to the Thouless criterion.14 Therefore, it
is sufficient for our purpose to solve �8�. The necessary cor-
related two-particle Green’s function �2� can be given, pro-
vided we know the solution of the single-particle problem of
an electron and the cavity, �p1

2 /2m+V01��n1�=En1
�n1�. As-

suming this to be the case, the related two-particle problem
separates

� p1
2

2m1
+

p2
2

2m2
+ V01 + V02	�n1n2� = �En1

+ En2
��n1n2� .

�10�

We can project �2� onto the complete set of wave functions
�n1n2� and obtain from �2� the solution

�pP�G1�p�P�� = �
n1n2

�pP�n1n2��1 − fn1
− fn2

��n1n2�p�P��

�� − En1
− En2

+ �En + i�
,

�11�

with

�En =
pn1

2

2m1
+

pn2

2

2m2
− �n1

− �n2

+ �En1
+ En2

−
pn1

2

2m1
−

pn2

2

2m2
	�fn1

+ fn2
� . �12�

We end up with the same formula as in Ref. 13 but with
in-medium effects represented by the distribution functions f
and the quasiparticle energy �

�pP�Tab�p�P�� = Vpp��PP� + �
n1n2p̃p̃�P̃

Vpp̃�1 − fn1
− fn2

�

�
�p̃P�n1n2��n1n2�p̃�P̃�

�� − En1
− En2

+ �En + i�
�p̃�P̃�Tab�p�P�� .

�13�

We will solve the T-matrix �13� with the help of a separable
potential Vpp�=	gpgp� between the two particles.15 Any finite-
range potential can be represented by a finite-rank separable
potential.16,17 Here we restrict ourselves to a rank-one poten-
tial gp=1/ �p2+
2�
��2 /2m��� /R����r−R�, which is suffi-
cient to describe the s-wave pairing interaction near the
Fermi surface.

As a model for the cavity we will choose an opaque wall
V01�r�= 
��2 /2m��� /R����r−R� with a coupling strength �
and a finite radius R. Then the radial single-particle wave
function18

�k�r� = Ax sin kr�1 r 
 R

1 +
� sin x

x

cos�x + kr�
sin kr

r � R 
 ,

�14�

with momenta p=�k and x=kR differs from the plane wave,
near the cavity or alternatively for ��kR only by an
amplitude18

Ax
2 =

1 + tan2 x

tan2 x + �1 +
�

x
tan x	2 . �15�

Since the two-particle Schrödinger Eq. �10� with
V01+V02 separates, we have approximately �n1n2�
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�A�K/2−k�RA�K/2+k�R�pP� with plane waves �pP� and the center-
of-mass momentum P=�K= p1+ p2 and relative momentum
p=�k= p1− p2. It is worth noting that the normalization of
plane waves to the current remains unchanged by the ampli-
tude Ax since from �15� we have limx→� Ax

2=1. The solution
of �13� then reads

�p1P�Tab�p2P�� = �PP�

	gp1
gp2

1 − 	J�P,��
, �16�

with

J�P,�� = �
p

gp
2
�A�K/2+k�RA�K/2−k�R�2�1 − fP/2+p − fP/2−p�

� − EP/2+p − EP/2−p + �E + i�
.

�17�

For our opaque-wall cavity, En= pn
2 /2m holds and �12� sim-

plifies to �E=
�P/2+p�2

2m1
+

�P/2−p�2

2m2
−�P/2+p−�P/2−p, which van-

ishes if we neglect renormalizations due to quasiparticle en-
ergies.

Before discussing this result we want to consider two lim-
iting cases. Neglecting the wave-function renormalization
A→1 we obtain the standard expression for two-particle
scattering in an infinite extended medium with separable
interaction.19–22 With �16� and �17� we present the T-matrix
of the two particles in the presence of the cavity and in the
medium which generalizes approaches without the cavity.
Oppositely, if we neglect the medium effects f �0, we obtain
an approximation for the two-particle cavity with a separable
interaction.13 Expression �17� without medium effects repre-

sents a much more convenient form than the numerically
more elaborate equation �57� of Ref. 13 and it agrees with
the latter up to some percent.

We can understand the solution �16� also as having solved
the two-particle T-matrix without cavity and replaced the
form factor gp of the separable potential by
gpA�K/2+k�RA�K/2−k�R, which we will abbreviate in the following
as an effective potential V�p , p̃�=gpgp̃ApR

2 Ap̃R
2 .

Now we investigate the pairing poles of the T-matrix ap-
pearing at energies twice the chemical potential, 2�, and
zero center-of-mass momentum. In order to derive the corre-
sponding gap equation we recognize that the above deriva-
tion �2�–�8� is exactly the same, understanding all Green’s
functions as causal ones instead of retarded ones. The one-
particle causal Green’s function has two analytic pieces in
time G�p , t− t��=−i��t− t��G��p , t− t��+ i��t�− t�G
�p , t
− t��, which takes the values for particles and holes in quasi-
particle approximation

G��p,�� = 2���� − �p��1 − fp

fp
� . �18�

Then we apply the Langreth/Wilkins rules23–25 to obtain the
analytic piece of the causal T-matrix �8�

Tab

 = V2G1


Tab
A + V2G1

RTab

 . �19�

The retarded two-particle Green’s function

G1
R�p,P,p�,P�,�� = �2���6��p − p����P − P���2

R�p,P,�� ,

�20�

with the abbreviation

�2
R� p1,− p2

2
,p1 + p2,�	 =� d�1d�2

�2���2

G��p1,�1�G��p2,�2� − G
�p1,�1�G
�p2,�2�
� − �1 − �2

, �21�

becomes just �1� using the quasiparticle approximation �18�. With this notation we can write the analytic piece of the T-matrix
�19� as

Tab

 �p1,p2,K,�� =� dp3

�2���3V�p1,p3��2

�p3,K,��Tab

A �p3,p2,K,�� +� dp3

�2��3V�p1,p3��2
R�p3,K,��Tab


 �p3,p2,K,�� . �22�

The T-matrix separates in momenta near the pairing pole at
�=2� and we can use the ansatz

Tab

 �p1,p2,K,�� = �2���4��� − 2����K��2�p1��2�p2�

�23�

in �22� to obtain the equation for the gap function

�2�p1� =� dp3

�2���3V�p1,p3��2�p3,0,2���2�p3� . �24�

We can obtain the self-consistent single-particle Green’s
function by separating the pole in the retarded self-energy

�R = T2
RG
 − T2


GA � �QP
R − �T2


GQP
A �pole, �25�

leading to the equation for the inverse retarded Green’s func-
tion

�GR�−1 = G0
−1 − �QP

R + �Tab

 GQP

A �pole

= � − �p +� dp3d�1

�2���4

�
Tab


 
�p − p3�/2,�p − p3�/2,p + p3,�1�
�1 − � − �p3

− i�
, �26�

where we have used the quasiparticle form of the retarded
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propagator �GQP
R �−1=G0

−1−�QP
R =�−�p. Inserting �23� leads

to the self-consistent retarded Green’s function

�GR�−1 = � − �p +
�2�p�2

2� − � − �p
, �27�

and the self-consistent spectral function, A=−2 Im GR fol-
lows

A = ��1 +
�p − �

Ep
	��� − � − Ep�

+ ��1 −
�p − �

Ep
	��� − � + Ep� �28�

with Ep=���p−��2+��p�2. This spectral function shows the
opening of the quasiparticle and quasihole excitation due to
the gap26 and collapses to the quasiparticle one, 2����
−�p� for a vanishing gap. The corresponding density is given
by the integration over the Green’s function

� =� d�dp

�2���4G
 =
1

2
� dp

�2���3�1 −
�p − �

Ep
�1 − 2fEp

�� .

�29�

The gap equation appears if we use the correct self-
consistency known as Prange-Klein paradox or asymmetric
choice.27 This means we insert in �2

R of �20� only one self-
consistent Green’s function with the spectral function �28�
and one quasiparticle Green’s function �18� with the spectral
function 2����−�p�. Then one finds the gap equation

��p� = − 	�
p̃

gpgp̃ApR
2 Ap̃R

2
tanh Ep̃

2Ep̃
��p̃� . �30�

The momentum dependence of the gap follows as ��p�
=gpApR

2 � with � found from �30� plotted in Fig. 1. We see
that the influence of the resonant cavity is enhancing the gap
and inducing maxima in the density dependence. It is re-

markable that a second branch of superconductivity appears
at higher densities due to the presence of the resonant cavity.

The additional factors in �30� compared to the free gap
equation are just the correlation function within the theory of
pair breaking28 but here extended by the potential form fac-
tors gp.

The critical temperature following from �30� for �=0 is
plotted in Fig. 2 where one sees that it is enhanced due to the
presence of the cavity compared to the case without cavity
�=0. Interestingly, again there appears a second separated
branch for higher densities where pairing occurs.

From the pole of the T-matrix �16� at negative frequencies
we can deduce the binding energy of two particles. With
increasing density the bound state energy is decreasing until
it vanishes at the Mott density. This behavior is strongly
influenced by the cavity strength. We have chosen a situation
where the cavity is enhancing pairing as well as binding.
This property depends on the value of the scattering length
a0 and the cavity radius R; we refer to Ref. 13 for details.

The appearance of maxima in the critical temperature can
be approximately described as a modification of the usual
BCS theory due to the cavity. For this purpose we consider
the potential strength at the Fermi surface V0=	gpf

2 , which
can be taken out of the sum in �30� introducing at the same
time an energy cutoff �c, which is not necessary when taking
into account the complete finite range gp as done above.
Then the standard procedure to extract the critical tempera-
ture in BCS theory applies and using the free density of
states N at the Fermi energy we obtain

Tc = 1.13�ce
−2/NV0AkfR

4
= � Tc

0

1.13�c
	1/AkfR

4

. �31�

This means that the critical BCS temperature without cavity
Tc

0 is modified by the amplitude AkfR
at the Fermi momen-

tum. This result is in agreement with the Anderson
theorem,29 which states that for a homogeneous perturbation
and order parameter the critical temperature can only be af-

FIG. 1. The gap � versus density �29� for different cavity
strengths �, temperature T=0.05
2 /2m, and form factors gp

=1/ �p2+
2�. The parameters are chosen such that the scattering
length is a0=−21.5� /
, the free binding energy Eb

0=0.005
2 /2m,
and the radius of the cavity R=4� /
.

FIG. 2. The critical temperature Tc versus free density �29� with
�=0 for the same parameters as in Fig. 1 except that the tempera-
ture is at T=Tc. The perpendicular lines indicate the minima of AkfR

4

for kfR�� �solid� and for kfR�� �dashed� according to �32�.
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fected by the density of states. Here the amplitude of the
cavity affects the density of states. The critical temperature
can be enhanced if x=kfR takes values where the cavity am-
plitude �15� has minima. These minima occur at 2xn=n�
−arctan 2xn /� with the values18

� 1

Ax
4	

max

���
2�

n�
	4

xn = n
�

2

 �

1 +
8�

�2n − 1��
xn = �2n − 1�

�

4
� �


�32�

and n=1,3… In Fig. 2 these points are indicated by perpen-
dicular lines and agree nearly with the observed maxima.
The maxima are approximately characterized for the high
densities by the solid lines �kfR��� and for low densities by
the dashed lines �kfR
��.

The parameter choice of such resonant cavities seems to
be a reasonable way to enhance the pairing temperature as
the following simple estimate shows. Assuming the Fermi
energy to be about 1 eV and the Fermi momentum just ful-

filling the first resonance condition kfR=�� /2, the required
cavity radius would be about 200 nm, which is realistic to be
fabricated. The enhancement of the BCS critical temperature
�31� could then be remarkable as seen in Fig. 2.

Summarizing, we have investigated the modification of
the pairing temperature and the range of superconductivity
due to the presence of a resonant cavity. We suggest the
construction of an experiment with interacting electrons pos-
sessing an effective attracting interaction due to background
phonon coupling and an additional resonant cavity. If the
cavity radius R and the cavity strength � are chosen such
that the condition kfR=n� /2
� or kfR= �2n−1�� /4��
for n=1,3,5… are fulfilled we expect a remarkable enhance-
ment of the critical temperature. We expect the effect de-
scribed here for two-particle pairing properties to remain also
for a macroscopic number of coherent paired particles since
the coherence of such state can be kept if many of such
resonant cavities are arranged within a regular crystal struc-
ture.

The helpful discussions with P. Fulde are gratefully ac-
knowledged.
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