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For temperatures T well above the ordering temperature T*=3.0±0.2 K the magnetic properties of the
metal-organic material Mn�C10H6�OH��COO��2�2H2O built from Mn2+ ions and 3-hydroxy-2-naphthoic an-
ions can be described by an S=5/2 quantum antiferromagnet on a distorted honeycomb lattice with two
different nearest-neighbor exchange couplings J2�2J1�1.8 K. Measurements of the magnetization M�H ,T�
as a function of a uniform external field H and of the uniform zero-field susceptibility ��T� are explained
within the framework of a modified spin-wave approach which takes into account the absence of a spontaneous
staggered magnetization at finite temperatures.
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I. INTRODUCTION

In recent years the role of fluctuations, spatial anisotropy,
and frustration in low-dimensional quantum magnets has
been intensely studied, both experimentally and
theoretically.1 For a comparison of experiments with theory
it is crucial to have well-defined crystalline materials where
one or several parameters can be varied externally in order to
obtain quantitative predictions for physical observables.
Moreover, in order to observe interesting magnetic many-
body effects it is essential to have materials where the mag-
netic moments are coupled via sufficiently strong exchange
interactions. These conditions are met by transition-metal ox-
ides such as cuprates, vanadates, copper-germanates, or man-
ganites, which have been the subject of many works. How-
ever, in these materials it is rather difficult to control
externally microscopic parameters such as the precise values
of the exchange interactions or the lattice geometry by
changing the chemical composition in a well-defined man-
ner. This problem tends to be less severe in magnets based on
metal-organic materials, which offer more possibilities of
modifying some constituents chemically and thereby tuning
the properties by a crystal engineering strategy. The chal-
lenge is then to find metal-organic magnets where the mag-
netic moments are coupled sufficiently strongly to exhibit
interesting collective effects.

These effects are of particular importance in low-
dimensional magnets—e.g., two-dimensional �2D� layer
structures with strong magnetic couplings within the layers
and weak interactions between the layers. Such layer struc-
tures can be built up chemically from spin-bearing metal
ions, which are connected by short bridges, being separated
by organic fragments of considerable size; see Fig. 1. Moti-
vated by these considerations we synthesized transition-

metal complexes of o-hydroxy-naphthoic acids. The crystal
structure of Mn�C10H6�OH��COO��2�2H2O �systematic
name: manganese�II� 3-hydroxy-2-naphthoate dihydrate, Fig.
2� is of particular interest, because the Mn2+ ions form a
distorted honeycomb lattice �Fig. 3�. For the redetermination
of the crystal structure, pale brown crystals were slowly
grown by diffusion of an aqueous solution of
Na�C10H6�OH��COO�� into an aqueous MnSO4 solution
with a buffer layer of water. The single-crystal x-ray analysis
confirmed the previously determined structure2 with a
higher precision. The compound crystallizes in the mono-

FIG. 1. �Color online� View along the b axis of the metal-
organic quantum magnet Mn�C10H6�OH��COO��2�2H2O. Bold
lines show exchange paths Mn-O-C-O-Mn. The unit cell, denoted
by the parallelogram, contains four crystallographically equivalent
Mn2+ ions.
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clinic space group P21/c with the lattice parameters
a=17.191�4� Å, b=7.3448�10� Å, c=15.5279�17� Å, �
=101.964�8�°, and V=1918.1�5� Å3.3 The unit cell contains
four crystallographically equivalent Mn2+ ions.

The coupling layer, parallel to the �bc� plane, contains the
Mn2+ ions and the COO− and OH groups as well as water
molecules. The isolating layer, having a thickness of about
12 Å, consists of the organic naphthalene moieties. These
naphthalene moieties are only bound together by van der
Waals contacts between C and H atoms. The relative weak-
ness of these interactions is reflected by the morphology of
the crystals: the crystals grow in the �b� and �c� directions
much faster than in the �a� direction, thus forming thin plates
parallel to the �bc� plane.

The magnetism is due to the S=5/2 manganese ions
which form a distorted honeycomb pattern parallel to the
�bc� planes. Neighboring ions are connected by carboxylic
groups, which provide an Mn-O-C-O-Mn magnetic ex-
change path. There are two different exchange paths: the first
path contains a single O-C-O unit, displayed in green in Fig.
3. In the second path �marked with blue color� the Mn2+ ions
are connected by two O-C-O moieties simultaneously. The
honeycomb layers are well separated from each other; the
closest distances between Mn2+ ions of different layers are as
large as 16.282 Å.

The structure in Fig. 3 suggests that the magnetic proper-
ties of the material can be modeled by a spin S=5/2 Heisen-
berg magnet on the distorted honeycomb lattice shown in
Fig. 4. The exchange integrals J�=J�ri ,ri+���, �=1,2 ,3,
couple the spin at a given site ri to its nearest neighbors at
ri+��. All exchange integrals J� turn out to be positive, and
��1�= ��3���1=5.131�4� Å and J1=J3, due to the crystal
symmetry. A closer look at the crystal structure in Fig. 3 and
a comparison with the distorted honeycomb lattice in Fig. 4
reveals that J2 acts along two exchange paths while J1 results
from a single-exchange path. Therefore we expect J2 to be
roughly twice as large as J1. Furthermore, the honeycomb
lattice is bipartite; i.e., it can be divided into two sublattices,
labeled A and B, such that the nearest neighbors of all sites
belonging to sublattice A are located on sublattice B. Thus,
for positive J� the system is not frustrated, and when quan-
tum fluctuations are neglected the ground state shows classi-
cal antiferromagnetic Néel order. More generally, we expect
long-range antiferromagnetic order to persist in the quantum-
mechanical ground state. Therefore, it should be possible to
calculate the magnetic properties of the system within the
usual spin-wave expansion, at least for temperature T=0.
Note that the actual structure shown in Fig. 3 has an addi-
tional distortion in the x direction, resulting in a primitive
cell with doubled volume. Due to the low symmetry of the
lattice, the Dzyaloshinskii-Moriya interaction might play an
important role. However, we expect the corresponding en-
ergy scale to be small in comparison with J1 and J2, so that
in the first approximation we can neglect this effect. In the
following we therefore always work with the magnetically
equivalent Bravais lattice shown in Fig. 4.

Measurements of the magnetization M�H ,T� in a mag-
netic field H are performed at finite temperatures T, where
long-range antiferromagnetic order is ruled out by the
Hohenberg-Mermin-Wagner theorem.4 In this case the theo-
retical justification for the spin-wave expansion in two di-
mensions is more subtle. As long as there is long-range an-
tiferromagnetic order at T=0, it is reasonable to expect that
the low-energy and long-wavelength physics is still domi-
nated by renormalized spin waves. The magnetic properties

FIG. 2. Chemical formula of Mn�C10H6�OH��COO��2

�2H2O.

FIG. 3. �Color� View on the �bc� plane of the metal-organic
quantum magnet Mn�C10H6�OH��COO��2�2H2O.

FIG. 4. Distorted honeycomb lattice. The interactions between
spins are displayed as solid lines. The underlying magnetic sublat-
tice is a Bravais lattice, and its primitive cell can be chosen to be
the dashed parallelogram. The corresponding primitive vectors are
a1=a1êx and a2=a2 cos �êx+a2 sin �êy.
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of square-lattice antiferromagnets in the absence of uniform
external fields have been thoroughly investigated in a classi-
cal work by Chakravarty, Halperin, and Nelson.5 Less is
known about the low-energy physics of two-dimensional
quantum antiferromagnets subject to a uniform external mag-
netic field. The external field breaks the rotational symmetry
of the Heisenberg antiferromagnet to O�2�, similar to the
effect of an XY anisotropy in the XXZ model.6 However, the
classical ground states of the two models differ substantially:
whereas the XXZ model has a collinear ground state, a uni-
form magnetic field in a Heisenberg antiferromagnet leads to
a canted classical spin configuration shown in Fig. 5. The
zero-temperature magnetization curve M�H ,0� of the square-
lattice antiferromagnet was calculated a few years ago by
Zhitomirsky and Nikuni7 within the spin-wave expansion.
For finite temperatures, M�H ,T� has been extrapolated from
numerical diagonalizations of finite clusters.8 We are not
aware of any analytical calculations in the literature of
M�H ,T� for two-dimensional quantum Heisenberg antiferro-
magnets at T�0. In this work, we calculate M�H ,T� using a
modified spin-wave approach9 which takes the absence of a
spontaneous staggered magnetization at finite temperatures
into account. Our theoretical results for the magnetization
curves as well as for the zero-field susceptibility ��T� show a
satisfactory agreement with our measurements for the com-
pound Mn�C10H6�OH��COO��2�2H2O.

The rest of the paper is organized as follows. In Sec. II we
review the formalism of the spin-wave expansion for noncol-
linear spin configurations. In Sec. III this method is applied
to an antiferromagnet on a bipartite lattice in the presence of
a uniform magnetic field. Expressions for the magnetization,
the staggered magnetization, and the uniform susceptibility
for the material of interest are obtained. We explain how a
self-consistently determined staggered field is used to regu-
larize divergencies at finite temperature. In Sec. IV we
present results and compare with experimental measure-
ments. Finally, in Sec. V we present our conclusion.

II. SPIN WAVES IN NONCOLLINEAR
SPIN CONFIGURATIONS

In the presence of a homogeneous magnetic field an anti-
ferromagnet on a bipartite lattice has a noncollinear, canted
spin configuration as shown in Fig. 5. We choose a coordi-
nate system such that the uniform external field points along
the x axis and the staggered magnetization is directed along
the z axis. The low-temperature physics is dominated by
spin-wave excitations. To obtain their spectrum we should
quantize the spin operators in a spatially dependent �“comov-
ing”� coordinate system that matches for each site the axis
defined by the expectation value �Si	 of the spin operator.

More generally, the problem of calculating the spin exci-
tations of a Heisenberg magnet subject to an arbitrary inho-
mogeneous magnetic field Bi can be formulated and solved
in a coordinate-free vector notation.10 Consider the general
Heisenberg Hamiltonian

Ĥ =
1

2

i,j

JijSi · S j − g�B

i

Bi · Si, �2.1�

where Jij =J�ri ,r j� are some arbitrary exchange couplings,
the sums are over all sites ri of a D-dimensional lattice con-
sisting of N sites, and the Si are spin-S operators normalized
such that Si

2=S�S+1�. The last term represents the Zeeman
energy, where g is the gyromagnetic factor and �B is the
Bohr magneton. We assume that the external magnetic field
is sufficiently strong to induce permanent magnetic dipole
moments mi=g�B�Si	, where �¯	 denotes the thermal equi-
librium average. It is then convenient to decompose the spin
operators as Si=Si

�m̂i+Si
�, where Si

� ·m̂i=0 and m̂i=mi / �mi�
is a unit vector in the direction of mi. Substituting this de-

composition into Eq. �2.1� we obtain Ĥ= Ĥ� + Ĥ�+ Ĥ�, with

Ĥ� =
1

2

i,j

Jijm̂i · m̂ jSi
�Sj

� − 

i

hi · m̂iSi
� , �2.2�

Ĥ� =
1

2

i,j

JijSi
� · S j

�, �2.3�

Ĥ� = − 

i

Si
� · �hi − 


j

JijSj
�m̂ j , �2.4�

where hi=g�BBi. Note that Ĥ� describes the coupling be-
tween the transverse and longitudinal spin fluctuations. The
classical ground-state energy E0

cl is obtained by replacing Si
�

→S in Eq. �2.2� and by finding the configuration �m̂i� that
minimizes the resulting classical Hamiltonian

Hcl =
S2

2 

i,j

Jijm̂i · m̂ j − S

i

hi · m̂i. �2.5�

A necessary condition for an extremum of Eq. �2.5�, taking
into account the constraints m̂i

2=1, is10

m̂i � �hi − S

j

Jijm̂ j = 0. �2.6�

For given hi and Jij, this is a system of nonlinear equations
for the spin directions m̂i in the classical ground state. Using

FIG. 5. Spin configuration �Si	 in the classical ground state of a
two-sublattice antiferromagnet. The dashed arrows represent a uni-
form magnetic field Bêx in the x direction and a staggered magnetic
field 	iBsêz in the z direction. The small solid arrows represent the
vectors of a “comoving” basis that matches the direction defined by
the local magnetization �Si	. Not shown are the basis vectors êA

1

= êB
1 = êy which point into the plane of the paper.
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Eq. �2.6�, the part Ĥ� of the Hamiltonian describing the cou-
pling between transverse and longitudinal fluctuations can be
written as

Ĥ� = − 

i,j

Jij�Si
� · m̂ j��S − Sj

�� . �2.7�

Let us expand the transverse components of Si
� in a spherical

basis, Si
�= 1

2
p=±Si
−pei

p, with the spherical basis vectors ei
p

= êi
1+ ipêi

2, p=±, where �êi
1 , êi

2 ,m̂i� is a local orthogonal triad
of unit vectors. The transverse part of our spin Hamiltonian
can then be written as

Ĥ� =
1

8

i,j



p,p�

Jij�ei
p · e j

p��Si
−pSj

−p�. �2.8�

The basis vectors êi
1 , êi

2 are not unique: any rotation around
m̂i yields an equally acceptable transverse basis.

So far, no approximation has been made. To obtain the
spin-wave spectrum, we expand the spin operators in terms
of canonical boson operators bi as usual:11,12 Si

� =S−bi
†bi and

Si
+= �Si

−�†=�2Sbi�1+O�S−1��. Within the linear spin-wave

approximation the Hamiltonian becomes Ĥ�E0
cl+ Ĥ2, where

E0
cl is the minimum of the classical Hamiltonian Hcl in Eq.

�2.5� and

Ĥ2 =
S

4

i,j

Jij��ei
+ · e j

−�bi
†bj + �ei

− · e j
+�bj

†bi + �ei
+ · e j

+�bi
†bj

†

+ �ei
− · e j

−�bjbi� −
S

2

i,j

Jij�m̂i · m̂ j��bi
†bi + bj

†bj�

+ 

i

�hi · m̂i�bi
†bi. �2.9�

Note that the contribution from Ĥ� in Eq. �2.7� is of order
S1/2 and hence can be neglected within linear spin-wave
theory. Equation �2.9� together with Eqs. �2.5� and �2.6�
completely determines the spin-wave spectrum of any
Heisenberg magnet in an arbitrary inhomogeneous field.

III. SPIN WAVES IN THE DISTORTED
HONEYCOMB LATTICE

A. Classical ground state

Let us apply the general formalism of the previous section
to our bipartite lattice antiferromagnet in a uniform external
magnetic field Bêx along the x axis. We denote by ê
 fixed
unit vectors in direction 
=x ,y ,z. For technical reasons we
introduce an additional staggered magnetic field 	iBsêz in the
z direction, where 	i=1 if ri belongs to the A sublattice and
	i=−1 if ri belongs to the B sublattice. This auxiliary stag-
gered field will be determined self-consistently in Sec. III C
to ensure a vanishing staggered magnetization at finite tem-
peratures. The total magnetic field is thus

hi = g�B�Bêx + 	iBsêz� . �3.1�

The classical ground-state configuration is then m̂i
=	i cos �êz+sin �êx, as shown in Fig. 5.

For convenience we introduce the notation n0=cos � and
m0=sin �. Physically, m0 corresponds to the classical limit
�S→�� of the normalized uniform magnetization

m =
1

NS



i

�êx · Si	 , �3.2�

while n0 corresponds to the S→� limit of the normalized
staggered magnetization

n =
1

NS



i

	i�êz · Si	 . �3.3�

By symmetry, the uniform magnetization points into the x
direction, while the staggered magnetization points into the z
direction. The natural dimensionless measure for the strength
of the fields is h=�0g�BB and hs=�0g�BBs, where �0

= �2J̃0S�−1 is the classical uniform susceptibility. Here J̃0

=
�J� is the k=0 component of the Fourier transform of the
exchange couplings:

J̃k = 

�

e−ik·��J�. �3.4�

For the special choice of the field hi given in Eq. �3.1� our
general equation �2.6� reduces to the simple relation

h = m0�1 + hs/n0� , �3.5�

which together with n0
2+m0

2=1 determines the classical Néel
order parameter n0 and the classical uniform magnetization
m0 as functions of the fields h and hs. Note that m̂A·m̂B
=m0

2−n0
2, and with the special transverse basis shown in Fig.

5,

eA
p · eB

p� = 2��p,p�n0
2 + �p,−p�m0

2� , �3.6�

m̂A · eB
p = 2ipn0m0 = − m̂B · eA

p . �3.7�

B. Spin-wave dispersion

To obtain the spin-wave dispersion, we must diagonalize

Ĥ2 in Eq. �2.9� for the special ground-state spin configuration
discussed above. Therefore, we first perform Fourier trans-
formations separately on each sublattice,

bi =� 2

N



k
eik·riak, for ri � A, �3.8a�

bi =� 2

N



k
eik·ribk, for ri � B, �3.8b�

where the wave-vector sums are over the reduced �magnetic�
Brillouin zone of the honeycomb lattice shown in Fig. 6.
With the above definitions we obtain

Ĥ2 = J̃0S

k

�A�ak
†ak + bk

†bk� + Bkb−kak

+ Bk
*ak

†b−k
† + Ckbk

†ak + Ck
*ak

†bk� , �3.9�

where A=1+2hs /n0, Bk=n0
2J̃k / J̃0, and Ck=m0

2J̃k / J̃0. On a
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honeycomb lattice J̃k= �J̃k�eik is complex, so that Bk
= �Bk�eik and Ck= �Ck�eik. Using −k=−k, it is easy to see
that these phase factors can be removed from Eq. �3.9� via
the gauge transformation ãk=eikak. Introducing then new
canonical boson operators

ck� =
1
�2

�ãk + �bk�, � = ± 1, �3.10�

the Hamiltonian �3.9� assumes the block-diagonal form,

Ĥ2 =
J̃0S

2 

k�

��A + ��Ck���ck�
† ck� + c−k�

† c−k��

+ ��Bk��ck�
† c−k�

† + ck�c−k��� . �3.11�

The diagonalization is completed by means of the Bogoliu-
bov transformation

� ck�

c−k�
†  = � uk� − �vk�

− �vk� uk�
� dk�

d−k�
†  , �3.12�

where

uk� =�A + ��Ck� + �k�

2�k�

, �3.13a�

vk� =�A + ��Ck� − �k�

2�k�

, �3.13b�

with the dimensionless energy dispersion

�k� = ��A + ��Ck��2 − �Bk�2. �3.14�

Defining �k= J̃k / J̃0, we may write

�k� = ��1 +
2hs

n0
+ ���k��1 +

2hs

n0
− ��n0

2 − m0
2���k��1/2

.

�3.15�

In terms of the new operators dk� the quadratic spin-wave

Hamiltonian Ĥ2 is diagonal,

Ĥ2 = J̃0S

k�
��k�dk�

† dk� +
1

2
��k� − �A + ��Ck���� . �3.16�

The low-temperature properties of the magnet are deter-
mined by the long-wavelength behavior of the spin-wave
dispersions, which follow from the expansion for small k,

��k� � 1 −
1

2


�

k
A
�k�, �3.17�

where A is a matrix with elements

A
� = 

�

J�

J̃0

��� · ê
���� · ê�� − 

�,��

J�J��

J̃0
2

��� · ê
����� · ê�� .

�3.18�

Since A is symmetric, an orthogonal basis can always be
chosen such that A is diagonal, with eigenvalues A
. In this
basis

��k� � 1 −
1

2




A
k

2 . �3.19�

The matrix A is positive, since

��k� � 

�
� J�

J̃0
� = 1, �3.20�

where the last equality assumes that all couplings have the
same sign. We can thus define effective length scales �
 by
setting A
=�


2 . For a D-dimensional hypercubic lattice with
lattice spacing a we have �


2 =a2 /D. For our honeycomb lat-
tice shown in Fig. 4 with ��1�= ��3� and J1=J3 the eigenvec-
tors of A are parallel to the x and y axes, with corresponding

eigenvalues �x
2= �J1 /2J̃0�a1

2 and �y
2= �2J1J2 / J̃0

2�a2
2 sin2 �. The

spin-wave velocities c
= J̃0S�
 along the two principal direc-
tions are thus

cx = S�J1J̃0

2
a1, �3.21�

cy = S�2J1J2a2 sin � . �3.22�

Note that for J2→0 the velocity cy vanishes, so that the
system becomes one dimensional, as is obvious from Fig. 4.
On the other hand, for J1→0 both velocities vanish, because
in this limit the system consists of decoupled dimers.

For hs=0 only the mode �k− is gapless for k→0, while the
mode �k+ has the gap 2m0. To give a more explicit form for
the long-wavelength spin-wave dispersions, we further as-
sume hs�n0. Then

�k− � n0�4hs

n0
+ 





��
k
�2�1/2

, �3.23�

FIG. 6. Reduced Brillouin zone of the distorted honeycomb lat-
tice. The primitive vectors are b1= �2� /a1 sin ���sin �êx−cos �êy�
and b2= �2� /a2 sin ��êy, where a1, a2, and the angle � are defined
in Fig. 4.
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�k+ � �4m0
2 +

4hs

n0
�1 + m0

2� + �n0
2 − 2m0

2�




��
k
�2�1/2

.

�3.24�

For n0→0 the expansion �3.23� is not appropriate any longer
and for hs=0 the dispersion �k− becomes purely quadratic at
n0=0. Before this happens, there is a critical field 0�h*

�1 at which the curvature of the dispersion �k− changes
sign. The positive curvature for h�h* results in an instability
of magnons towards a spontaneous decay into two-magnon
states.13 Furthermore, if an anisotropic exchange is consid-
ered, the anisotropy gap � is strongly renormalized by mag-
non interactions.14,15 As the influence of these instabilities on
the thermodynamic properties is unclear at the moment, they
will not be further considered in this work.

C. Uniform and staggered magnetization

We now calculate the leading spin-wave corrections to the
normalized uniform and staggered magnetization as defined
in Eqs. �3.2� and �3.3�. A standard expansion in powers of
1 /S gives

m =
m0

2

h
�1 +

nhs

n0
2 −

F�h,hs�
S

� , �3.25�

n =
1

n0
�1 − m0m −

I�h,hs�
S

� , �3.26�

where

F�h,hs� =
1

N


k�

nk� + 1
2

�k�

���k��1 +
2hs

n0
+ ���k� �3.27�

and

I�h,hs� = −
1

2
+

1

N


k�

nk� + 1
2

�k�
�1 +

2hs

n0
+ �m0

2��k� . �3.28�

Here nk�= �eJ̃0S�k�/T−1�−1 is the Bose function. The param-
eters n0 and m0 on the right-hand sides of Eqs. �3.25�–�3.28�
are determined as functions of the fields h and hs by Eq. �3.5�
and n0

2+m0
2=1. Note that for S→� the solutions of Eqs.

�3.25� and �3.26� correctly approach n=n0 and m=m0: in this
limit Eq. �3.25� reduces to Eq. �3.5�, while Eq. �3.26� simply
becomes another way of writing n0

2+m0
2=1. In the thermody-

namic limit, we transform Brillouin zone sums to integrals
according to

2

N



k
→

N→�

Vu�
BZ

d2k

�2��2 , �3.29�

where Vu=a1a2 sin � is the area of the magnetic unit cell in
real space and the integral is over the reduced Brillouin zone
shown in Fig. 6.

At T=0 and hs=0 expressions similar to Eqs. �3.25� and
�3.26� have been discussed previously.7 Only m�h� was given
explicitly and a renormalization of the canting angle was
found by considering spin-wave interactions. Yet to a given

order in 1/S it is easier to calculate m and n directly as
derivatives of the free energy with respect to h and hs. Very
recently, the renormalized canting angle was also used to
analyze the behavior of n�h� at T=0 for a more complicated
geometry.16

At any finite temperature the integral I�h ,0� is infrared
divergent in two dimensions, signaling the absence of long-
range antiferromagnetic order, in accordance with the
Hohenberg-Mermin-Wagner theorem.4 At first sight, it thus
seems that the finite-temperature magnetization curve cannot
be calculated within our spin-wave approach. Fortunately,
there is a straightforward way to obtain an approximate ex-
pression for the magnetization even at finite T. The crucial
observation is that if we set n=0 in Eqs. �3.25� and �3.26�,
these equations can be interpreted as a condition for the stag-
gered field hs that is necessary to enforce a vanishing stag-
gered magnetization. The solution hs=hs�h� as a function of
the uniform field h is not a physical external staggered field,
but an internal effective field that is generated by strong fluc-
tuations. In fact, the field hs�h� is nothing but the Lagrange
multiplier introduced in Takahashi’s modified spin-wave
theory.9,17 It is well known that the internal field is related to
a finite correlation length �, as we will further discuss in Sec.
IV C. Numerically, we calculate the uniform magnetization
m�h ,T� at finite temperature T by adjusting hs for fixed ex-
ternal field h such that the condition n=0 is fulfilled in Eqs.
�3.25� and �3.26�. Using this hs�h� in Eq. �3.25� then directly
yields m�h ,T�.

We must keep in mind that the staggered field hs does not
respect the rotational symmetry of the original Hamiltonian,
which for h=0 corresponds to a global O�3� symmetry and
for h�0 is reduced to a global O�2� symmetry around the
axis of the uniform field. With the parametrization that
explicitly breaks this symmetry, we should therefore only
calculate rotationally invariant quantities.18 Below, we will
find a disagreement between a rotationally invariant evalua-
tion of the zero-field uniform susceptibility and the slope of
�m /�h for h→0. We attribute this discrepancy to the fact
that ��m /�h�h→0 does not respect the O�3� symmetry in
this limit. Generally, we expect our approach for the
finite-temperature magnetization to be reasonable only for
h�hs�h ,T�. In Sec. IV C we will see that hs is exponentially
small at low temperatures, such that h�hs�h ,T� is fulfilled
even for very small external fields. The condition h
�hs�h ,T� then roughly gives a limit of validity of our ap-

proach in terms of the temperature as T�0.5J̃0S. The fact
that the limits T→0 and h→0 do not commute in a modified
spin-wave expansion was first noticed by Takahashi.17

D. Uniform susceptibility

In order to calculate the rotationally invariant uniform
zero-field susceptibility per spin,

� =
1

TN


i,j

�Si · S j	 , �3.30�

we set the uniform magnetic field B=0 in Eq. �3.1�. In this
case m=m0=0 and n0=1, so that we obtain a doubly degen-
erate mode in Eq. �3.15� with dispersion,
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�k� = �k = ��1 + 2hs�2 − ��k�2, �3.31�

and the expression for the staggered magnetization, Eq.
�3.26�, reduces to

n = 1 +
1

2S
−

2

NS



k

nk + 1
2

�k
�1 + 2hs� . �3.32�

As explained in the previous section we use a self-
consistently determined staggered field hs to enforce a van-
ishing order parameter n=0.

The susceptibility �3.30� can be written as

� =
1

T
�Sq,+ · S−q,+	q=0, �3.33�

where we have defined the linear combinations ��= ± �

Sq,� =
1
�2

�Sq
A + �Sq

B� �3.34�

of the Fourier-transformed spin operators on each sublattice

Sq
A/B =� 2

N



ri�A/B
e−iq·riSi. �3.35�

Next we decompose the susceptibility into a transverse and a
longitudinal part

� = �+− + �zz, �3.36�

where

�+− =
1

2T
�Sq,+

+ S−q,+
− + Sq,+

+ S−q,+
− 	q=0, �3.37�

�zz =
1

T
�Sq,+

z S−q,+
z 	q=0. �3.38�

We map the spin operators �3.35� onto canonical boson op-
erators via a Dyson-Maleev transformation11,12 and evaluate
the thermal expectation values of the noninteracting state
using the Wick theorem. Then the transverse susceptibility
�3.37� is proportional to the right-hand side of Eq. �3.32� and
thus vanishes if we require n=0. Therefore, in our approxi-
mation only the longitudinal part contributes to the rotation-
ally invariant uniform susceptibility,

� =
2

TN



k
nk�nk + 1� . �3.39�

Apart from a different normalization, this result has been
obtained previously in Takahashi’s approach.17 We evaluate
Eq. �3.39� numerically in the thermodynamic limit.

IV. RESULTS

A. Zero-temperature uniform and staggered magnetization

In Figs. 7 and 8 we show results for the uniform and
staggered magnetization at zero temperature. In two spatial
dimensions, there are no divergent contributions to the inte-
grals in Eqs. �3.25� and �3.26�, indicating true long-range

order. We can thus set hs=0 and consequently m0=h. As the
deviations from the classical curves are rather small for S
=5/2, we present the curves for the extreme quantum case
S=1/2.

The uniform magnetization shows a positive curvature for
all 0�h�1 and lies generally below the classical straight
line.7 This tendency is stronger for the honeycomb lattice
and is even more pronounced for anisotropic exchange cou-
plings with J1�J2. The number of nearest neighbors z=3 for
the honeycomb lattice is lower than for the square lattice
�z=4�, and in the limit J2�J1 the system is almost one di-
mensional. The observed tendency thus simply corresponds
to increased quantum fluctuations in low dimensions. Be-
yond the saturation field h=1 the ground state has full col-
linear ferromagnetic order. This state as well as single-
magnon excitations above it are easily shown to be exact
eigenstates. As the single-magnon states become gapless at
exactly the classical value h=1, the saturation field is not

FIG. 7. Normalized uniform magnetization m�h� for T=0 and
hs=0. The solid line is the zero-temperature magnetization curve
for the honeycomb lattice with S=1/2 and J1=J2. For comparison
we also show the corresponding curve for a square lattice and exact
results for a linear antiferromagnetic chain �Ref. 19�. However, the
S=1/2 chain is critical, so it is not surprising that it is poorly
described by means of the spin-wave theory. Note that for hs=0 the
classical equation �3.5� is simply m0=h.

FIG. 8. Normalized staggered magnetization n�h� at T=0 for
honeycomb �solid line� and square lattices with S=1/2 �dotted
line�. The classical equation n0=�1−h2 is plotted for comparison.
We also show the curves for the anisotropic cases J1 /J2=10,100.
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changed by quantum fluctuations or magnon interactions.
The limit h→1 is reached with infinite slope in m�h�. The
leading behavior is given by

m = 1 +
Vu

4�x�y

�h

�S
ln�4�h� , �4.1�

where �h=1−h. This logarithmic asymptotics was first dis-
cussed in the language of Bose condensation of magnons
below the saturation field20 and was later found for the
square lattice �Vu /4�x�y =1� within linear spin-wave theory.7

For our distorted honeycomb lattice, we have

Vu

�x�y
=��2J1 + J2�3

J1
2J2

, �4.2�

which diverges for J1→0 or J2→0 and thus exemplifies the
increasing deviations from the classical curve for strongly
anisotropic exchange couplings.

The staggered magnetization in Fig. 8 shows a nonmono-
tonic dependence on the applied uniform field. For vanishing
h the staggered magnetization decreases as we lower the ef-
fective dimensionality. An external field apparently sup-
presses quantum fluctuations, and n�h� first increases with h
before it reaches a maximum and then vanishes for h→1
with infinite slope. The asymptotic behavior is given by

n = −
Vu

2�x�y

��h

�S
ln�4�h� . �4.3�

Interestingly, the quantum corrections to the staggered mag-
netization are positive close to the saturation field and the
spin-wave result therefore intersects the classical curve. In a
quasi-one-dimensional situation �J2�J1�, quantum fluctua-
tions are strong and the leading-order spin-wave theory,
when pushed to the limit of validity, predicts a quantum-
disordered phase for small uniform fields.

B. Finite-temperature magnetization and susceptibility

Magnetic measurements were carried out on a single-
crystalline sample of Mn�C10H6�OH��COO��2�2H2O with
a mass of mBONA=0.65 mg using a Quantum Design super-
conducting quantum interference device �SQUID� magneto-
meter MPMS-XL. Isothermal magnetization runs at tempera-
tures between 2 and 200 K and fields up to 5 T were
performed as well as measurements of the susceptibility in
the temperature range 2–300 K for a magnetic field of
0.05–2 T.2

In Fig. 9 we show theoretical magnetization curves m�h�
for the honeycomb lattice with S=5/2 and J1=J2 at different

temperatures T. For T� J̃0S the magnetization is almost lin-
ear throughout the entire field range. At intermediate tem-
peratures m�h� has an S-like shape with a positive curvature
at small fields h that changes to a negative curvature with
increasing h. Similar low-temperature behavior of the mag-
netization curve has been observed in a quantum Monte
Carlo study of the two-dimensional Heisenberg antiferro-
magnet on a square lattice.21

It turns out that the magnetization as well as the suscep-
tibility is not very sensitive to the ratio J2 /J1 as long as J1

and J2 have the same order of magnitude. Thus, we cannot
determine the precise value of J2 /J1, but our fits are compat-
ible with the assumption J2�2J1.

In Fig. 10 we show experimental data and theoretical fits
for the normalized uniform magnetization m=M / �NS� at dif-

ferent temperatures. The magnetic field H=2J̃0Sh is given in
tesla. Surprisingly, all experimental curves are almost
straight lines, whereas from Fig. 9 we would expect an up-
ward bend of m�h� at higher temperatures. Fits for T=2 K

and different ratios J1 /J2 invariably give J̃0�4 K. Hence we
assume J2=2J1 and fit the theoretical curve to the experi-
mental data at T=2 K. Good agreement is achieved for J2
=1.95 K. For this value of the exchange couplings, we also
plot theoretical magnetization curves at T=8 K and T
=20 K in Fig. 10. These curves deviate significantly from the
data, but one should be aware that T=8 K is already beyond

the estimated limit of validity T�0.5J̃0S of our theoretical
approach.

In Fig. 11 the uniform susceptibility is plotted in the ex-
perimental units cm3/mol. When all exchange integrals have
the same order of magnitude we expect a peak in the suscep-

tibility for T� J̃0S. Experimentally, the peak is at approxi-

FIG. 9. Uniform magnetization m�h� for the honeycomb lattice
with S=5/2 and J1=J2 for two values of T.

FIG. 10. Magnetization m�H� of Mn�C10H6�OH��COO��2

�2H2O up to field H=5 T. Experimental data are indicated by
squares �2 K�, circles �8 K�, and triangles �20 K�. Theoretical mag-
netization curves for honeycomb lattice with S=5/2 and J2=2J1

=1.95 K are denoted by lines.
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mately 7 K so that we have J̃0�3 K, in accordance with the
fits of the magnetization curves. For a more quantitative
comparison we use the following procedure. First we sub-
stract the temperature-independent contribution from the ex-
perimental susceptibility in order to get the correct paramag-
netic behavior at high temperatures. Then we fit the
theoretical expression �3.39� with J2=2J1 to the full set of
data points. Circles in Fig. 11 are experimental data, and the
solid line is a fit with J2=1.66 K. The theoretical curve re-
produces the behavior of the susceptibility very well, and it
especially gives a good estimate of the position and the form
of the peak. Note that we experimentally observe an increase
in the susceptibility below T*=3.0±0.2 K. This coincides
with an anomaly in the specific heat. The careful reader will
notice at this point that the estimated value of T* is larger
than the temperature T=2 K where we obtained the best fit
of our calculated magnetization curve m�H� to the experi-
mental data shown in Fig. 10. Hence, at T=2 K the system
seems to have some kind of long-range magnetic order,
which we have ignored in our calculation. However, the pre-
cise nature of the order and the mechanism responsible for
the ordering are not known at this point. The fact that a
strictly 2D model can reasonably well explain the magneti-
zation curve at T=2 K imposes some constraint on possible
ordering mechanisms. We suspect that dipole-dipole interac-
tions play an important role in this temperature range, be-
cause the long-range nature of the dipole-dipole interaction
can give rise to spontaneous antiferromagnetic order even in
2D.22 This point deserves further attention, both theoretically
and experimentally.

C. Staggered correlation length in a magnetic field

The energy gap appearing in Eq. �3.23� can be related to
the staggered correlation length �, as discussed by
Takahashi.17 Assuming for simplicity ����=a, we may iden-
tify

� a

2�
2

= �2 =
4hs

n0
. �4.4�

In the absence of a uniform field the low-temperature behav-
ior of � has been thoroughly studied by Chakravarty, Halp-

erin, and Nelson.5 Surprisingly, the effect of a uniform field h
on � has so far not been investigated. We now analyze the
asymptotic behavior of � at low temperatures. In two spatial
dimensions, the limit T→0 also implies hs→0. Our self-
consistency equations �3.25� and �3.26� can then be solved
analytically by isolating divergent contributions to the inte-
grals I�h ,hs� and F�h ,hs� originating from gapless modes in
the spin-wave spectrum. In the regular part of the integral,
the limit T→0 and hs→0 can be taken. For the leading
behavior at small uniform fields h�1 only the singular part
of I�h ,hs� contributes, and we obtain the self-consistency
condition

0 = n�0� −
Ising�h,hs�

S
. �4.5�

Here, Ising�h ,hs� is the part of the integral I�h ,hs� that di-
verges for vanishing gaps in the spin-wave dispersions and
n�0�=n�h=0,hs=0,T=0�. For h�1, we obtain

Ising�h,hs� =
T

J̃0S

Vu

2 

�
� d2k

�2��2

1

�k�
2

� −
T

J̃0S

Vu

8��x�y
�ln�4hs

n0
 + ln�4h2 +

4hs

n0
� ,

�4.6�

to leading logarithmic order. From Eqs. �4.4� and �4.5� we
then obtain the following result for the self-consistent energy
gap in a small uniform magnetic field:

�2�h� = � a

2��h�
2

=��0
4 +

�2h�4

4
−

�2h�2

2
, �4.7�

where �0=a /2��0� is the gap for vanishing uniform field and
the temperature dependence of the zero-field staggered cor-
relation length is given by

��0�
a

� exp�2�J̃0S2n�0�
T

�x�y

Vu
 . �4.8�

For a square lattice this yields, with J̃0=4J and �x�y /Vu
=1/4,

��0�
a

� exp�2�JS2n�0�
T

 , �4.9�

which is identical to Takahashi’s result �see Eq. �27a� in Ref.
17�, except that we do not include a spin-wave velocity
renormalization in our approach. To obtain this renormaliza-
tion, the spin-wave interaction would have to be treated on
the mean-field level in a fully self-consistent way.

The field dependence of the correlation length for fixed
temperature is given by Eq. �4.7�. For h��0�T�, we have

��h� = ��0��1 +
1

2
� h

�0
2� , �4.10�

whereas for h��0�T�, we obtain

FIG. 11. Susceptibility ��T� of Mn�C10H6�OH��COO��2

�2H2O. Circles are experimental data in a field of 2 T. A theoret-
ical fit for honeycomb lattice with J2=2J1 �solid line� gives J2

=1.66 K.
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��h�
a

= 4h� ��0�
a

2

. �4.11�

From Eq. �4.7� it is clear that ��h����0�. Thus, the correla-
tion length is increased by a small uniform field due to re-
duced quantum fluctuations.

The temperature dependence of the correlation length for
fixed uniform field h can also be extracted from Eq. �4.7�. As
long as �0�T��2h, this temperature dependence is still given
by Eq. �4.8�. When the temperature is further reduced, Eq.
�4.7� predicts a crossover at �0�T��2h to the temperature-
dependent correlation length

��h�
a

� exp�4�J̃0S2n�0�
T

�x�y

Vu
 . �4.12�

The additional factor of 2 in the exponent as compared to Eq.
�4.8� is due to the fact that at very low temperatures the
spin-wave mode �k− yields a singular contribution, whereas
the mode �k+ has a gap 2h which is fixed by the external
field. In contrast, for h=0 both modes contribute equally,
leading to Eq. �4.8�.

The analysis in this section has been carried out for h
�1. For larger fields, there are field-dependent prefactors of
the first logarithm in Eq. �4.6� leading to a field-dependent
renormalization factor Zh in the exponent of Eq. �4.12�. The
field dependence of the correlation length at fixed tempera-
ture is then no longer determined by the singular contribu-
tions to the integrals and cannot be extracted from the simple
analysis presented here. Close to the critical field at h=1 the
nature of the divergences changes, since the dispersion of the
�=− mode becomes quadratic. As our mean-field calculation
is not suitable to describe the true critical behavior in two
dimensions, we do not discuss this limit in more detail.

Our approach can also describe a quasi-one-dimensional
anisotropic system, where the exchange coupling between
chains is very weak. The dispersion is then almost flat in the
transverse direction. The integrals will be quasi one dimen-
sional as long as the maximum variation of the dispersion in
the transverse direction is smaller than the self-consistent gap
4hs /n0. In this intermediate temperature regime the staggered
correlation length behaves as if the system were one dimen-

sional. At even lower temperatures there will be a crossover
to the true asymptotic two-dimensional behavior. A rough
estimate for the position of the crossover is a /���� /a
where ��

2 is the eigenvalue of the matrix A defined in Eq.
�3.18� associated with the eigenvector perpendicular to the
chain direction.

V. CONCLUSION

In summary, we have investigated the magnetic
properties of the new metal-organic quantum magnet
Mn�C10H6�OH��COO��2�2H2O. Its layered structure con-
tains two-dimensional arrangements of Mn2+ ions that sug-
gest a spin S=5/2 Heisenberg model on a distorted honey-
comb lattice as a minimal model. In order to explain
measurements of the magnetization M�H ,T� and the suscep-
tibility ��T�, we develop a variant of modified spin-wave
theory, which can be used to describe finite-temperature
properties of two-dimensional magnets in a uniform external
magnetic field. A fit of the theoretical results to the experi-
mental curves shows a satisfactory agreement for the mag-
netization at low temperatures where we expect our theoret-
ical approach to be valid. The magnetic susceptibility is very
well described down to temperatures of T�T*�3 K. Both
quantities are consistently fitted by one parameter J2=2J1 to
give the exchange coupling J2�1.8 K. For temperatures be-
low T* the uniform susceptibility shows again an upturn,
which together with an anomaly in the specific heat is most
likely due to some ordering transition. Possible mechanisms
for this transition are dipole-dipole interactions or couplings
between the layers, which should be included in more refined
theoretical models. From the experimental point of view
nuclear magnetic resonance or neutron scattering measure-
ments could provide a more detailed insight into the nature
of the magnetic interactions.
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