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Ab initio calculations for the giant magnetoresistance �GMR� in Co/Cu, Fe/Cr, and Fe/Au multilayers are
presented. The electronic structure of the multilayers and the scattering potentials of point defects therein are
calculated self-consistently. Residual resistivities are obtained by solving the quasiclassical Boltzmann equa-
tion including the electronic structure of the layered system, the anisotropic scattering cross sections derived by
a Green’s function method, and the vertex corrections. Furthermore, the influence of scattering centers at the
interfaces and within the metallic layers is incorporated by averaging the scattering cross sections of different
impurities at various sites. An excellent agreement of experimental and theoretical results concerning the
general trend of GMR in Co/Cu systems depending on the type and the position of impurities is obtained. Due
to the quantum confinement in magnetic multilayers GMR can be tailored as a function of the impurity
position. In Co/Cu and Fe/Au systems impurities in the magnetic layer lead to high GMR values, whereas in
Fe/Cr systems defects at the interfaces are most efficient to increase GMR.
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I. INTRODUCTION

A large number of experimental and theoretical investiga-
tions was initiated by the discovery of giant magnetoresis-
tance �GMR� in magnetic multilayers1,2 to elucidate the mi-
croscopic origin of the phenomenon. Several authors have
shown3–7 that GMR in magnetic multilayers is strongly in-
fluenced by changes in the electronic structure, especially the
Fermi velocities, of the system in dependence on the relative
magnetization alignment in adjacent layers. In realistic
samples, however, spin-dependent scattering in the layers
and at the interfaces is considered to be the driving force to
cause GMR. The effort to tailor GMR systems with high
resistivity ratios was accompanied by a variety of exper-
iments8–10 and calculations11–14 which investigated the influ-
ence of dusting and doping by impurities. Agreement was
reached concerning the dominant role of interface scattering.
The results of Marrows and Hickey,10 however, demon-
strated the strong dependence of GMR on the position of the
impurities with respect to the interfaces and on the valence
difference between impurity and host. The aim of this paper
is to present ab initio calculations for the scattering cross
sections and resulting GMR ratios in dependence on defect
material and position. Within our approach the coherent band
structure, the scattering at defects in the layers and at the
interfaces are treated on the same footing without adjustable
parameters. So, our quasiclassical approach comprises the
quantum effects caused by the layer and spin-dependent po-
tentials. In addition, such an approach does not rely on bulk
properties for the scattering cross sections, which allows for
the correct description of multilayers with the thickness of
the individual layers small in comparison to the bulk mean
free path.

The calculations were performed for the standard systems
of magnetoelectronics Co/Cu and Fe/Cr. In addition, the
system Fe/Au was investigated because the system shows a

high interface quality15 and the structural properties should
be closest in experiment and theory. The influence of defects
on the phenomenon of magnetic interlayer exchange cou-
pling in Fe/Au was investigated earlier and a strong influ-
ence of defect material and position was found.16

By the systematic study of the different material combi-
nations the similarities of these GMR systems and the strik-
ing differences could be elucidated. The resistivity drop in
dependence on the magnetic order in the current-in-plane
�CIP� and the current-perpendicular-to-plane �CPP� geom-
etry is caused by different groups of electronic eigenstates of
the layered structure characterized by the probability ampli-
tude localized or extended in the system.13 To study the in-
terplay of spin-dependent quantization and scattering the in-
vestigations here are restricted to the CIP geometry.

II. METHOD

All calculations are performed within the framework of
density functional theory in local spin density approximation
applying the screened KKR �Korringa-Kohn-Rostoker�
Green’s function method.17 We have chosen a multilayer ge-
ometry in the so-called first antiferromagnetic �AF� maxi-
mum of interlayer exchange coupling for the Co/Cu system
consisting of 9 monolayers �ML� Co separated by 7 ML Cu,
denoted as Co9Cu7. The structure of the superlattice was as-
sumed to be a fcc lattice with a lattice constant of 6.76 a .u.
grown in the �001� direction. Each atomic plane is repre-
sented by one atom in the prolonged unit cell with 32 atoms.
A similar configuration was chosen for Fe/Cr and a perfect
bcc stacking in the �001� direction with a lattice constant of
5.50 a .u. was assumed. This is somewhat larger than the
lattice constant of Fe and Cr, but provides the correct mag-
netic order within the local-density approximation �LDA�
and the atomic sphere approximation for the potentials.18 The
Fe/Cr system consists of 9 ML Fe and 9 ML Cr which pos-
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sesses an AF ground state confirmed by calculation and
experiment.15 Structural relaxations at the interfaces were ne-
glected. Despite of the AF order the Cr layer will be referred
to as the nonmagnetic layer in the system, to use the same
notation as for the other system under consideration. We con-
sider Fe/Au multilayers with the same structural data re-
ported by the experiments15 that is a structural bcc-fcc tran-
sition. The lattice constant for Fe is abcc=5.4163 a .u., and
for Au afcc=�2abcc. The thickness of 9 ML of the Au layer
was chosen in accordance with the experimentally obtained
interlayer exchange coupling strength which favors an anti-
parallel coupling for this Au thickness.

The self-consistent electronic structure of the ideal host,
without any impurities, is described by the one-particle
Green’s-function, whose structural part G̊LL�

nn��E� is expanded
into a site and angular-momentum basis.19

The aspect for superlattices is that we consider a lattice
with a basis. The index n is now a shorthand notation for
lattice vector RN and basis vector ri of the atoms in the unit
cell. To simulate a substitutional point defect one atom in the
lattice is replaced by another. The site index of the impurity
position is denoted by �.

The impurity Green’s function GLL�
nn��E� of the multilayer

including an impurity atom at a defined position is obtained
by the solution of an algebraic Dyson equation19

GLL�
nn��E� = G̊LL�

nn��E� + �
n�L�

G̊LL�
nn��E��tL�

n��E�GL�L�
n�n��E� . �1�

The n� summation involves all sites in the vicinity of the site
� for which the differences of the single site t-matrices

�tL�
n� = tL�

n� − t̊L�
n� of the multilayer with and without defect are

significant. The single site t matrices are derived from the
angular-momentum dependent scattering phase shifts of the
potentials in atomic sphere approximation �ASA�. The dif-
ferences �tL

n characterize the potential perturbation caused
by the defect. In the calculations we take into account angu-
lar momenta lmax�3. We allow for potential perturbations up
to the second atomic shell around the impurity atom. Charge
multipoles up to lmax=6 are taken into account. Since the
systems under consideration are magnetic all properties men-
tioned above depend also on spin quantum numbers �
= ↑ ,↓ for majority and minority electrons, respectively.

Using the impurity Green’s function, the self-consistently
calculated potential perturbation and the wave function coef-
ficients of the superlattice Bloch states we derive the micro-
scopic spin-conserving transition probability Pkk�

� for elastic,
that is on-shell-scattering of a Bloch wave k into a perturbed
Bloch wave k�. k is now a shorthand notation for the wave
vector k and band index �, � denotes the spin quantum
number.20,21 The transition probability is given by Fermi’s
golden rule

Pkk�
�� = 2�cN�Tkk�

� �2��Ek
� − Ek�

� � . �2�

The formalism is restricted to dilute alloys since we assume
a linear dependence with the number of defects cN. Further-
more, spin-orbit coupling and the resulting spin-flip pro-
cesses are neglected by the nonrelativistic scheme.

The transition matrix elements Tkk�
� for the scattering of

Bloch electrons by an impurity cluster embedded in an oth-
erwise ideal translational invariant multilayer are given
by21,22

Tkk�
� =

1

V
�

LL�nn�

CL
n�k,��TLL�

nn�CL�
n��k�,�� . �3�

CL
n�k ,�� are the expansion coefficients for the superlattice

wave function in an angular momentum basis. V denotes the
total crystal volume. Using spherical potentials �ASA� the

matrix elements TLL�
nn� are derived from the structural Green’s

function matrix elements GLL�
nn� of the perturbed system and

the potential perturbation �tl
n.22–24

Summation over all final states leads to the spin- and
state-dependent relaxation time

1

	k
����

= �
k�

Pkk�
� ��� , �4�

which depends on spin �, Bloch state k, and impurity posi-
tion r� in the superlattice. The k and spin dependence of the
scattering rates is treated fully quantum mechanically with-
out adjustable parameter. The dependence on the effect posi-
tion is involved by the implicit dependence of the impurity

Green’s function GLL�
nn� on the r�. Up to this point we consider

a dilute alloy of impurity atoms all of them occupying a
chosen site � in the unit cell. That is, the alloying is re-
stricted to certain atomic planes in the multilayer. These
planes correspond to the impurity � layers experimentally
investigated by Marrows and Hickey.10

The conductivity is calculated by solving the quasiclassi-
cal Boltzmann equation.21 Thus, the vector mean free paths
are obtained by

�k
���� = 	k

�����vk
� + �

k�

Pkk�
� ����k�

� ���� . �5�

This includes besides to the anisotropic relaxation times as
the second term on the right-hand side �r.h.s.� the computa-
tional demanding scattering-in term �vertex corrections�
which completes the description of impurity scattering.21,25

The band structure is included via Fermi velocities vk
� and

the k� summation over all states on the anisotropic Fermi
surface. The impurity scattering enters via the relaxation
times 	k

���� and the microscopic transition probabilities
Pkk�

� ���. Equation �5� is solved iteratively to determine the
vector mean free path �k

���� of an electron with spin � in a
state k. To our knowledge, up to now the semiclassical cal-
culations of the CIP-GMR have been mostly performed
within relaxation time approximation only,3,13,14,26,27 which
neglects the scattering-in term. Zhang and Butler proposed a
simplified method to include the vertex corrections by renor-
malization of the electron life times using an adjustable
parameter.28 The deviation of the relaxation time approxima-
tion in comparison with the solution including the vertex
corrections are discussed in Fig. 2.

Based on the solution of Eq. �5� the spin-dependent con-
ductivity tensor ����� is given by a Fermi surface integral21
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����� =
e2

V
�

k

��Ek
� − EF��k

���� ˚ vk
�. �6�

With Mott’s two-current model29 the total conductivity
����=�↑���+�↓��� is obtained by spin summation. The
CIP resistivity is obtained by the inverse of the CIP conduc-
tivity due to the diagonal structure of the conductivity tensor
for the tetragonal systems under consideration


��� =
1

�↑��� + �↓���
. �7�

To describe the existence of an overall distribution of im-
purities in the multilayer the transition probabilities of the
different � layers have to be superimposed. Following this
idea, layer-dependent relaxation times 	k

���� are added

1

	k
� = �

�

x���
	k

����
, �8�

including weighting factors x��� that account for the relative
concentration of defects at the corresponding positions � in
the unit cell.

The most driving aspect of magnetic multilayers is the
drastic change of the conductivity � as a function of the
relative orientation of the magnetic layer moments, parallel
�P� or antiparallel �AP�. The relative change defines the
GMR ratio

GMR��� =
�P���
�AP���

− 1. �9�

III. CONDUCTIVITY AND QUANTUM WELL STATES

We consider the multilayers described above and investi-
gate the scattering properties of impurities of the nonmag-
netic component in the magnetic layers and vice versa.

The analysis of the transport coefficients is focused on the
current-in-plane �CIP� geometry. The total CIP conductivities
normalized to the defect concentration c caused by impuri-
ties of the magnetic material at different positions in the
nonmagnetic layer and nonmagnetic defects in the magnetic
layer are shown for all considered systems in Figs. 1�a�, 1�c�,
and 1�e�, respectively, for both configurations of the magne-
tization directions �P, AP�. The conductivity differs by orders
of magnitude as a function of impurity position �keep in
mind the logarithmic scale�. The largest values occur for im-
purity positions where the quantum confinement produces
many Bloch states with low probability amplitude. The
eigenstates show strong quantum confinement due to the su-
perlattice potential. That is, the probability amplitude is
modulated by the layered structure and can even tend to zero
at particular sites of the supercell.13,30 The consideration of
additional interface scattering in Figs. 1�b�, 1�d�, and 1�f�
will be discussed below.

The influence of vertex corrections is quantified in Fig. 2.
For different defects at the Co interface position in Co/Cu
the deviation of the resistivity 
� calculated including vertex
corrections in Eq. �5� and without �
̊�� are shown for both
spin bands. In the minority channel �upwards triangles� the
deviations are of the order of few percent �except for Cr�. In

FIG. 1. Conductivity of Co9/Cu7, Fe9 /Cr7, and Fe9/Au7 for P
and AP alignment in dependence on the position of “self” impuri-
ties, respectively; �a�, �c�, �e� Assuming scattering at the inserted �
layer only, �b�, �d�, �f� assuming �-layer scattering �50%� and inter-
face scattering �50%�.

FIG. 2. Influence of vertex corrections: Dependence of the spin-
dependent resistivity for Co9/Cu7 multilayers on 3d impurities at
the interface position of the magnetic layer 
� calculated including
vertex corrections and 
̊ � without
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the majority channel the vertex corrections are large for de-
fects where sp scattering dominates; that is the differences of
the single-site t matrices in Eq. �1� are small for l�2. This is
the case for impurities with a similar electronic structure like
the host, at least for this spin direction. For Sc, Ti, V, and Cr
with an opposite magnetic moment with respect to Co and a
dominating scattering in the l=2 channel the vertex correc-
tions are small as for the minority spin direction. Summariz-
ing, one can state that the variations of the resistivity by
incorporation of the vertex corrections in the solution of the
Boltzmann equation are less than 20% in most cases and do
not change the qualitative behavior of GMR. The neglect of
vertex corrections may change the results quantitatively, but
the general trend is conserved.

To analyze the influence of the quantum confinement on
the character of the eigenstates a classification of the eigen-
states according to Ref. 13 was performed. The distribution
of the probability amplitude in the different regions of the
multilayer was analyzed and the states are labeled by the
region with the highest averaged probability amplitude. The
eigenstates are classified into four types and are labeled by
quantum well states �QWS� in the magnetic layer CM �Co,
Fe�, QWS in the nonmagnetic layer CN �Cu, Cr, Au�, inter-
face states CI, and extended states CE which have a probabil-
ity amplitude of approximately the same size in all regions.
To emphasize the contribution of the different classes of
eigenstates the total conductivity 	Eq. �6�
 was projected to
the layers � in the supercell according to Ref. 31

����� =
e2

V
�

k

��Ek
� − EF�vk,x

� vk,x
� �ck

�����2, �10�

with ck
���� the expansion coefficient of the Bloch eigenstate

�k, �� at the site � in the supercell. The normalization of the
Bloch state to the unit cell yields ���ck

�����2=1. In addition,
the site-dependent conductivity ����� was split into the con-
tributions of the four typical classes of eigenstates which are
shown in Fig. 3. It is evident that a large contribution of the
CIP conductivity is carried by the QWS in the magnetic and
nonmagnetic layer. Especially, in the minority channel of the
Co/Cu system and the majority channel of the Fe/Cr system
the conductivity is dominated by contributions of the mag-
netic quantum well states. By considering only a few types
of defects in the sample the conductivity is dominated by one
spin direction in most cases. Assuming more types of defects
and taking into account the effect of self averaging this ten-
dency is reduced.

Due to the quantum size effects the relaxation times show
a strong variation for the states at the Fermi level which
determine the conductivity. All Bloch states with a nearly
zero probability amplitude at the impurity site undergo a
weak scattering and cause extremely large relaxation times.
The state-dependent relaxation times are distributed over
several orders of magnitude, especially for defects inside the
metallic layers �see Fig. 4�. This is an effect that does not
occur in bulk systems. The panels show the relative amount
of relaxation times 	k for the states at the Fermi level for the
Co/Cu system �top viewgraph� and the Fe/Cr system �bot-
tom panel�. The spin resolved histograms for Cu defects in

bulk Co are given for comparison �topmost subpanel�. The
remaining subpanels represent relaxation times for Cu de-
fects in the center of the Co layer and for Cu defects at the
Co/Cu interface. The color of the bars labels the character of
the eigenstates: Extended multilayer states are shown in dark
grey; QWS confined to the magnetic layer are shown in
black. QWS confined to the nonmagnetic layer are given in
white, and interface states are given by light grey bars. For
defects inside the magnetic layer the maximum of the distri-
bution coincides with that in the bulk material. In addition, a
long tail for high values occurs caused by states which have

FIG. 3. Spin-dependent, layer-projected conductivity of Co9Cu7,
Fe9Cr7, and Fe9Au7 for P alignment with interface defects, typical
classes are marked by grey-extended, black-magnetic QWS �Co,
Fe�, white-nonmagnetic QWS �Cu, Cr, Au�, and light grey interface
states.

ZAHN, BINDER, AND MERTIG PHYSICAL REVIEW B 72, 174425 �2005�

174425-4



a small probability amplitude at the defect position, e.g.,
quantum well states in the nonmagnetic layer or interface
states. This is best seen in the middle subpanel for Cr defects
in the center of the Fe layer for the Fe/Cr multilayer. Quan-
tum well states confined to the Fe layer have a large prob-
ability amplitude at the defect position and as a result smaller
relaxation times than in the bulk system. Interface states with
a tail penetrating the Fe layer are scattered on an intermedi-
ate level and Cr quantum well states with the lowest prob-
ability amplitude at the defect position are scattered weakly.

The states with large relaxation times although not numer-
ous are highly conducting and nearly provoke a short circuit.
This is the case for Co impurities in the Cu layer for the
Co/Cu multilayer; compare Fig. 4, top panel, and for Fe
defects in the Au layer for the Fe/Au system. This effect is

mainly obtained for impurities in the center of the layers and
is related to the fact that in-plane transport is mostly driven
by quantum well states.13 This peculiar behavior of conduc-
tivity is in agreement with the results of Blaas et al.14 who
found higher resistivities for Co/Cu multilayers with inter-
diffusion restricted to the interface layers than for alloying
with Cu atoms in the Co layers.

For comparison with experiments we have to mention that
the large absolute values would hardly be obtained experi-
mentally since they correspond to idealized samples with
perfectly flat interfaces and defects at well-defined positions
in the superlattice. As soon as we consider an overall distri-
bution of defects in the multilayer the highly conducting
channels are suppressed. The general trend, however, sur-
vives. This phenomenon of highly conducting electrons con-
fined to one layer of a multilayer structure is called electron
wave-guide or channeling effect30,32 and was also experi-
mentally verified.5

Structural investigations of Co/Cu multilayers on an
atomic scale33,34 gave evidence that most of the structural
imperfections appear next to the interfaces. To investigate the
influence of more than one type of scattering centers in one
sample a simplified defect distribution was assumed. In ad-
dition to the specific �-layer defects of the magnetic layer
material in the nonmagnetic interface atomic layer and de-
fects from the nonmagnetic material in the magnetic inter-
face layer are considered to simulate an intermixed region at
the interface. For the concentration weights x��� entering
Eq. �8� we choose 25% for defects in both of the interface
layer and 50% for defects in the � layer and the resulting
conductivities are shown in Figs. 1�b�, 1�d�, and 1�f�, respec-
tively. First, an overall reduction of the resistivities is ob-
tained, caused by the distribution of defects at different po-
sitions and the resulting higher probability that also quantum
well states are scattered at one or the other type of defect.
According to Eq. �8� the defect with the highest scattering
rate 1 /	k dominates the total relaxation time 	k. The diffusive
scattering cross section for interface defects between two
perfect half spaces was obtained in Ref. 35. A comparison
with our results would require a k-space inspection of the
relaxation times and is out of the scope of this publication.

IV. GIANT MAGNETORESISTANCE

The GMR ratios derived from the conductivities in Fig. 1
are shown in Fig. 5. Assuming scattering centers in the �
layer only 	Figs. 5�a�–5�c�
 huge GMR ratios are obtained
especially for Cu defects in the Co layer. Introducing addi-
tional interface scattering with a weight of 50% causes
strongly reduced values 	Figs. 5�d�–5�f�
. The thin dashed
line in the lower panels of Fig. 5 is the GMR ratio caused by
interface scattering. This value would correspond to the ref-
erence value in the experiments of Marrows and Hickey
without a � layer.10 The thick dashed line in Fig. 5 gives the
GMR value obtained with the assumption of a constant re-
laxation time without any spin or state dependence �intrinsic
GMR�. In comparison to this case of isotropic scattering the
insertion of an additional � layer increases GMR, mostly at
the interfaces.

FIG. 4. Histogram of spin-dependent, anisotropic relaxation
times of Co9Cu7 �top panel�, and Fe9Cr7 �bottom panel� for P align-
ment, defects in the magnetic layer at interface position �bottom�,
center position �middle�, and defect in bulk �top�, the contribution
of typical classes are marked by grey-extended, black-Co/Fe,
white-Cu/Cr/Au, and light grey-interface states.
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Comparing the trend of GMR an excellent agreement with
the experiment �inset in Fig. 5� is obtained for the Co/Cu
system. To our knowledge, up to now similar experimental
investigations of the GMR dependence on the defects posi-
tion are not available for Fe/Cr multilayers. The importance
of the interface scattering to obtain a large GMR effect in
Fe/Cr was pointed out by several authors.36–38 The weight-
ing factors for the different scattering mechanisms are de-
rived from the structural investigations by Davies et al.36 We
choose 0.45 for Cr defects in the Fe interface atomic layers
and 0.05 for Fe defects in the Cr interface layer. The contri-
bution from the � layer is fixed to 0.5 as in the case of the
Co/Cu multilayer. The most striking feature in comparison
to Co/Cu is the reduction of the GMR ratio by introducing
Cr defects in the Fe layers as shown in Figs. 5�b� and 5�e�.

We still have to mention that the calculated values are two
orders of magnitude larger than the experimental ones. The
reason is the restriction to substitutional point defects. In
addition to these much more scattering mechanisms are ac-
tive in real samples. These nonspecific sources of scattering
can be characterized by an additional spin- and state-
independent relaxation time 	 	thick dashed line in Figs.
5�d�–5�f�
 and the results could be corrected toward the ex-
perimental ones.13

In contrast to Ref. 13 the present results were obtained
assuming the above described impurity distribution only and
are focused on the impurity scattering rates only. Another
difference to the experimental setup in Ref. 10 is the consid-
ered geometry. The experimentally investigated samples
have been Co/Cu/Co spin valves grown on a buffer layer
and protected by a cap layer. As a consequence the GMR
ratios are nearly symmetric as a function of the impurity
position in the Cu layer but asymmetric for defects in the Co

layer. The calculations are performed in supercell geometry
which is reflected in the symmetry of the results with respect
to the defect position in both layers Cu and Co. A possible
influence of superlattice effects in metallic multilayers was
shown to be negligible.39

Figure 6 compiles the trend of GMR caused by 3d-,4s-
�left column� and 4d-,5s-transition metal impurities �right
column� as a function of position in the magnetic layer. The
CIP-GMR ratios are given for the corresponding defects in
the middle of the magnetic and nonmagnetic layer, respec-
tively, marked by the closed symbols. The open symbols
correspond to a position of the � layer at the interface. The
horizontal dashed lines indicate the case of interface scatter-
ing only. This means we consider a � layer of the magnetic
material in the nonmagnetic interface atomic layer and vice
versa. The thick dashed lines give the results assuming a
spin- and state-independent relaxation time.

In a previous work13 we used a simplified model to de-
scribe the scattering. We assumed �-peaklike potential per-
turbations characterized by a spin-dependent scattering
strength t�. Comparing with these results one can state the
following. The reader should note that the order of Co and
Cu in Fig. 2 in Ref. 13 is reversed in comparison to Figs.
5�a� and 5�d� of this work. The insertion of a � layer in the
Co layer enhances the GMR in comparison to the undoped
case in both models. The differences of the results are caused
by the approximation used for the scattering strength. In this
work the scattering potentials were determined self consis-
tently also for a region around the defects. Evaluating Eq. �3�
the Born series expansion of the scattering operator T in
terms of the single site t matrix and all multiple scattering
contributions are included completely.

Comparing the influence of 3d defects at the interface
with that caused by an ordered interface alloy40 a similar

FIG. 5. Dependence of GMR in Co9/Cu7, Fe9 /Cr7, and Fe9/Au7 on the position of “self” impurities. �a�–�c� Assuming scattering at the
inserted � layer only, �d�–�f� assuming �-layer scattering �50%� and interface scattering �50%�. The thin dashed lines mark the GMR ratio
assuming interface impurities only, and the thick dashed line gives the GMR assuming isotropic relaxation times. The inset �g� in panel �d�
shows the experimental result from Ref. 10.
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trend for the GMR is obtained. One should compare Fig. 5
�left column� in Ref. 40 and the GMR values for the position
x=0 of the � layer in Fig. 6. For the lighter 3d elements up to
Mn the GMR is lowered with the interface alloy, whereas for
heavier elements the GMR is maintained or even increased.

All the calculations are carried out for the limit of low
defect concentration. That means the scattering at different
defects is treated independently. For a typical concentration
of 1% we obtain an imaginary part of the self energy of the
order of 10−3 eV. This is small in comparison with the typi-
cal bandwidth in the transition metals. In contrast to the work
of Tsymbal and Pettifor41 the contributions to the conductiv-
ity arising from interband transitions are expected to be
small.

V. SUMMARY

In conclusion, the self-consistent calculation of the scat-
tering properties and the improved treatment of the Boltz-
mann transport equation including vertex corrections provide
a powerful tool for a comprehensive theoretical description
and a helpful insight into the microscopic processes of CIP
GMR. The experimentally found trends concerning the dop-
ing with various materials at different positions in the mag-
netic multilayer could be well reproduced which means that
spin-dependent impurity scattering is the most important
source of GMR. The theoretical results show furthermore
that interface scattering caused by intermixing plays a crucial
role and has to be taken into account in any system under
consideration. Selective doping of the multilayer with impu-
rities in specific positions causes variations of GMR which
could be well understood by the modulation of spin-
dependent scattering due to quantum confinement in the lay-
ered system and by the spin anisotropy �.
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