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We study resonant x-ray scattering �RXS� at Np M4,5 edges in the triple-k multipole ordering phase in NpO2,
on the basis of a localized electron model. We derive an expression for RXS amplitudes to characterize the
spectra under the assumption that a rotational invariance �spherical symmetry� is preserved in the Hamiltonian
describing the intermediate state of the scattering process. This assumption is justified by the fact that the
energies of the crystal electric field and the intersite interaction are smaller than the energy of multiplet
structures. This expression is found to be useful to calculate energy profiles taking account of the intra-
Coulomb and spin-orbit interactions. Assuming the �8-quartet ground state, we construct the triple-k ground
state and analyze the RXS spectra. The energy profiles are calculated in good agreement with the experiment,
providing a sound basis to previous phenomenological analyses.
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I. INTRODUCTION

The resonant x-ray scattering �RXS� technique has at-
tracted much attention to study spin and orbital properties of
3d transition-metal compounds. RXS at the K edge is de-
scribed by a second-order optical process that an incident
x-ray excites a 1s core electron to unoccupied 4p states and
then the 4p electron is recombined with the core hole with
emitting x ray in the dipole process �E1�. It became widely
known after the observation of intensities on orbital-ordering
superlattice spots at the Mn K edge in LaMnO3.1 At the
earlier stage, the spectra were interpreted as a direct obser-
vation of orbital ordering.2 However, subsequent theoretical
studies based on band structure calculations revealed that the
spectra are a direct reflection of lattice distortion,3–5 since the
4p state in the intermediate state is influenced not by the
orbital ordering of 3d electrons but by lattice distortion
through hybridization with the 2p state at neighboring oxy-
gen sites.

Different from transition-metal compounds, M4,5 edges
are available for forbidden-reflection Bragg spots in actinide
compounds.6–8 The RXS spectra are more directly reflecting
multipole orderings of 5f states, since the E1 process in-
volves a transition from the 3d core to 5f states. Each ac-
tinide atom usually carries local multipole moments, which
can order at low temperatures due to intersite interactions
such as exchange interactions. For such localized electron
systems, RXS amplitudes are given by summing up contri-
butions at each site. The crystal electric field �CEF� and the
intersite interaction can be safely neglected in the intermedi-
ate state, because they are much smaller than the intra-atomic
Coulomb interaction. Therefore, it may be reasonable to as-
sume that the Hamiltonian describing the intermediate state
preserves rotational invariance. Under this assumption, we
derive an expression for the RXS amplitude in the E1 pro-
cess to characterize the spectra. Although the expression is
essentially the same as the formula by Hannon et al.,9 the

present form is useful to calculate energy profiles taking full
account of multiplet structures. Using this expression to-
gether with a microscopic model, we calculate the RXS
spectra in the triple-k multipole ordering phase in NpO2.

NpO2 undergoes a second-order phase transition below
T0=25.5 K.10,11 Since Np ions are Kramers ions in the �5f�3

configuration, a magnetic ground state is naturally expected.
However, neither Mössbauer spectroscopy12,13 nor neutron
diffraction experiments14,15 could detect any evidence of a
sizable magnetic moment. Actually, the former experiment
gave an estimate of the upper limit of the magnitude of the
magnetic moment �0.01�B, which was too small to explain
the effective paramagnetic moment �2.95�B.16 Another
complication is that a muon spin relaxation ��SR� experi-
ment has suggested the low-temperature phase of breaking
time-reversal symmetry.17

A natural way to reconcile with the above observations is
to introduce the higher-rank multipole ordering rather than
the dipole moment. Actually, Santini and Amoretti proposed
a octupole ordering of �2�xyz� symmetry.18,19 However, this
phase can be ruled out because it gives rise to no RXS in-
tensity. Recently, Paixão et al. have reported that a longitu-
dinal triple-k octupole ordering accounts well for their RXS
experiment.20 The reason for anticipating triple-k orderings
is that they exclude a crystal distortion or a shift of oxygen
positions, which is consistent with the experiment. Experi-
mental data obtained from the 17O NMR spectrum, which
indicate the existence of two inequivalent oxygen sites, sup-
port the occurrence of the triple-k octupole ordering phase.21

Some theoretical works also have lent support to realization
of this type of the phase.22,23

Assuming the �8-quartet ground state, we explicitly con-
struct a triple-k octupole ordering state within the mean-field
approximation at T=0. A discussion of the phase transition is
beyond the scope of this paper and delegated to Ref. 22. This
state is found to simultaneously carry a finite quadrupole
moment, which generates the RXS intensity. Since the RXS
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amplitudes are characterized by three terms—the scalar, di-
pole, and quadrupole ones—it is not necessary to assume the
existence of the hexadecapole moment instead of the quad-
rupole moment. We calculate the energy profiles taking full
account of multiplet structures in the intermediate state. We
obtain spikelike curves at Np M4 edges for smaller values of
the core-level width � as a reflection of multiplet structures.
They are found to merge into a single peak with ��1 eV.
The energy profile with ��2 eV seems to agree with the
experiment. The azimuthal-angle dependence of the RXS
spectra is obtained in agreement with the previous
analysis.20,24 The present analysis provides a sound basis to
the previous phenomenological analysis.

The present paper is organized as follows. In Sec. II, we
present an expression for the RXS amplitude, which is useful
to calculate the energy profiles. In Sec. III, we analyze the
RXS spectra in the triple-k octupole ordering of NpO2 on the
basis of a localized electron model. Section IV is devoted to
concluding remarks. In the Appendix, we derive the general
expression of RXS characterizing energy profiles.

II. THEORETICAL FRAMEWORK OF RXS

A. Second-order optical process

In the resonant process, an incident photon with energy
��, wave vector k, and polarization vector � excites a core
electron to an empty valence shell of the intermediate state;
then, the excited electron falls into the core state emitting a
photon having the same energy, wave vector k�, and polar-
ization vector ��. For example, at M4,5 edges in actinide
compounds, a 3d core electron is promoted to partially filled
5f states at each site by the E1 transition. The definition of a
geometrical arrangement adopted here is found in Fig. 1. The
RXS amplitude is assumed as a sum of contributions from
individual ions. Since the dipole matrix element involves a
well-localized wave function of core states, the assumption
seems quite reasonable. Accordingly, the RXS intensity ob-
served in the experiment may be expressed for the scattering
vector G�=k�−k� as

I���,�,G,�� 	 � 1
�N

�
j

e−iG·rjMj���,�,���2

, �2.1�

where Mj��� ,� ,�� represents the RXS amplitude at site j
with N being the number of sites. For the E1 transition, it is
expressed as9,25–27

Mj���,�,�� = �

�,


�
��
��
�

��0�x
,j��	���x
�,j��0	

�� − �E� − E0� + i�
,

�2.2�

where the dipole operators x
,j’s are defined as x1,j =xj, x2,j
=yj, and x3,j =zj in the coordinate frame fixed to the crystal
axes with the origin located at the center of site j. The ��0	
represents the ground state with energy E0, while ��	 repre-
sents the intermediate state with energy E�. The � describes
the lifetime broadening width of the core hole.

B. Energy profiles

In localized models, the ground state and intermediate
state at each site are well specified by the eigenfunctions of
the angular momentum operator, �J ,m	. The CEF and the
intersite interaction usually lifts the degeneracy in the ground
state. Thus the ground state at site j may be expressed as
��0	 j =�mcj�m��J ,m	. On the other hand, in the intermediate
state, we can neglect the CEF and the intersite interaction in
a good approximation, since their energies are much smaller
than the intra-atomic Coulomb interaction and the spin-orbit
interaction �SOI� which give rise to the multiplet structure.
Thus the Hamiltonian describing the intermediate state pre-
serves the spherical symmetry. Under the assumption, as de-
rived in the Appendix, we obtain a general expression of the
scattering amplitude at site j:

Mj���,�,�� = 
0����� · � − i
1������  �� · ��0�J��0	

+ 
2����
�

P����,����0�z���0	 , �2.3�

where

z1 
 Qx2−y2 =
�3

2
�Jx

2 − Jy
2� , �2.4a�

z2 
 Q3z2−r2 =
1

2
�3Jz

2 − J�J + 1�� , �2.4b�

z3 
 Qyz =
�3

2
�JyJz + JzJy� , �2.4c�

z4 
 Qzx =
�3

2
�JzJx + JxJz� , �2.4d�

z5 
 Qxy =
�3

2
�JxJy + JyJx� �2.4e�

and

P1���,�� =
�3

2
��x��x − �y��y� , �2.5a�

P2���,�� =
1

2
�2�z��z − �x��x − �y��y� , �2.5b�

FIG. 1. Geometry of the RXS experiment. Photon with polar-
ization � or � is scattered into the state of polarization �� or �� at
the Bragg angle �. The azimuthal angle � describes the rotation of
the sample around the scattering vector G.
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P3���,�� =
�3

2
��y��z + �z��y� , �2.5c�

P4���,�� =
�3

2
��z��x + �x��z� , �2.5d�

P5���,�� =
�3

2
��x��y + �y��x� . �2.5e�

Here we have suppressed the dependence on j on the right-
hand side of Eq. �2.3�. The energy profiles are given by only
three functions 
0���, 
1���, and 
2���, whose expressions
are explicitly given in the Appendix.

Several facts are immediately deduced from Eq. �2.3�.
First, since the scalar, dipole, and quadrupole terms exhaust
the amplitude, the octupole ordering alone does not give rise
to the RXS amplitude. Second, the choice of the CEF param-
eters in the ground state does not affect the shape of energy
profiles 
0���, 
1���, and 
2���, although it affects the ex-
pectation values of dipole and/or quadrupole operators.
Third, 
0��� has no contribution to the forbidden Bragg
spots in the antiferro-type structure. In order to calculate the
energy profiles, however, we need to know explicitly wave
functions of the intermediate state, which are discussed in
the next section.

C. Absorption coefficient

Within the E1 transition, the absorption coefficient is
given by

A��� 	 �
j

�



�
�

����x
,j��0	�2
�/�

��� − E� + E0�2 + �2 ,

�2.6�

where ��	 with energy E� represents the final state, which is
equivalent to the intermediate state of RXS. A comparison of
Eq. �2.6� with Eq. �2.2� leads to

A��� 	 − Im 
0��� , �2.7�

where Im X denotes the imaginary part of X.

III. RXS SPECTRA FROM NpO2

A. Quartet ground state

NpO2 has the CaF2-type structure �Fm3̄m� with a lattice
constant a=5.431 Å at room temperature, as schematically
shown in Fig. 2.10 Np ions are tetravalent in NpO2, as con-
firmed by the isomer shift in Mössbauer spectra12 and by the
neutron diffraction experiment.28 In a localized description,
each Np ion is in the �5f�3-configuration. The Hamiltonian of
Np ions consists of the intra-atomic Coulomb interaction be-
tween 5f electrons in addition to the SOI of 5f electrons. The
Slater integrals for the Coulomb interaction and the SOI pa-
rameters are evaluated within the Hatree-Fock
approximation29 �HFA� and are listed in Table I. These val-
ues are usually reduced by many-body effects30—for ex-

ample, the intra-atomic configuration interaction. The reduc-
tion of the anisotropic part is known to be small; we use the
values multiplied by a factor of 0.8. The screened value of
the isotropic part F0 is not known, but an accurate value is
not necessary for the present purpose, because it is absorbed
into the M-edge energy in the spectra. Within the HFA, the
ground state has tenfold degeneracy corresponding to the J
=9/2 multiplet. The choice of the multiplying factors does
not alter this conclusion.31 Note that these states of J=9/2
are slightly deviated from those of the perfect Russell-
Saunders �RS� coupling scheme with L=6 and S=3/2 due to
the presence of the strong SOI. For instance, L2 and S2 take
values 39.752 and 3.237 respectively, compared to the RS
values 42 and 3.75.

In crystal, the tenfold degeneracy is lifted by the CEF.
Under cubic symmetry, the CEF Hamiltonian HCEF may be
expressed as

HCEF = B4�O4
0 + 5O4

4� + B6�O6
0 − 21O6

4� , �3.1�

where Ok
q’s represent the Stevens operator equivalence.

Thereby the degenerate levels are split into one doublet �6

and two quartets �8
�1� and �8

�2�. The level scheme has been
analyzed by the inelastic neutron scattering, which yields an
estimate of CEF parameters as B4=−3.0310−2 meV and
B6=2.3610−4 meV.32,33

The lowest levels are given by the �8
�2�, which is separated

about 55 meV from another quartet �8
�1�. Diagonalizing

Eq. �3.1�, we obtain the bases of the lowest quartet as

TABLE I. Slater integrals and spin-orbit interaction parameters
in the �3d�10�5f�3 configuration within the HF approximation �in
units of eV� �Ref. 29�.

Fk�3d ,3d� Fk�3d ,5f� Fk�5f ,5f� Gk�3d ,5f�

F0 180.1 F0 19.61

F2 92.04 F2 9.909

F4 59.28 F4 6.491

F6 4.769

�3d=76.254 �5f =0.298

FIG. 2. Crystal structure of NpO2. Gray circles denote Np ions
and open circles represent O ions.
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� + ↑	 = c1� +
9

2
 + c2� +

1

2
 + c3�−

7

2
 , �3.2�

� + ↓	 = c1�−
9

2
 + c2�−

1

2
 + c3� +

7

2
 , �3.3�

�− ↑	 = c4� +
5

2
 + c5�−

3

2
 , �3.4�

�− ↓	 = c4�−
5

2
 + c5� +

3

2
 , �3.5�

with c1=0.2757, c2=−0.4483, c3=0.8503, c4=−0.9751, and
c5=0.2216. State �m	 denotes the eigenstate with Jz=m.
Symbols � �=± � and � �=↑ , ↓ � are introduced to represent the
state �� ,�	, which distinguish non-Kramers and Kramers
pairs, respectively.

B. Triple-k structure

The fourfold degeneracy in the ground �8
�2� quartet may be

lifted by the intersite interaction, giving rise to nonvanishing
expectation values of multipole moments. Actually, several
experiments tell us that the time-reversal symmetry is broken
with nearly zero dipole moment in the ordered phase below
T0=25.5 K.17,21 These observations lead Santini and Amor-
etti to propose the antiferro-octupole ordering of Txyz type
�Txyz
��15/6�JxJyJz�.18,19 Here the overbar on operators
means symmetrization—for example, JxJy

2=JxJy
2+JyJxJy

+Jy
2Jx.

34 Unfortunately, this phase would not give rise to the
RXS intensities observed in the experiments.

An important observation is that no external distortion
from cubic structure exists in the ordered phase; that is, the
unit cell remains cubic below T0. This leads us to consider
the triple-k ordering, since it allows the crystal to keep the
cubic symmetry. As schematically shown in Fig. 3, the triple-
k structure is defined by all three members of the star of k
= �001	 simultaneously present on each site of the lattice. The
order parameter vector of the longitudinal �transverse� order-
ing is composed of three longitudinal �transverse� waves
with different k’s. There are four sublattices 1, 2, 3, and 4 at
�0,0,0�, � 1

2 , 1
2 ,0�, �0, 1

2 , 1
2

�, and � 1
2 ,0 , 1

2
�, respectively.

1. Octupole ordering

We start by the octupole ordering of �5u type proposed by
Paixão et al.20 The corresponding octupole operators are de-
fined by

Tx
� =

�15

6
Jx�Jy

2 − Jz
2� , �3.6a�

Ty
� =

�15

6
Jy�Jz

2 − Jx
2� , �3.6b�

Tz
� =

�15

6
Jz�Jx

2 − Jy
2� . �3.6c�

We first introduce the operators

Tp =�
1
�3

�Tx
� + Ty

� + Tz
�� for p = 111,

1
�3

�Tx
� − Ty

� − Tz
�� for p = 111,

1
�3

�− Tx
� + Ty

� − Tz
�� for p = 1̄11̄,

1
�3

�− Tx
� − Ty

� + Tz
�� for p = 111.

� �3.7�

Note here that the overbar appearing in the subscript p de-
notes the negative direction, not symmetrization. Each Tp
operator has eigenvalues ±t1�t1=−6.102� and doubly degen-
erated 0. The eigenstates of eigenvalues ±t1 are connected to
each other by the time-reversal operation and so are two
degenerate states of eigenvalue 0. For example, the eigen-
state of eigenvalue −t1 for T111 is explicitly written as

�− t1	 =
1

2
ei��111−�/2��� + ↑	 + e−i�/4� + ↓	�

−
1

2
��− ↑	 + ei3�/4�− ↓	� , �3.8�

with �111 being an angle between vector �1,1,1� and the z

FIG. 3. Triple-k antiferro-type arrangements: �a� a longitudinal
pattern and �b� two transverse patterns �1 and 2�. Arrows indicate
vectors ��Jx	 , �Jy	 , �Jz	�, ��Qyz	 , �Qzx	 , �Qxy	�, and ��Tx

�	 , �Ty
�	 , �Tz

�	�,
corresponding to the dipole, quadrupole, and octupole orderings,
respectively. Numbers 1, 2, 3, and 4 specify the sublattices. Oxygen
ions are omitted.
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axis—that is, cos �111=�1/3 and sin �111=�2/3. Using the
eigenstates as bases, Tp is represented as

Tp =�
− t1 0 0 0

0 + t1 0 0

0 0 0 0

0 0 0 0
� . �3.9�

Now we analyze the orders shown in Fig. 3. Within the
mean-field approximation, the single-site Hamiltonian may
be of the form Hsingle=hTp, with Tp=T111, T111, T1̄11̄, and
T111 for sublattices 1, 3, 4, and 2, in the longitudinal order;
Tp=T111, T111, T1̄11̄, and T111, for sublattices 1, 2, 3, and 4;
and 1, 4, 2, and 3, in the transverse order 1 and 2, respec-
tively. Th h represents the mean field, which may be ex-
pressed as h=
�Tp	 with 
 a constant. We construct the
ground state by assigning either of eigenstates of ±t1 to each
sublattice; which eigenstate is relevant depends on the sign
of acting mean field. The eigenstates make the order param-
eter vector ��Tx

�	 , �Ty
�	 , �Tz

�	� point to the ±p direction for ±t1.
Therefore, the assignment of the eigenstates is consistent
with the assumed order. Note that the wave function at each
site is different from that assumed by Lovesey et al., who
considered the state deviating from the �8 quartet.35

Introducing the quadrupole operators

Qp =�
1
�3

�Qyz + Qzx + Qxy� for p = 111,

1
�3

�Qyz − Qzx − Qxy� for p = 111,

1
�3

�− Qyz + Qzx − Qxy� for p = 1̄11̄,

1
�3

�− Qyz − Qzx + Qxy� for p = 111,

�
�3.10�

we can similarly construct the quadrupole ordering state by
assigning them to each sublattice in the same way as for
octupole orderings. Since Qp’s and Tp’s are simultaneously
diagonalized because of commuting with each other, Qp
could be represented as

Qp =�
− q1 0 0 0

0 − q1 0 0

0 0 + q1 0

0 0 0 + q1

� , �3.11�

with q1=−8.273.
According to the mean-field analysis at T=0, the

octupole-ordered ground state can be stabilized through the
octupole-octupole intersite interaction. Each Np ion is in the
eigenstate of the eigenvalue −t1 �or t1�. Since the state is also
the eigenstate of the eigenvalue −q1, the quadrupole ordering
is simultaneously realized. On the other hand, if the quadru-
pole order is primary, each Np ion is in the eigenstate of the
eigenvalue −q1 or q1. For the case of eigenvalue −q1, two
eigenstates are degenerate and give eigenvalues −t1 and t1 to

the octupole moment Tp, and thereby the net octupole mo-
ment becomes zero. For the case of q1, two eigenstates are
also degenerate and give the eigenvalue 0 to Tp. In either
case, the quadrupole order carries no octupole order. Since
the double degeneracy remains in this phase, it must be lifted
at lower temperatures by realizing an octupole-ordered
phase. Considering the experimental facts that the time-
reversal symmetry is broken and the phase transition takes
place only once, we conclude that the primary order param-
eter is the octupole order.

2. Dipole ordering

Although the dipole ordering is ruled out in NpO2, it may
be interesting to discuss here what happens in the dipole
ordering. Such kind of ordering pattern may be found in UO2
and U0.75Np0.25O2.36

Introducing the dipole operators

Jp =�
1
�3

�Jx + Jy + Jz� for p = 111,

1
�3

�Jx − Jy − Jz� for p = 111,

1
�3

�− Jx + Jy − Jz� for p = 1̄11̄,

1
�3

�− Jx − Jy + Jz� for p = 111,

� �3.12�

we can construct the dipole ordering state by assigning them
to each sublattice in the same way as in the octupole order-
ing. Note that Jp and Qp are simultaneously diagonalized,
because both operators commute with each other. Within the
bases of simultaneous eigenstates of Jp and Qp, the relevant
operators are represented as

Jp =�
− j1 0 0 0

0 + j1 0 0

0 0 − j2 0

0 0 0 + j2

� , �3.13�

Qp =�
− q1 0 0 0

0 − q1 0 0

0 0 + q1 0

0 0 0 + q1

� , �3.14�

Tp =�
0 − t1 0 0

− t1 0 0 0

0 0 0 0

0 0 0 0
� , �3.15�

where j1=3.27 and j2=0.18 with parameters given in NpO2.
The magnetic moment is evaluated on either of eigenstates of
±j1: �Lp+2Sp	=2.48 �Lp and Sp are defined as in the same
way as Jp�.

In the dipole ordering, the ground state is given by assign-
ing one of the eigenstates of Jp’s to each sublattice. Since j1
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is much larger than j2, the ground state is likely to be either
of eigenstates of ±j1. From Eqs. �3.14� and �3.15�, this state
gives the finite average value of the quadrupole moment but
no average value of the octupole moment. If this state is
mixed with another eigenstate, the new state has a finite av-
erage value of the octupole moment and thereby may gain a
negative energy of the octupole-octupole interaction. But the
mixing of another eigenstate causes an increase of the
dipole-dipole energy. If the dipole-dipole interaction is domi-
nant, the latter would be large and no octupole order is in-
duced at T=0. Note that, if the quadrupole ordering is pri-
mary, no dipole moment is induced, because the doubly
degenerate eigenstates of Qp are the eigenstates of ±j1 of Jp.
The same discussion as in the case of the octupole ordering
can be applied.

C. RXS spectra

Irrespective of whether the octupole or quadrupole order-
ing is realized, RXS amplitudes are generated at each site,
according to Eq. �2.3�. They are proportional to q1
2���
�P3+ P4+ P5� for the simultaneous eigenstate of T111 and
Q111, to q1
2����P3− P4− P5� for the simultaneous eigenstate
of T111 and Q111, to q1
2����−P3+ P4− P5� for the simulta-
neous eigenstate of T1̄11̄ and Q1̄11̄, and to q1
2����−P3− P4

+ P5� for the simultaneous eigenstate of T111 and Q111. On
the scattering vector G= �hh�� with h+�=odd, these ampli-
tudes are summed up with a positive sign for sublattices 1
and 2 and with a negative sign for sublattices 3 and 4. There-
fore, the total RXS amplitude becomes proportional to
q1
2���P5 for the longitudinal order, while they are propor-
tional to q1
2���P3 and q1
2���P4 for the two transverse
orders. Note that a similar analysis is applied to the dipole
ordering. In this case, both the dipole and quadrupole terms
contribute to the amplitude. These results are summarized in
Table II. For the transverse case, our present treatment could
be extended applying to the RXS spectra detected at Np M4
edges in U0.75Np2O2.36 In this compound, the spectra may be
interpreted as a consequence brought about by the transverse
type of triple-k antiferromagnetic �AFM� ordering driven by
the same ordering pattern at U sites.

Polarization dependences become particularly simple for
G= �00����=odd� in the octupole and quadrupole orderings.
They are explicitly written in the scattering geometry shown
in Fig. 1 as P3=0, P4=0, and P5= ��3/2�sin 2� in the
�-�� channel, while P3= ��3/2�cos � cos �, P4

= ��3/2�cos � sin �, P5= ��3/2�sin � cos 2� in the �-��
channel. Figure 4 shows the azimuthal angle dependence of
the spectra G= �003� in comparison with the experiment.20,24

The experimental data are well fitted by sin2 2� in the
�-�� channel and sin2 � cos2 2� in the �-�� channel. The
two transverse orders cannot reproduce the experimental
curves, as seen from panel �b�. Paixão et al. and Caciuffo et
al. analyzed their experimental data and concluded that the
longitudinal order gives rise to this dependence.20,24 The
present analysis confirms their result. Note that, based on a
group theoretical point of view, Nikolaev and Michel have
obtained the same result.37

Now we discuss the energy profiles. In order to calculate
them, we need the wave functions in the intermediate state.
We first evaluate the Slater integrals for the Coulomb inter-
action and the SOI parameters within the HFA, which are
shown in Table III. These values are reduced by taking ac-
count of screening effects. The reduction factors are set the
same as in the ground state. The Hamiltonian of the interme-
diate state, consisting of the full intra-atomic Coulomb inter-
actions between 5f-5f , 5f-3d, and 3d-3d electrons as well as

TABLE II. RXS amplitudes in triple-k ordering, for G= �hh�� with h+�=odd. Longitudinal, transverse 1, and transverse 2 correspond to
the ordering patterns shown in Fig. 3.

RXS amplitude

Longitudinal Transverse 1 Transverse 2

Dipole −i
1�����0�Jz��0	�����z −i
1�����0�Jx��0	�����x −i
1�����0�Jy��0	�����y

+
2�����0�Q5��0	P5��� ,�� +
2�����0�Q3��0	P3��� ,�� +
2�����0�Q4��0	P4��� ,��
Quadrupole 
2�����0�Q5��0	P5��� ,�� 
2�����0�Q3��0	P3��� ,�� 
2�����0�Q4��0	P4��� ,��
Octupole 
2�����0�Q5��0	P5��� ,�� 
2�����0�Q3��0	P3��� ,�� 
2�����0�Q4��0	P4��� ,��

FIG. 4. Azimuthal angle dependence of the RXS spectra from
the triple-k AFO phases with G= �003�. �a� Longitudinal ordering.
The open circles and solid triangles are experimental data, and the
solid and dashed lines are the calculated results, in the �-�� and
�-�� channels, respectively �Ref. 24�. �b� Transverse orderings in
the �-�� channel. No RXS signal is expected from these orders in
the �-�� channel. The solid and dashed lines are the calculated
results for the two transverse orders.
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the SOI of 5f and 3d electrons, is represented by 1001
 �2jd+1� microscopic states with the total angular momen-
tum of the core hole jd=3/2 and 5/2 corresponding to the
M4 and M5 edges, respectively. Diagonalizing the Hamil-
tonian matrix, we obtain multiplet structures in the interme-
diate state. The 
2��� is calculated by using Eq. �A8�.

The energy profile is proportional to �
2����2 in the octu-
pole ordering phase. The calculated spectra around M4 and
M5 edges are displayed with several choices of � values in
Fig. 5. The origin of the energy is adjusted such that the peak
of the RXS spectrum is located at the experimental peak
position. Since there is no reliable estimation for the � value,
we choose three typical values �=0.01, 0.5, and 2.0 eV. The
spikelike curves with �=0.01 eV directly reflect the multi-
plet splittings of the intermediate states. For the M4 edge, the
choice �=0.5 eV makes a multipeak-structure line shape. It
merges into a single-peak structure around ��1.0 eV. The
choice �=2.0 eV corresponds to one of better fittings with
the experimental line shape.20,24 The core-level energy is ad-
justed such that the calculated peak at the M4 edge with �
=2 eV coincides with the experimental one. Paixão et al.
reported that the line shape is well fitted by a Lorentzian-
squared rather than a Lorentzian one.20 As shown above, the
line shape is basically determined by the multiplet structure,
which is smeared by the lifetime broadening. Whether it

looks Lorentzian squared or Lorentzian seems unimportant.
As for the spectra at the M5 edge, their shape depends rather
sensitively on the value of � compared to that at the M4
edge.

The energy profile in the dipole ordering is given by the
sum of the dipole and quadrupole terms. However, �
1����2
is about two orders of magnitude larger than �
2����2. For
instance, �
1����2�192 �
2����2 when �=2.0 eV. Thus the
dipole term usually dominates the quadrupole term. Al-
though the dipole ordering is ruled out from experiments, we
show �
1����2 in Fig. 6 as a reference. The peak at the M4

edge with �=2 eV is at 3847.5 eV, 0.7 eV higher than the
peak position of �
2����2. Note that the spectral shape at the
M5 edge depends on � more sensitively than that at the M4
edge. For G= �hh�� with h+�=odd, only �
2����2 survives in
the �-�� channel. Then, �
1����2 and �
2����2 may explain
the RXS spectra observed at Np M4 edge from U0.75Np0.25O2
with G= �112� in the �-�� and �-�� channels, respectively.36

D. Absorption coefficient

The absorption coefficient is proportional to −Im 
0���.
We calculate 
0��� from Eq. �A4� in the same way as in the
calculation of 
1��� and 
2���. The calculated results are
shown in Fig. 7 at the M4 and M5 edges. The present calcu-
lation confirms the previous multiplet calculation by Lovesey
et al., in which −Im 
0��� has been calculated at the M4

edge for �=0.7 eV.35 With increasing values of �, the mul-
tiplet structure merges into a single peak. The peak position
at the M4 edge with �=2 eV is about 0.35 eV higher than
that in �
2����2.

IV. CONCLUDING REMARKS

In this paper, we have studied the RXS spectra at the Np
M4,5 edges in the triple-k multipole ordering phase of NpO2,
on the basis of a localized electron model. We have derived

TABLE III. Slater integrals and spin-orbit interaction param-
eters in the �3d�9�5f�4 configuration within the HFA �in units of eV�
�Ref. 29�.

Fk�3d ,3d� Fk�3d ,5f� Fk�5f ,5f� Gk�3d ,5f�

F0 181.0 F0 29.13 F0 20.54 G1 2.158

F2 92.62 F2 2.749 F2 10.39 G3 1.306

F4 59.67 F4 1.281 F4 6.943 G5 0.914

F6 5.017

�3d=77.278 �5f =0.339

FIG. 5. Energy profiles �
2����2 at the Np M4

�right panels� and M5 �left panels� edges. The
lines represent the calculated results for �=0.01,
0.5, and 2.0 eV, respectively, from bottom to top
panels. In the top right panel, the open circles and
crosses are experimental data in NpO2 �Refs. 20
and 24�. The peak heights of them are adjusted to
that of the calculated value.
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an expression of scattering amplitudes in the E1 process,
assuming that the rotational invariance is preserved in the
Hamiltonian describing the intermediate state of the scatter-
ing process. This is a reasonable assumption when the mul-
tiplet energy is larger than those of the CEF and the intersite
interaction. On the basis of this expression, we have ana-
lyzed the RXS spectra in NpO2. Assuming the �8-quartet
ground state, we have constructed the triple-k ordering
ground state. The energy profiles have been calculated by
taking full account of the multiplet structure in the interme-
diate state, in agreement with the experiment.

RXS signals on multipole ordering superlattice spots have
also been observed and analyzed at L2,3 edges of rare-earth
metals in their compounds such as CeB6 and DyB2C2.38–45

The intermediate state is created by the transition from the
2p core to 5d states. Since the 5d states are considerably
delocalized with forming energy bands, the assumption that
the intermediate Hamiltonian preserves the rotational invari-
ance becomes less accurate. An extension of the formula is
left in future study.

ACKNOWLEDGMENTS

We thank M. Yokoyama and M. Takahashi for valuable
discussions. This work was partially supported by a Grant-

in-Aid for Scientific Research from the Ministry of Educa-
tion, Science, Sports and Culture, Japan.

APPENDIX: DERIVATION OF EQ. (2.3)

We derive a general expression of RXS amplitude under
the assumption that the Hamiltonian describing the interme-
diate state keeps the rotational symmetry at each site. The
following derivation emphasizes the multiplet structure in
the intermediate state. Thereby it is more general than the
previous analyses, in which the fast collision approximation
was adopted by replacing the multiplets with a single
level.9,46,47 A part of the results found in this appendix were
used in Ref. 48 when we analyzed the RXS spectra form
URu2Si2.

Let the core hole be created at site j in the intermediate
state. We express the intermediate state as ��	= �J� ,M , i	,
where the magnitude J� and the magnetic quantum number
M of total angular momentum �including a core-hole angular
momentum� are good quantum numbers. To distinguish mul-
tiplets having the same J� value but having the different en-
ergy, we introduce the index i. Defining M

� by
Mj��� ,� ,��=�

��
��
�M

��j ,��, we rewrite Eq. �2.2� as

FIG. 6. Energy profiles �
1����2 at the Np M4

�right panels� and M5 �left panels� edges. The
lines represent the calculated results for �=0.01,
0.5, and 2.0 eV, respectively, from bottom to top
panels.

FIG. 7. Absorption coefficients as functions
of the photon energy at the Np M4 �right panel�
and M5 �left panel� edges. The bold solid and
dotted lines represent the calculated results for
�=0.5 and 2.0 eV, respectively. The vertical bars
represent � functions with �=0.
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M

��j,�� = �
J�,M,i

Ei��,J����0�x
,j�J�,M,i	

 �J�,M,i�x
�,j��0	 , �A1�

with

Ei��,J�� =
1

�� − �EJ�,i − E0� + i�
. �A2�

Assuming that the ground-state wave function is expressed
as a linear combination of �J ,m	 at each site,

��0	 = �
m

cj�m��J,m	 , �A3�

and inserting this equation into Eq. �A1�, we obtain

M

��j,�� = �
m,m�

cj
*�m�cj�m��M

�

m,m���� , �A4�

with

M

�
m,m���� = �

J�
�
i=1

NJ�

Ei��,J�� �
M=−J�

J�

�J,m�x
�J�,M,i	

�J�,M,i�x
��J,m�	 , �A5�

where the number of the multiplets having the value J is
denoted by NJ. We have suppressed the index j specifying
the core-hole site. The selection rule for the E1 process con-
fines the range of the summation over J� to J�=J ,J±1. The
matrix element of the type �J ,m�x
�J� ,M	 is analyzed by
utilizing the Wigner-Eckart theorem for a vector operator
with the use of the Wigner’s 3j symbol:49

�J,m�s��J�M	 = �− 1�J�+m−1�2J + 1�J� 1 J

M � − m
��J�V1�J�� ,

�A6�

with s±1= � �1/�2��x± iy�, s0=z. The symbol �J�V1�J�� de-
notes the reduced matrix element of the set of irreducible
tensor operator of the first rank. Because of the nature of the

dipole operators, Mm,m�����0 only when �m−m���2. After
lengthy calculation, we obtain

M
,
�
m,m ��� = −

3

4
�1

3
J�J + 1� − m2�
2���M
,
�

3z2−r2

− im
1���M
,
�
z + 
0����
,
�, �A7a�

M
,
�
m,m+1��� =

3

8
fm�2m + 1�
2����Mzx + iMyz�
,
�

− i
1

2
fm
1����Mx + iMy�
,
�, �A7b�

M
,
�
m+1,m��� =

3

8
fm�2m + 1�
2����Mzx − iMyz�
,
�

− i
1

2
fm
1����Mx − iMy�
,
�, �A7c�

M
,
�
m,m+2��� = am� 
2����Mx2−y2

+ iMxy�
,
�, �A7d�

M
,
�
m+2,m��� = am� 
2����Mx2−y2

− iMxy�
,
�, �A7e�

where

fm = ��J − m��J + m + 1� , �A8�

am� =
3

8
fmfm+1, �A9�

and the 33 matrices, Mx, My, Mz, Mxy, Myz, Mzx, Mx2−y2
,

and M3z2−r2
are tabulated in Table IV. The energy profiles are

given by


0��� =
2

3
J�2J − 1�FJ−1��� +

2

3
J�J + 1�FJ���

+
2

3
�2J2 + 5J + 3�FJ+1��� , �A10a�

TABLE IV. Antisymmetric matrices, Mx, My, Mz, and symmetric matrices Myz, Mzx, Mxy, M3z2−r2
, Mx2−y2

.

Antisymmetric Mx My Mz

�0 0 0

0 0 1

0 − 1 0
� �0 0 − 1

0 0 0

1 0 0
� � 0 1 0

− 1 0 0

0 0 0
�

Symmetric Myz Mzx Mxy M3z2−r2
Mx2−y2

�0 0 0

0 0 1

0 1 0
� �0 0 1

0 0 0

1 0 0
� �0 1 0

1 0 0

0 0 0
� �− 1 0 0

0 − 1 0

0 0 2
� �1 0 0

0 − 1 0

0 0 0
�
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1��� = − �2J − 1�FJ−1��� − FJ��� + �2J + 3�FJ+1��� ,

�A10b�


2��� =
4

3
�− FJ−1��� + FJ��� − FJ+1���� , �A10c�

with

FJ���� = 21−�J−J����2J + 1��2J� + 1�
�J + J� − 1�!
�J + J� + 2�!

��J�V1�J���2�
i=1

NJ�

Ei��,J�� . �A11�

Substituting Eqs. �A7� into Eq. �A4�, we obtain the final
expression, Eq. �2.3�.
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