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Dynamical properties of the impurity spin-1
2 in two-dimensional �2D� and quasi-2D Heisenberg antiferro-

magnets �AFs� at T�0 are discussed. The specific case of an impurity coupled symmetrically to two neigh-
boring host spins is considered. The specific feature of this problem is that the defect is degenerate �frustrated�
being located in zero molecular field. It is shown that this problem can be described by the spin-boson model
without a tunneling term and with a more complex interaction. We demonstrate that the effect of the host
system on the defect is completely described by the spectral function. It is found within the spin-wave
approximation that for not too small � the spectral function is proportional to �2 /J3, where J is the exchange
constant between the host spins. The defect dynamical susceptibility is derived using Abrikosov’s pseudofer-
mion technique and diagrammatic expansion. The calculations are performed within the fourth order of the
dimensionless coupling parameter f . It is found that transverse impurity susceptibility ����� has a Lorenz
peak, with the width proportional to f4J�T /J�3 which disappears at T=0, and a nonresonant term. The latter
term diverges logarithmically as � , T→0. The static susceptibility ��0� has the free-spin-like contribution
1/ �4T�, and a logarithmic correction proportional to f2ln�J /T�. The influence of finite concentration of the
defects n on the low-temperature properties of AFs is also investigated. A logarithmic correction to spin-wave
velocity of the form nf4ln�J /�� and an anomalous damping of spin waves proportional to nf4��� are obtained.
The results of the present paper can be applied to other systems with a frustrated impurity in which the spectral
function is proportional to �2.
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I. INTRODUCTION

Defects �or impurities� with intrinsic degrees of freedom
exist in many condensed-matter systems. Isolated spin in
metal is the best known example �Kondo impurity�. There
are a number of other types of such impurities including
two-level systems in glasses, crystal-field states of the rare-
earth ions, degenerate or slightly split Jahn-Teller defects,
quantum dots, etc. The interaction of these impurities with
propagating excitations of the host system �electrons in met-
als, phonons, spin waves, etc.� governs the impurity dynam-
ics and the low-temperature thermal and transport properties
of the host system.

The widely used model for investigation of two-level de-
fect dynamics is the spin-boson model which Hamiltonian
has the form1,2

Hsbm = Hd + H0 + Hint, �1�

where the first, second, and third terms describe, respec-
tively, the isolated defect, the host system, and their interac-
tion. Then, Hd=− 1

2��x+ 1
2��z, where � is the Pauli vector

describing the defect, H0 is modeled by a set of harmonic
oscillators: H0=��� 1

2m���Q�
2 + P�

2 / �2m���, and the interac-
tion term has the form Hint=�z��C�Q�, where C� are some
constants. Essentially, dynamics of the defect is determined
by the spectral function characterizing the system. Com-
monly a power-law dependence �v of this function is dis-
cussed, where v�0. In the most investigated Ohmic case v
=1. Despite its simplicity the spin-boson model has found
numerous applications ranging from electron transfer to
quantum information processing.1,2 Meanwhile its modifica-
tions are needed in some cases.

In Ref. 3 one of us �S.V.M.� has extensively studied the
problem of interaction of a defect with intrinsic degrees of
freedom with three-dimensional �3D� acoustic phonons in
dielectrics. A specific approach has been proposed in which
degeneracy of the impurity is assumed to be arbitrary. This
approach is based on Abrikosov’s pseudofermion technique4

and diagrammatic expansion. In the case of the two-level
defect the Hamiltonian of the model considered in Ref. 3
differs from Eq. �1� by the absence of Hd �the defect is
assumed to be degenerate� and by another type of interaction
which has the more general form

Hint = g�
�

S�	��R0� , �2�

where S= 1
2� , R0 determines the position of the impurity in

the crystal, g is the interaction strength, index � labels Car-
tesian components, and 	��R0� are some operators of the
host system. It was found in Ref. 3 that similar to the spin-
boson model the effect of the host system on the defect is
completely described by the spectral function given by the
imaginary part of the retarded Green’s function of operators
	��R0�:

��
��� = − i�
0

�

dtei�t��	��R0,t�,	
�R0,0��	 , �3�

where �¯	 denotes the thermal average. In the case of 3D
acoustic phonons Im ��
��� is proportional to �3. The ap-
proach proposed in Ref. 3 allows us to obtain all the results
in a general form independent of the particular view of the
operators 	��R0� and the value of S. The only restriction is
that the spectral function is proportional to �3. The results
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for various systems would differ only by some constants.
Then, one can discuss the effect of the new terms in the
interaction in comparison with the spin-boson model. In the
case of interaction �2� all the components of the susceptibil-
ity have a T-independent nonresonant term and a Lorenz
peak with the width � f4�T /��,5 where f is the dimension-
less coupling constant and � is a characteristic energy. The
real part of the nonresonant term is a constant at ����� and
the imaginary one is proportional to �. At the same time in
the spin-boson model the transverse susceptibility has only
the nonresonant term. It was also shown3,5 that the scattering
on the impurities leads to the anomalous 3D acoustic phonon
damping proportional to nf4�2, where n is concentration of
the impurities �damping caused by scattering on static de-
fects is proportional to �4�. Afterward the suggested ap-
proach has been successfully applied to investigation of de-
fects in glasses6 and in cubic metals.7

In the present paper we apply the approach discussed in
Ref. 3 with the spectral function proportional to �2 to the
problem of two-level degenerate defect. As mentioned
above, the nature of the defect and the host system is not
essential. The results will depend on the special form of
	��R0� in Eq. �2� via some constants. Thus our discussion is
applicable to all systems with degenerate defect and the
spectral function proportional to �2. We demonstrate below
that an example of such a system is the 2D Heisenberg anti-
ferromagnet �AF� with the impurity spin-1

2 coupled sym-
metrically to two neighboring host spins �see Fig. 1�. This is
the particular subject of the present investigation.

Below we show that the spectral function is proportional
to �2 if the interaction of the defect with the 2D AF is de-
termined by spin waves. It is well known that there is no
long-range order in the Heisenberg 2D AF at T�0.8 Never-
theless, as it has been shown theoretically9–11 and confirmed
experimentally,12 the spin waves are well defined in the para-
magnetic phase of the 2D AF if their wavelength is much
smaller than the correlation length �exp�const/T�. It is
found below that the interaction is determined by spin waves
and the spectral function is proportional to �2 if ��Ja /�,
where J is the coupling constant between the host spins and
a is the lattice constant. Then, a small interaction �for defi-
niteness interplane interaction� of the value of ��J can sta-
bilize the long-range order at finite T. It is obtained below
that the spectral function is proportional to �2 at ��� for
the ordered quasi-2D AF. We assume that the interaction of
the defect with AF has the form �2� with 	��R0�=s1

�+s2
�:

Hint
AF = gS�s1 + s2� , �4�

where s1,2 denote the host spins from different sublattices.
For the following consideration the sign of g is insignificant.

It should be stressed that one must distinguish symmetri-
cally and asymmetrically coupled impurities �see Fig. 1�. A
symmetrically coupled impurity is located in the zero mo-
lecular field. It remains degenerate and the spectral function
is proportional to �2. In the case of an asymmetrically
coupled impurity, where the molecular field is nonzero, there
is a splitting of the impurity levels and the spectral function
has terms with weaker � dependence. For instance, we dem-
onstrate below that the spectral function for a defect coupled
to one host spin is proportional to a constant. In this paper
we consider only the symmetric case. Our results are also
valid with certain additional restrictions for slightly split
nearly symmetrically coupled impurities �see below�.

Previously, different types of impurities in the 2D Heisen-
berg AF have been extensively studied. It is believed that this
problem has a relevance to the physics of some high-Tc ma-
terials. In such compounds as La2−xSrxCuO4 and
YBa2Cu3O6+x the mobility of the holes is very small at a low
level of doping before the onset of superconductivity. This
finding has generated particular interest to problems of an
extra spin coupled to one spin of the 2D AF,13–22 and an extra
spin coupled to sublattices symmetrically.22–24 It was pro-
posed in Ref. 25 that the appearance of the hole could lead to
a ferromagnetic interaction between corresponding two spins
of the lattice. This work has stimulated studies of a missing
or a ferromagnetic bond between one pair of spins in the
lattice.14,26 As inserting the static nonmagnetic defects into
the planes by means of replacing of Cu atoms with nonmag-
netic ones �e.g., Zn� is a common method to investigate
the properties of CuO2 planes of high-Tc compounds, a
missing spin in the lattice �vacancy� has been also
discussed.14,17,18,27–29

The problem of an added spin in the 2D AF at T=0 has
been studied theoretically in Ref. 19. One of the most re-
markable findings of that paper is a singular logarithmic fre-
quency behavior of the defect dynamical susceptibility. Im-
purity static magnetic susceptibility ���=0� for the 2D AF
has been evaluated in Ref. 22 in the case of a symmetrically
coupled impurity. It was demonstrated that ��0� has a Curie-
like term and a singular logarithmic correction proportional
to g2ln�J /T�.

The defect static magnetic susceptibility in the 2D AF
being near the quantum critical point �QCP� has been dis-
cussed recently in Refs. 17 and 18 using nonlinear sigma
model. A classical-like behavior of the form ��0�=S2 / �3T�
with a logarithmic correction proportional to ln�1/T� was
obtained. The constants before and under the logarithm were
found to be universal near QCP, being the same for all types
of defects and independent of the strength of the defect cou-
pling. It is argued in Ref. 17 that this behavior of static
susceptibility also holds far from QCP for vacancy and for
impurity spin coupled to one host spin when T� �g�. Mean-
while the constants are no longer universal far from QCP.
This finding is in agreement with results of numerical
simulations.13,14 They have also been confirmed by some

FIG. 1. Unit cells of the 2D AF with �a� symmetrically and �b�
asymmetrically coupled impurity spins are presented. Strengths of
coupling with corresponding host spins g and g1�g2 are depicted.
The local Néel order is also shown. Only symmetrically coupled
impurities are discussed in this paper.
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other theoretical approaches.16 Both the classical-like form
of 1/T term and the logarithmic correction are related to the
nontrivial long-range dynamics in the system.16,17

In the present paper we study the Heisenberg 2D AF at
T�0 far from QCP. Our aim is to find the dynamical sus-
ceptibility of the impurity ���� at T�0 and to discuss the
influence of such impurities on the low-T properties of the
2D AF. These problems have not been addressed yet for sym-
metrically coupled defects: only the ground-state properties
at T=0 �Refs. 23 and 24� and the static susceptibility22 have
been discussed. The calculations are performed within the
order of f4, where fg /J is the dimensionless coupling pa-
rameter. We show that the transverse impurity susceptibility
����� has a Lorenz peak with the width � f4J�T /J�3 that
disappears at T=0, and a nonresonant term. The imaginary
part of the nonresonant term is a constant independent of T at
����� and the real part has a logarithmic divergence as
� , T→0. Similar logarithmic singularity was found in Ref.
19 at T=0. The longitudinal susceptibility �
��� has the non-
resonant term which differs from that of ����� by a constant
and a Lorenz peak. We demonstrate that within the order of
f4 the width of the peak is zero. Its calculation is out of the
scope of this paper.

The static susceptibility has the free-spin-like term S�S
+1� / �3T� and a correction proportional to f2ln�J /T�. We
point out here the sharp difference between symmetrically
and asymmetrically coupled impurities that take place in the
regime T� �g� �by asymmetrically coupled impurities we
mean here either the added spin coupled to one host spin or
the vacancy which is the particular case of the added spin
with g→��. The leading 1/T term has the free-spin-like
form in the symmetric case and the classical-like form in the
asymmetric one. Moreover, the logarithmic correction is pro-
portional to g2 in the symmetric case and it does not depend
on g in the asymmetric one.16,17 The difference is related to
the fact that the impurity spin coupled asymmetrically aligns
with the local Neél order,16,17 whereas the symmetrically
coupled impurity is located in the zero molecular field.

The fact that the spectral function in the 2D AF is propor-
tional to �2 only at �� �� or Ja /�� leads to the following
restriction on the range of validity of the results obtained:
max�� , ����� �� or Ja /��. If the defect is slightly split �for
definiteness by magnetic field H� this condition turns into
max�� , �����max��� or Ja /�� ,g�BHS�. For nearly sym-
metrically coupled impurity one has max�� , ����
�max��� or Ja /�� , �g1−g2��, where g1,2 are values of cou-
pling with the corresponding sublattices �see Fig. 1�.

The results described above are valid for isotropic inter-
action �4�. We also consider interaction containing only one
term: Hint=gSx�s1

x +s2
x�. In this case the xx component of the

impurity susceptibility is zero whereas yy and zz ones have
only the nonresonant term. This model is identical to the
spin-boson model �1� without Hd. The Hamiltonian can be
diagonalized exactly and an exact expression for ���� can be
obtained.30 Below we perform the corresponding calcula-
tions for the spectral function proportional to �2 and confirm
the results obtained within our approach. One of the most
interesting features of the exact result is that the static sus-
ceptibility has the form ��0�T−1−�, where � f2T /J. Within

the first order of f2 one has the 1/ �4T� term and the logarith-
mic correction. Thus we see that in the modified spin-boson
model taking into account the higher-order logarithmic cor-
rections leads to the nontrivial power-law T dependence of
��0�.

The influence of the finite concentration n of the defects
on the low-temperature properties of 2D AF is also consid-
ered. For not too small � we find the logarithmic correction
to the spin wave velocity of the form nf4ln�J /�� and an
anomalous damping of the spin-waves proportional to nf4���.
Similar logarithmic correction to the velocity and damping
were obtained in Ref. 27, where vacancies in 2D AF were
studied. It is demonstrated that interaction of the spin waves
with defects modifies the spectral function which acquires
new terms proportional to n exhibiting weaker � depen-
dence. These terms should be taken into account at small
enough � and the problem should be solved self-consistently.
The corresponding consideration is out of the scope of this
paper. Within the range of validity of our study we do not
obtain a renormalization of the magnetic specific heat which
is proportional to T2 in 2D AF without impurities. At the
same time it was obtained27,29 that vacancies give rise to a
constant contribution to the density of states that in turn
leads to a large correction to the specific heat proportional
to nT.

The rest of the paper is organized as follows. The model,
Abrikosov’s pseudofermion, and diagrammatic techniques
employed for the calculations are discussed in Sec. II. The
pseudofermion Green’s function, the pseudofermion vertex,
and the impurity dynamical susceptibility are derived in
Secs. III A–III C. Another type of interaction of the defect
with the host system is discussed in Sec. III D. The exactly
solvable spin-boson model �without Hd�, which is a special
case of our model, is also studied in Sec. III D and a com-
parison with our results is made. Influence of the defects on
low-temperature properties of 2D AF is considered in Sec.
IV. The spin-wave spectrum and the specific heat are studied
in detail in Sec. IV. Section V contains our conclusions. A
few appendixes are included with details of the calculations.

II. MODEL AND TECHNIQUE

A. Model

Let us formulate in some detail the model discussed in
this paper. We consider systems which Hamiltonian can be
represented in the following form:

H = �
k
	k�k

†�k +
1

2
� + Hint, �5�

where the first term describes noninteracting low-energy
propagating modes of the host system �e.g., phonons or mag-
nons� and the second one is the coupling of the degenerate
impurity with the system for which we have the general ex-
pression �2�. It is also supposed in this paper that the imagi-
nary part of the function ������� given by Eq. �3� has the
form
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Im ��
��� = − A�
�
�2

sgn�������d�
, �6�

where A is a positive constant which dimensionality is in-
verse energy, � is the characteristic energy, ���� is a cutoff
function which is equal to unity at ����� and decreases
rapidly to zero outside this interval, and d�
 is a tensor. As
was also mentioned above, the particular nature of the defect
and the host system are not essential in our study. We will
use the general expressions �2� and �6� in all calculations.
Therefore results for different systems would differ only by
some constants. Nevertheless, we discuss now the specific
system, the Heisenberg 2D AF, which can be described by
this model.

It is well known that the 2D AF at T�0 has no long-range
order.8 The average z component of the spin in the AF is
given by

�sz	 = s −
1

N
�
k

4sJ − 	k

2	k
−

4sJ

N
�
k

N�	k�
	k

, �7�

where N is the number of spins in the lattice, s and J are
values of the spin and the exchange, respectively, 	k is the
spin-wave energy which is equal to �8sJk at small k and
N�	k�= �e	k/T−1�−1. The first term in Eq. �7� gives the well-
known correction to the average spin at T=0 which is ap-
proximately equal to 0.2. The last term describes the spin
reduction due to thermal fluctuations. At 	k�T we have
N�	k��T /	k. Thus the last term diverges logarithmically at
small k in the 2D AF. A weak interaction of the value of �
�J such as anisotropy or an interplane interaction can screen
this divergence and stabilize the long-range order. For defi-
niteness we consider interplane interaction. It leads the mo-
mentum to become a 3D vector. As a result an additional
term appears in the spin-wave energy proportional to �k� at
small k�, where k� is the component of the momentum per-
pendicular to the plane of the lattice. As a result the last term
in Eq. �7� is small and the spin waves are well defined if

T

sJ
ln T

s�
�� 1. �8�

We will assume below that this condition holds.
It is shown in Appendix A that within the spin-wave ap-

proximation the function Im ��
��� has the form �6� for the
2D Heisenberg AF when ���� �� or Ja /��. The particular
expressions for � , A , d�
 are also established in Appendix
A. Within the spin-wave approximation the only nonzero
components of d�
 are xx and yy ones provided that the z
axis is directed along the magnetization of the sublattices.

Abrikosov’s pseudofermion representation of the impurity
spin S is used below. The value of S is assumed to be arbi-
trary in this approach. Nevertheless, we restrict ourselves in
this paper by S=1/2. It is demonstrated below that the ma-
trix structure of the pseudofermion Green’s function and the
vertex is much simpler in this case. Consideration of larger
impurity spins is out of the scope of the present paper.

We point out that a different approach has been suggested
recently in Refs. 31 and 32 for spin-1

2 impurity problem. This
approach bases on the Majorana-fermion representation of

the impurity spin. It was demonstrated that this representa-
tion simplifies significantly analysis of the model if one can
restrict ourselves by first terms in the expansion by the cou-
pling parameter. It will be clear soon that in our case the
question of possibility of such restriction requires analysis of
the diagrams of the third order within this approach. Carry-
ing out of such analysis is out of the scope of the present
paper.

B. Abrikosov’s pseudofermion technique

We use below Abrikosov’s pseudofermion technique for
the calculation of the impurity dynamical susceptibility. It
was suggested in Ref. 4 for Kondo effect investigation �see
also Refs. 33 and 34 for discussions�. The same approach has
been applied for the problem of impurity in other systems by
one of us �S.V.M.� in Refs. 3, 6, and 7. Let us formulate this
technique briefly in a form convenient for our purpose.

The impurity spin S is represented as

S = �
mm�

am
† Smm�am�, �9�

where m is the spin projections, am
† and am are operators of

creation and annihilation of some particles �fermions for
definiteness�. It is easy to verify that the spin commutation
rules are satisfied in this representation. A wave function of
the impurity is characterized now by the occupation numbers
of 2S+1 states: �nS ,nS−1 ,…n−S	. Obviously, the states with
zero or more than one particle are not physical ones and we
have to eliminate them carrying out the thermodynamic av-
erage. As a result the thermodynamic average of some op-
erator Y has the form

Ȳ =
Trphys��Y�
Trphys���

, �10�

where the traces are limited to physical states and �
=exp�−H /T� is the statistical operator with the Hamiltonian
H given by Eq. �5�. This representation is not convenient,
not allowing us to use the standard diagrammatic technique.
To overcome this obstacle an additional term in the Hamil-
tonian is added4:

H� = �Npf = ��
m

am
† am, �11�

where Npf is the number of pseudofermions. We show now
that the average of Y has the following form equivalent to
Eq. �10�:

Ȳ = lim
�→�

Tr��̃Y�
Tr��̃Npf�

, �12�

where �̃=exp�−H̃ /T� and H̃=H+H�. We consider in this
paper that Y do not contain terms without pseudofermion
operators. As a result there are no contributions both to nu-
merator and denominator in Eq. �12� from states with no
particles. As H does not change the number of particles in
state, we have for the matrix elements �̃kl=�klexp�−Nl� /T�,
where Nl is the number of pseudofermions in states �k	 and
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�l	. Therefore contributions from the states with more than
one particle are exponentially small compared to those from
the physical states which are proportional to e−�/T. The com-
mon factors e−�/T in the numerator and the denominator of
Eq. �12� cancel each other. Then contributions from states
with one pseudofermion survive only in the limit of �→�,
and Eqs. �10� and �12� appear to be equivalent.

Quantities in the right part of Eq. �12� can be calculated
using the conventional diagrammatic technique. The Hamil-

tonian H̃ in the pseudofermion representation has the form3

H̃ = ��
k
	k�k

†�k +
1

2
� + ��

m

am
† am�

+ g �
m,m�,�

am�
† Sm�m

� am	
��R0� = H0 + Hint. �13�

The dynamical susceptibility of the impurity in the repre-
sentation of interaction can be written using Eqs. �12� and
�13� in the following form3:

�P�i�n� = lim
�→�

N−1�
0

1/T

d�ei�n�Tr

��e−H0/TT��P���P�0�S 1

T
��� , �14�

N = Tr�e−H̃/T�
m

am
† am� , �15�

P = �
mm�

am
† Pmm�am�, �16�

where P is a spin projection. In the zeroth order of the inter-
action Hint we have N= �2S+1�e−�/T.

C. Diagrammatic technique

First diagrams for �P��� and a graphical representation of
the result of all diagrams summation are shown in Fig. 2,
where thin lines with arrows represent the bare particle
Green’s functions

Gmm�
�0� �i�n� =

�mm�

i�n − �
, �17�

and wavy lines denote bosons Green’s functions �����i�n�.
Notice that the diagrams with only one pseudofermion loop
should be taken into account because, as is seen from Eq.
�14�, each loop is proportional to the small factor of e−�/T.
The contribution from diagrams with one loop is finite be-
cause their factor of e−�/T is canceled by that from N.

For the calculation of �P��� we use below the diagram-
matic technique employed in Refs. 3, 6, and 7. Let us discuss
it briefly. First, we have to make an analytical continuation of
diagrams for the dressed pseudofermion Green’s function
and for the vertex �P��1+� ,�1� from imaginary frequencies
to real ones. Then, we have to express �P��� via these quan-
tities.

To make the first step of this program let us choose fre-
quencies of wavy lines to be independent variables over
which the summations are taken. It can be done in such a
way that these frequencies are contained in arguments of G�0�

functions with positive sign �see Fig. 2�. Then, each sum
over a discrete frequency can be replaced by an integral over
a contour enveloped the imaginary axis with an additional
factor of �2�i�−1N���:

T�
�n

→
1

2�i
� d�N��� , �18�

where N���= �e�/T−1�−1 is the Planck function.3,6,7,35 The
contour can be deformed so as to embrace the real axis. In
evaluation of the resultant integral one should not take into
account poles of G�0� functions because residues in these
poles are proportional to N����exp�−� /T�. At the same
time functions ������� have a discontinuity on the real axis
equal to 2i Im �������. As a result all contour integrals can
be easily transformed to those over the real axis, and we lead
to the following diagrammatic technique: each wavy line
corresponds to �−1N���Im �������; frequencies of wavy
lines should be taken so as they are contained in arguments
of G�0� functions with positive sign; integration over all fre-
quencies of wavy lines is taken in the interval �−� ,��.

One can conclude from analysis of all concrete diagrams
for the vertex �P�i�1+ i� , i�1� that it is an analytical func-
tion of two independent variables i�1+ i� and i�1 with cuts
along the real axis. A general proof of this statement has
been also given.35

As a result we have for the dynamical susceptibility after
the analytical continuation from the discrete frequencies to
the real axis3,6,7,36

�P��� = �2�iN�−1e−�/T�
−�

�

dxe−x/TTr�P�G�x + ���P
++

��x + �,x�G�x� − G*�x��P
−−�x,x − ��G*�x − ��

− G�x + ���P
+−�x + �,x�G*�x�

+ G�x��P
+−�x,x − ��G*�x − ���� , �19�

where G��� is the retarded Green’s function, the trace is

FIG. 2. Lower-order diagrams for the impurity dynamical sus-
ceptibility �P��� and a graphical representation of the result of the
overall series summation. Lines with arrows represent the pseudo-
fermion Green’s functions. Wavy lines denote Green’s functions of
operators 	��R0� of the host system �see Eq. �2��.
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taken over projections of the impurity spin, and signs at su-
perscript of �P denote those of imaginary parts of the corre-
sponding arguments �e.g., �P

+−�x ,y�=�P�x+ i� ,y− i���. An
energy shift by � has been performed during the derivation
of Eq. �19�. As a result the Fermi function �e�x+��/T+1�−1 has
been replaced by exp�−�x+�� /T� and the functions G and �P

no longer depend on �. These are those functions we calcu-
late in the next section by the diagrammatic technique. It is
clear that the bare pseudofermion Green’s functions in this
case are G

mm�
�0� ���=�mm� /�.

III. DYNAMICAL SUSCEPTIBILITY OF THE IMPURITY

We derive analytical expressions for the dynamical sus-
ceptibility of the impurity in this section. Perturbation theory
is used for this purpose. It can be done if the dimensionless
constant

f2 =
g2A

�
�20�

is small. Meanwhile we have to take into account also terms
of the order of f4 because the finite width of the Lorenz peak
in the dynamical susceptibility arises in this order. In the 2D
AF we have from Eqs. �A10� f2= ��� /4s��g /J�2.

A. Pseudofermion Green’s function

We turn to the calculation of the pseudofermion Green’s
function Gmm����. The Dyson equation for it has the follow-
ing form:

�Gmm���� = �mm� + �
n

�mn���Gnm���� . �21�

The first diagrams for �mn��� are presented in Fig. 3. Let us
discuss its matrix structure first. It is determined by corre-
sponding products of operators S� and tensors d�
. For ex-
ample, this combination for the second diagram in Fig. 3 has
the form S�S
S��S
�d���d

�. As is shown in Appendix B, all
such combinations are proportional to the unit matrix for the
two-level impurity. It should be pointed out that there is no
such simplification in the case of the impurity with the value
of spin greater than 1/2. As a result the equations for the
Green’s function and the vertex become more complicated.
The corresponding consideration of the large-spin impurities
is out of the scope of the present paper.

Taking into account its matrix structure we have for the
Green’s function

Gmm���� = �mm�G��� =
�mm�

� − ����
. �22�

The diagram of the first order shown in Fig. 3 gives the
following contribution to ����:

��1���� = R�
f2

��
�

−�

�

dx
x�x�

x + � + i�
N�x���x� , �23�

R� = S�S
d�
, �24�

where the constant f2 is given by Eq. �20� and R�=1/2 for
the 2D AF. It is convenient to extract from this expression a
term proportional to � as follows:

��1���� = − �R�
f2

��
�

−�

�

dx
�x�

x + � + i�
N�x���x�

− R�
f2

��
�

0

�

dxx��x� , �25�

where we have used that ���� is an even function and,
N�−x�=−1−N�x�. Notice that the second term in Eq. �25� is
the T-independent constant. Then it can be included in the
renormalization of � and omitted. The first term in Eq. �25�
is proportional to f2�T ln�T /�� at small �. It would seem
that a great renormalization of the Green’s function takes
place if f2T ln�T /����. Meanwhile we show now that the
logarithmic singularities at real � are screened by a finite
damping which is of the order of f4. Let us represent the
Green’s function in the form

G��� =
1 − Z���
� + i����

, �26�

where Z��� and ���� are some functions, ���� is a real one,
and a constant term in the denominator has been attributed to
the renormalization of � and discarded. Evaluating the con-
tribution from the first diagram in Fig. 3 using Eq. �26� we
have in the first order a correction to the constant,

Z�1���� = R�
f2

��
�

−�

�

dx
�x�

x + � + i��x + ��
N�x���x�

�27�

and ��1����=0. The logarithmic divergence in expression
�27� at real � is screened by the term i���+x� in the de-
nominator. It is shown below that ���� is proportional to
f4T3 at ����T. Contributions to Z��� from the higher-order
diagrams are also small by the same reason and we can re-
strict ourselves by the first correction to it.

To obtain ���� one has to take into account f4 terms from
the first and the second diagrams shown in Fig. 3. Along with
the small corrections to the constant and to Z��� we have

���� = − R�
f4

��2�
−�

�

dx�x�x + ���N�x�

�N�− x − ����x���x + �� , �28�

R� = S�S
�S
�,S���d���d

�. �29�

It is important to note that ���� is the constant at ����T:

FIG. 3. The first- and second-order diagrams for the self-energy
���� of the pseudofermion Green’s function.
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���� � �0 = 2�R� f2

��
�2�

0

�

dxx2N�x��1 + N�x���2�x�

= R�
2�f4

3
� T

�
�3

. �30�

Notice that from the physical reason R� and �0 should be
positive. For instance, R�=1/4 for the 2D AF.

It is significant to note that Im Z��� and ���� have the
following property at �����0, which will be useful in the
following:

Im Z�− �� = − e−�/TIm Z��� ,

��− �� = e−�/T���� . �31�

In fact these functions are exponentially small at negative �
if ����T.

B. Pseudofermion vertex

Let us turn to the consideration of the pseudofermion ver-
tex �P�x+� ,x�. Diagrams for this quantity are presented in
Fig. 4. It is shown in Appendix B that �Pmm��x+� ,x� is
proportional to Pmm�. Thus it is convenient to introduce a
new quantity:

��x + �,x� =
P�P�x + �,x�

P2 , �32�

where we use the following notification: Ȳ =Tr�Y�. As is seen
from Eq. �19�, we need four different branches of ��x
+� ,x�. It is clear that �++= ��−−�* and within the first order
of f2 one has

�++�x + �,x� = 1 + R1
f2

��
�

−�

�

dyy�y�N�y���y�

�G�x + y + ��G�x + y� , �33�

R1 =
PS�PS
d�


P2 . �34�

It is seen from Eq. �33� that the poles of G functions in the
integrand are on the one hand from the real axis. Hence the
second term in Eq. �33� is much smaller than unity and we
can restrict ourselves by this precision.

The situation is different in the case of �+−= ��−+�*. The
first correction to it is given by Eq. �33� with G*�x+y� put
instead of G�x+y�. Therefore poles of the Green’s functions
are on the opposite sides of the real axis. As a result at �
=0 the integral diverges at finite x as �0→0 and one has to
sum all series to determine �+−. We write now an equation
for �+− in which the most singular diagrams in each order of
f2 are taken into account. As a result of analysis of the dia-
grams up to the fourth order of f2 we have obtained that in
the most singular diagrams each wavy line connects points
from different sides of the vertex �like in the second, third,
and fourth diagrams in Fig. 4 and not like in the last one� and
crosses no more than one other wavy line. Thus the most
singular diagrams are taken into account in the following
equation:

�+−�x + �,x� = 1 + R1
f2

��
�

−�

�

dyy�y�N�y���y��+−�x + y + �,x + y�G�x + y + ��G*�x + y�

+ R2 f2

��
�2�

−�

�

dy1dy2y1y2�y1y2�N�y1�N�y2���y1���y2��+−�x + y1 + y2 + �,x + y1 + y2�

� G�x + y1 + ��G�x + y1 + y2 + ��G*�x + y1 + y2�G*�x + y2� , �35�

R2 =
PS�S
PS��S
�d���d

�

P2 . �36�

The second and third terms in Eq. �35� take into account diagrams with a rung and with crossing of two neighboring rungs,
respectively. Let us try to solve this equation by iterations. It is easy to verify that at �����0 and �0→0 the divergence in the
second term occurs in the second iteration only. Moreover, it is of the same order as the divergence of the third term in the first
iteration. As a result Eq. �35� can be rewritten as follows:

FIG. 4. The zero-, first-, and second-order diagrams for the
pseudofermion vertex �P�x+� ,x�.
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�+−�x + �,x� = 1 + R1
f2

��
�

−�

�

dyy�y�N�y���y�G�x + y + ��G*�x + y�

+  f2

��
�2�

−�

�

dy1dy2y1y2�y1y2�N�y1�N�y2���y1���y2��+−�x + y1 + y2 + �,x + y1 + y2�

� �R1
2G*�x + y1� + R2G*�x + y2��G�x + y1 + ��G�x + y1 + y2 + ��G*�x + y1 + y2� . �37�

It can be solved if one notes that at ����T , � in the third
term the area of integration near the poles of the two last
Green’s functions is essential. As the other factors of the
integrand change slightly at such y2 one can set in them y2
=−x−y1 and neglect their dependence on �. As a result we
obtain the following equation:

�+−�x + �,x� = 1 + R1
f2

��
�

−�

�

dyy�y�N�y���y�G�x + y

+ ��G*�x + y� + K�x��+−��,0�
2�i

� + 2i�0
,

�38�

K�x� =  f2

��
�2�

−�

�

dy
�y�x + y���R2�x + y� − R1

2y�
x + y + i��x + y�

�N�y�N�− x − y���y���x + y� . �39�

It can be easily solved with the result

�+−�x + �,x� = 1 + R1
f2

��
�

−�

�

dyy�y�N�y���y�G�x + y + ��

�G*�x + y� + K�x�Z�
2�i

� + 2i�
, �40�

� = �0 − �K�0� = 2�R� f2

��
�2�

0

�

dyy2N�y��1 + N�y���2�y� ,

�41�

Z� = 1 + R1
f2

��
�

−�

�

dyy�y�N�y���y��G�y��2, �42�

R� = R� − R1
2 + R2 =

PS�S
†�S
�,S���,P‡d

�d���

P2 . �43�

In the 2D AF R�=1/2 and 0 for P=Sx, Sy and P=Sz, respec-
tively. Evidently, the temperature dependence of � for P
=Sx ,Sy is the same as that of �0 given by Eq. �30�. Note that
the third term in Eq. �40� is much smaller than the second
one when �����0 / f2.

C. Properties of the impurity susceptibility

We can derive now the impurity susceptibility using the
general expression �19�, Eqs. �26�, �27�, �28�, and �30� for

the Green’s function, and Eqs. �33� and �40� for the branches
of the vertex. As a result of tedious but simple calculations
presented in Appendix C we have for the dynamical suscep-
tibility of the impurity up to terms of the order of f2

�P��� =
P2

2 � 2i�

T�� + 2i��1 + �R1 − 2R��
f2

��

��
−�

�

dx
�x�N�x���x�

x + 2i�0
�

+
2i�0

T�� + 2i�0�
R1

f2

��
�

−�

�

dx
�x�N�x���x�

x + 2i�0

+ 2R�
f2

��
�

−�

�

dx
sgn�x���x�
x + � + 2i�0

� , �44�

R� = R� − R1 =
PS��S
,P�d�


P2 . �45�

The first term in Eq. �44� is the Lorenz peak with the width
�. The second one is a Lorenz peak with the width �0 and
small, proportional to f2, amplitude. The last term is the non-
resonant part of the susceptibility. The imaginary part of the
nonresonant term in Eq. �44� at �����0 is proportional to
sgn��� and the real one contains the logarithmic singularity
of the form ln��2+�0

2�. At T=0 and ��0 only the nonreso-
nant contribution survives only and the susceptibility has the
logarithmic singularity. Such a singularity has been obtained
for the two-level impurity at T=0 in Ref. 19. The first and
the second terms in Eq. �44� are calculated assuming that
����T. At ����T these terms are of the order of f4 and their
taking into account exceeds the range of accuracy.

It should be noted once more that the particular nature of
the defect and the host system is not essential in the above
consideration. We use the general expression �2� for the in-
teraction and assume that the function Im ��
��� has the
form �6�. Apart from f2 only coefficients R in the resultant
expression �44� depend on the nature of the defect and the
host system. We demonstrate now that systems with different
symmetries of the interaction show different behavior of the
impurity. In the case of isotropic interaction all the compo-
nents of tensor d in Eq. �6� are nonzero and all components
of the impurity susceptibility have the same structure: the
Lorenz peaks and the nonresonant term. When one of the
components of d is zero, say the zz one as in a 2D AF, the
behavior of transverse components �x��� and �y��� differs
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from that of the longitudinal one �z���. The transverse com-
ponents have the Lorenz peak �� f4 and the nonresonant
term. The Lorenz peak with the width �0 disappears because
R1=0. The transverse component contains the nonresonant
term but �=0 �see Eqs. �41� and �43�� and our precision is
insufficient to determine the resonance terms in �z���. The
corresponding calculations of �0 and � with higher precision
is out of the scope of the present paper. If only dxx is non-
zero, then �x����0 whereas �y��� and �z��� have only the
nonresonant term. This particular situation is considered in
detail in the next section.

For static susceptibility �P�0� we have from Eq. �44�

�P�0� =
P2

2T
�1 + W�T�� , �46�

W�T� = 2R�
f2

��
�

−�

�

dx
sgn�x���x�

x + 2i�0
�T − xN�x�� , �47�

where the first and the second terms in W�T� stem from the
nonresonant and the resonant parts in Eq. �44�, respectively.
It is easy to verify that W�T� is a real value up to the order of
f2 �remember, the susceptibility has been calculated up to
terms of this order�. Integrations in Eq. �47� can be simply
carried out and we have at T��

�P�0� =
P2

2T
1 − 2R�

f2

�
� + P22R�

f2

��
ln�

T
� . �48�

Thus the uniform susceptibility has the free-spin-like term
P2�2T�−1 which amplitude is slightly reduced by the interac-
tion and the correction proportional to f2ln�� /T�. Expression
�48� is in accordance with that of Ref. 22. A similar result for
the static susceptibility, 1 /T-term and a logarithmic singular
correction to it, has been obtained in the 2D AF near QCP.17

It was found that the static susceptibility exhibits the
classical-like Curie behavior of the form S2 / �3T� and the
coefficients before and under the logarithm are universal val-
ues independent of the particular type of the impurity and the
strength of its coupling to the host system. Remarkably, this
behavior remains also far from the QCP for asymmetrically
coupled impurities �vacancy and added spin� at
T�g.13,14,16,17 but the constant under the logarithm becomes
nonuniversal. These findings are related to the nontrivial
long-range dynamics of the 2D AF. Then we point out the
significant difference between dynamical properties of sym-
metrically and asymmetrically coupled impurities in the re-
gime T�g: the leading 1/T terms have the free-spin-like
behavior and the classical-like one, respectively. Moreover,
the logarithmic correction is proportional to g2 in the sym-
metric case and it does not depend on g in the asymmetric
one.16,17 As was also pointed out in the Introduction, the
difference can be explained by the fact that the impurity spin
coupled asymmetrically aligns with the local Néel order16,17

at T�g whereas the symmetrically coupled impurity is lo-
cated in the zero molecular field.

It is convenient from this point on to neglect in Eq. �44�
the small corrections and use the following simple expres-
sion for the transverse susceptibility �����=�x���=�y���:

����� = P2 i�

T�� + 2i��
+ P2R�

f2

��
�

−�

�

dx
sgn�x���x�
x + � + i�0

,

�49�

Im ����� = P2 ��

T��2 + 4�2�
+ P2R�

f2

�
����sgn��� .

�50�

The imaginary part of the nonresonant term is calculated at
�����0 in Eq. �50�. We see that it does not depend on the
temperature at such �. It is seen from Eq. �49� that the non-
resonant term gives the main contribution to the susceptibil-
ity when

�����0 = f2� T

�
�2

. �51�

As the sign of Im �P��� should coincide with that of �, the
constant R� given by Eq. �45� should be positive. For ex-
ample, we have for the 2D AF R�=1/2.

It should be stressed that there is a restriction on the range
of validity of the resultant expressions �44� and �49� for
�P��� in the case of the 2D AF. It is the consequence of the
fact that the function Im ���� has the form �6� if �
� �� or Ja /�� only. It is easy to see that in all calculations
performed above one can use the function of the form �6� if
the following condition on � and �0 holds: max��0 , ����
� �� or Ja /��.

D. Comparison with the exactly solvable model

Let us consider the special case when the interaction con-
tains only one term: Hint=gSx	x�R0�. It is seen from Eqs.
�29� and �43� that �=�0=0 and the resonant terms are zero
at ��0 in Eq. �44�. One can conclude from Eqs. �45� and
�49� that �x���=0 and

�y��� = �z��� = ������� =
f2

2��
ln��

�
� + i

f2

4�
����sgn��� .

�52�

As it was pointed out above, our model in this case is equiva-
lent to the spin-boson model �1� without Hd. The corre-
sponding Hamiltonian can be diagonalized exactly and an
exact expression for the impurity susceptibility can be de-
rived. We perform in this subsection the corresponding cal-
culations of ������� and confirm our results obtained above.

The detailed discussion of the exactly solvable spin-boson
model is also necessary for the following reason. It was im-
portant for our consideration that ���� in expression �26� for
the Green’s function is nonzero, i.e., the coefficient R� given
by Eq. �29� is finite. As is demonstrated in Sec. III A, the
imaginary term i���� in the denominator of the Green’s
function G��� screens the logarithmic singularity of the self-
energy part allowing us to restrict ourselves by the second
order of f2. In the opposite case, when the imaginary part in
the denominator of G��� is zero, one has to sum all the series
to calculate the Green’s function in the region of � deter-
mined by the condition
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f2 T

�
ln� T

�
� � 1. �53�

It should be stressed that Eq. �52� for ������� is valid if the
condition �53� on the frequency � is not fulfilled. If the con-
dition �53� is fulfilled the results of the exact diagonalization
should be discussed.

We represent Hamiltonian �1� of the spin-boson model
describing the degenerate defect in the following form:

H =
1

2�
k

�	k
2QkQ−k + PkP−k� + gSx�

k
FkQk, �54�

where the symbols 	k, Qk, and Pk stand for the frequency,
normal coordinate, and momentum of the system propagat-
ing modes �bosons� with momentum k, where �Qk , P−k��
= i�kk� , Qk=�k+�−k

† , Pk=−i	k��k−�−k
† �. The last term in

Eq. �54� describes coupling of the impurity with the system,
where Fk is a coupling parameter. In this problem definition
the spectral function given by Eq. �3� has the form

Im ���� = −
�

2 �
k

�Fk�2

	k
���� − 	k� − ��� + 	k�� . �55�

We treat the elementary excitations within the Debye ap-
proximation and assume that the spectrum is linear in k :	k
=ck. We make also one more assumption which does not
affect the results: k is a two-dimensional vector. In this case
the spectral function is proportional to �2 when the coupling
parameter is linear in k:

Fk =
1

��V
	k, �56�

where V is the volume of the crystal and � is the cutoff
frequency. In this case the spectral function �55� has the form
�6� with A= �4c2�−1.

The Hamiltonian �54� can be diagonalized exactly. It is
convenient for this purpose to apply the following canonical
transformation30:

e−RHeR =
1

2�
k

�	k
2QkQ−k + PkP−k� −

g2

8 �
k

�Fk�2

	k
2 ,

R = ig�
k

Fk

	k
2 PkSx. �57�

It can be shown that the correlation function can be brought
to the form30

�Sy�t�Sy�0�	 =
1

4
eI�t�, �58�

I�t� = g2�
k

�Fk�2

2	k
3 �N�	k��ei	kt − 1� + �N�	k� + 1��e−i	kt − 1�� .

�59�

As a result we have for the transverse dynamical susceptibil-
ity using the representation I�t�=X�t�− iU�t�

������� =
1

2
�

0

�

dtei�teX�t�sin�U�t�� . �60�

One obtains for X�t� and U�t� from Eq. �59�

X�t� =
f2

��
�

0

�

dx�cos�xt� − 1��1 + 2N�x�� , �61�

U�t� =
f2

��
�

0

�

dx sin�xt� =
f2

�

1 − cos��t�
�t

, �62�

where f2 is given by Eq. �20�. It is seen from Eq. �62� that
U�t� is a bounded function and we have in Eq. �60�
sin�U�t���U�t�. The function X�t� along with negligibly
small terms of the order of f2 has another one which is large
at tT�exp�� / �f2T�� and for which we have with the loga-
rithmic precision X�t��−2f2T����−1ln�tT�.40 As a result we
obtain

������� =
f2

2�
�

T
���

0

�

dtei�t1 − cos�t��
�t��1+�

=
1

4T
�

T
���1

2
�1 +

�

�
�� +

1

2
�1 −

�

�
�� − � �

�
���

− i
f2

4�
�

T
���1

2
�1 +

�

�
��

−
1

2
�1 −

�

�
��sgn�� − �� − � �

�
���sgn��� , �63�

where �=2f2T����−1. We recover Eq. �52� from Eq. �63� if
the condition �53� is not fulfilled and ����� or �����. At
��� Eq. �63� can be represented in the simple form

������� =
1

4T
�

T
���1 −  �

i�
��� . �64�

At small enough �, when Eq. �53� holds, Eq. �52� is incor-
rect and we see from Eq. �64� that the susceptibility shows
the nontrivial � and T dependences. In particular, the static
susceptibility is proportional to T−1−�. In the order of f2 the
static susceptibility has the same structure as that obtained
above �see Eq. �48��: it has the conventional term 1/ �4T� and
the logarithmic correction to this term. Thus we see that
within the modified spin-boson model logarithmic correc-
tions result in the nontrivial power-law T dependence of
��0�.

IV. INFLUENCE OF THE DEFECTS ON THE HOST
SYSTEM

We discuss in this section the influence of finite concen-
tration of the defects n on the low-temperature properties of
the 2D AF. The spin-wave spectrum and the specific heat of
the AF are considered below in detail. It will be assumed that
n�1 in order to neglect interaction between impurities.

A. Spin-wave spectrum

The spin-wave spectrum is determined by the poles of the
spin Green’s functions. The Green’s functions of the 2D AF
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with impurities are investigated in Appendix D. It is demon-
strated there that their denominator has the form

D��,k� = �2 − 	k
2 + 4s2g2n������J0 − Jkcos�kR12�� ,

�65�

where R12 is the vector connected host spins coupled to im-
purity �it is assumed for beginning that this vector is the
same for all defects�, Jk=2J�cos kx+cos kz�, where J is the
exchange constant, and 	k=s�J0

2−Jk
2.

Let us discuss the spin-wave spectrum near points k=0
and k=k0, where k0 is the antiferromagnetic vector. It is seen
that expression �65� is symmetric under replacement of k by
k±k0. Thus we consider below only the vicinity of the point
k=0. We have from Eq. �65�

D��,k� = �2 − 	k
2�1 −

nf2

2�
�u�k������� , �66�

u�k� =
1

2
+

�kR12�2

k2 , �67�

where it is used that the unperturbed spectrum is linear at k
�k0 :	k=ck=�8sJk. It is seen from Eqs. �66� and �67� that
the spectrum appears to be dependent on the direction of the
momentum k as a result of interaction of magnons with the
defects. This circumstance is a consequence of our assump-
tion that the vector R12 is the same for all impurities. In fact,
it can have four directions and the value �R12k�2 /k2 can have
two different values: cos2 k and sin2 k, where  k is the
azimuthal angle of k. It easy to realize that u�k�=1 if all four
ways of coupling of the impurity with the AF are equally
possible.

It is convenient for the following to consider separately
the cases of �����0 and �����0, where �0 is given by Eq.
�51�. In these cases the nonresonant and the resonant parts,
respectively, are dominant in the impurity susceptibility �49�.

�����0. One obtains from Eqs. �49�, �50�, and �66� for
the magnon damping �k and the renormalized spin-wave
velocity c̃k

�k = ���
nf4

16�
u�k� , �68�

c̃k
2 = c21 − ln��

�
� nf4

4�2u�k�� , �69�

where we take into account that R�=1/2. It is seen that the
interaction with the defects leads to strong damping which is
proportional to � and to the logarithmic correction to the
spin-wave velocity. It would seem that at small enough k the
spin-wave velocity becomes imaginary signifying a phase
transition in the system. Meanwhile our theory is not appli-
cable at such small k. The interaction with the defects
changes the function Im ��
��� as well and this renormal-
ization is strong at small enough �. Indeed, one has to use
the renormalized spin Green’s function derived in Appendix
D to evaluate Im ��
���. As a result of simple calculations
similar to those presented in Appendix A we obtain that at

����� in addition to the term proportional to �2sgn���
there is another one proportional to sgn���:

Im ��
��� = − A�
�
�2

sgn���d�
 − sgn���
snf4B

�
d�
,

�70�

B =
s4J2

�5/2 � dk
�1 + cos�kR12��2�J0 − Jk�2

	k
4 � 0.2, �71�

where the integral is taken over the chemical Brillouin zone.
The first term in Eq. �70� is greater than the second one when

���� 0.02��nf2. �72�

This condition determines the range of validity of our theory
at �����0. At � given by Eq. �72� the logarithmic correction
to the spin-wave velocity in Eq. �69� is small.

�����0. In this case the impurity susceptibility �49� is
determined by the resonant term. We have for the spin-wave
damping and the spin-wave velocity from Eqs. �49�, �50�,
and �66�

�k =
�

T

�2�

�2 + 4�2

nf2

8�
u�k� , �73�

c̃k
2 = c21 −

�

T

�2

�2 + 4�2

nf2

2�
u�k�� . �74�

As in the case of �����0, one has to take into account the
renormalization of the function Im ��
���. After simple cal-
culations we obtain at �����

Im ��
��� = − A�
�
�2

sgn���d�
 − 2snf2B
��

T��2 + 4�2�
d�
,

�75�

where the constant B is given by Eq. �71�. As a result the
range of validity of our consideration is determined by

�����2 + 4�2�
�3 � 0.004nf2�

T
. �76�

It is easy to show that the spin-wave damping �73� and the
correction to the spin-wave velocity in Eq. �74� is small at
such �.

It should be noted once more that if one of the conditions
�72� or �76� is violated the interaction between defects be-
comes important and our approach is wrong.

B. Specific heat

We proceed with the discussion of the magnetic part of
the specific heat C�T�. It is convenient to use the following
formula for its evaluation:

C�T� =
dE

dT
=

d

dT��
k
	k�k

†�k +
1

2
� + �

i

Hint
�i�� , �77�

where the first term describes magnetic excitations and index
i in the second term labels impurities. To calculate the first
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term in Eq. �77� we use the bilinear part of the Hamiltonian
�A5� and spin Green’s functions �D2� renormalized by inter-
action with impurities. As a result of simple calculations one
obtains up to inessential terms not depending on the tempera-
ture

��
k
	k�k

†�k +
1

2
��

= �
k
	kN�	k� + 2Nnf2�X�

−�

�

d�N���Im ����� ,

�78�

X =
s2J

2�4 � dk
J0 − Jkcos�kR12�

	k
2 � 0.05, �79�

where the integration in Eq. �79� is over the chemical Bril-
louin zone. The diagram for the second term in Eq. �77� is
shown in Fig. 5. It contains the impurity susceptibility cal-
culated above and ��
���:

��
i

Hint
�i�� = N

ng2

�
�


�

−�

�

d�N����Im �
���Re �

���

+ Re �
���Im �

���� . �80�

Evaluating expression �80� and summing it with Eq. �78� one
leads to the following expression:

E

N
=

1

N
�
k
	kN�	k� −

2nf2

��
�

−�

�

d�N�����������Re �����

+ nf2�X�
−�

�

d�N���Im ����� , �81�

where the constant X is given by Eq. �79�. The first term in
Eq. �81� describes the energy of the 2D AF without impuri-
ties. It is equal to E0NT3 /�2 at T�� and we come to the
well-known result: C�T�T2 for the pure 2D AF. Evaluation
of corrections to E0 from the second and third terms in Eq.
�81� is a tedious but straightforward work. Unfortunately Eq.
�49� for ����� has the limited range of validity which is
discussed in the previous section. Therefore one cannot carry
out the integration in the second and the third terms of Eq.
�81� in the whole range of �. We have evaluated these terms
after the integration over � at which Eq. �49� is valid. There
are corrections having weaker T dependence than E0 stem-
ming from both the resonant and the nonresonant parts of
�����. Meanwhile restrictions �72� and �76� result in the

considered corrections to be bounded below on T and to be
smaller than E0.

Thus we do not obtain a renormalization of the specific
heat within our precision.

V. CONCLUSION

We discuss the dynamical properties of the impurity spin-
1
2 in 2D and quasi-2D Heisenberg antiferromagnets �AFs� at
T�0. The specific case of the impurity that is coupled sym-
metrically to two neighboring host spins is considered. It is
shown that this problem is a generalization of the spin-boson
model without the tunneling term and with a more complex
interaction. It is demonstrated that the effect of the host sys-
tem on the defect is completely described by the spectral
function J��� which is proportional to �2. It is found within
the spin-wave approximation that the spectral function has
this � dependence in the 2D AF for not too small �. In the
isotropic 2D AF at T�0 J����2 when ��Ja /�, where J
is the exchange constant between the host spins, � is the
correlation length, and a is the lattice constant. For the or-
dered 2D AF J����2 at ���, where ��J is the value of
interaction �for definiteness interplane interaction� stabilizing
the long-range order at finite T.

We stress that one must distinguish symmetrically and
asymmetrically coupled impurities �see Fig. 1�. The sym-
metrically coupled impurity is located in the zero molecular
field. It remains degenerate and the spectral function is pro-
portional to �2. In the case of the asymmetrically coupled
impurity, where the molecular field is nonzero, there is split-
ting of the impurity levels and the spectral function has terms
with weaker � dependence. For instance, we demonstrate
that the spectral function for impurity coupled to one host
spin is proportional to a constant. In this paper we consider
only the symmetric case. Our results are also valid with cer-
tain additional restrictions for slightly split nearly symmetri-
cally coupled impurities �see below�.

The defect dynamical susceptibility ���� is derived using
Abrikosov’s pseudofermion technique and diagrammatic ex-
pansion. The calculations are performed within the order of
f4, where fg /J is the dimensionless coupling parameter.
For our study the sign of f is insignificant. We show that the
transverse impurity susceptibility ����� has a Lorenz peak
with the widths � f4J�T /J�3 that disappears at T=0, and a
nonresonant term. The longitudinal susceptibility �
��� has
the nonresonant term which differs from that of ����� by a
constant and a Lorenz peak. The width of the peak is zero
within the order of f4. Its calculation is out of the scope of
this paper. The imaginary part of the nonresonant term is a
constant independent of T at ����� and the real part has a
logarithmic divergence as � , T→0. Similar logarithmic sin-
gularity was found in Ref. 19 at T=0.

The static susceptibility has the free-spin-like term S�S
+1� / �3T� and a correction proportional to f2ln�J /T�. We
point out here the sharp difference between symmetrically
and asymmetrically coupled impurities that takes place in the
regime T� �g� �by asymmetrically coupled impurities we
mean here either the added spin coupled to one host spin or

FIG. 5. Graphical representation of averaged interaction of one
impurity with the 2D AF. Bold solid and bold wavy lines denote,
respectively, dressed pseudofermion Green’s functions and the bo-
son Green’s function renormalized by interaction with impurities.
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the vacancy which is the particular case of the added spin
with g→��. The leading 1/T term has the free-spin-like
form in the symmetric case and the classical-like form in the
asymmetric one. Moreover, the logarithmic correction is pro-
portional to g2 in the symmetric case and it does not depend
on g in the asymmetric one.16,17 The difference is related to
the fact that the impurity spin coupled asymmetrically aligns
with the local Néel order,16,17 whereas the symmetrically
coupled impurity is located in the zero molecular field.

The fact that the spectral function in the 2D AF is propor-
tional to �2 only at �� �� or Ja /�� leads to the following
restriction on the results obtained: max�� , ����
� �� or Ja /��. If the defect is slightly split �for definiteness
by magnetic field H� this condition turns into max�� , ����
�max{�� or Ja /�� ,g�BHS}. For nearly symmetrically
coupled impurity one has

max��, �����maxˆ�� or Ja/��, �g1 − g2�‰ ,

where g1,2 are values of coupling with the corresponding
sublattices �see Fig. 1�.

The findings discussed above are valid for isotropic inter-
action of the impurity spin S with the AF: Hint=gS�s1+s2�,
where s1,2 are host spins from different sublattices. We con-
sider also interaction containing only one component of
S :Hint=gSx�s1

x +s2
x�. The results in this case are quite spe-

cific. We show that the xx component of the impurity sus-
ceptibility is zero whereas yy and zz ones have only the
nonresonant term. Our model is identical to the spin-boson
one �1� without Hd if the interaction contains a term with
only one component of S. The Hamiltonian can be diagonal-
ized exactly30 and an exact expression for ���� can be ob-
tained. We perform the corresponding calculations and con-
firm the results obtained by our approach. One of the most
interesting features of the exact result is that the static sus-
ceptibility has the form ��0�T−1−�, where � f2T /J. Within
the first order of f2 one has the 1/ �4T� term and the logarith-
mic correction. Thus we see that in the modified spin-boson
model taking into account the higher-order logarithmic cor-
rections results in the nontrivial power-law T dependence of
��0�.

The influence of the finite concentration n of the defects
on the low-temperature properties of the 2D AF is also con-
sidered. For not too small � we find the logarithmic correc-
tion to the spin-wave velocity of the form nf4ln�J /�� and an
anomalous damping of the spin waves proportional to nf4���.
Similar logarithmic corrections to the velocity and damping
were obtained in Ref. 27, where vacancies in the 2D AFs
were studied. It is demonstrated that interaction of the spin
waves with defects modifies the spectral function which ac-
quires different terms proportional to n exhibiting weaker �
dependence. These terms should be taken into account at
small enough � and the problem should be solved self-
consistently. The corresponding consideration is out of the
scope of this paper. Within the range of validity of our study
we do not obtain a renormalization of the magnetic specific
heat which is proportional to T2 in the 2D AF without impu-
rities.

The results of the present paper can be applied to other
systems with a degenerate defect in which the spectral func-
tion is proportional to �2.
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APPENDIX A: CALCULATION OF Im ���„�… IN 2D
AF

In this appendix we discuss properties of the imaginary
part of the function ��
���, the general expression for which
is given by Eq. �3�. It is shown below that within the spin-
wave approximation Im ��
��� has the form �6� and expres-
sions for the constant A, the characteristic energy �, and the
tensor d�
 are obtained.

We have from Eqs. �3� and �4�

��
��� =
2

N
�
k

�1 + cos�kR12���s−k
� sk


	�, �A1�

where �¯	� denotes the retarded Green’s function, N is the
number of spins in the lattice, and R12 is the vector connect-
ing two host spins coupled to the defect. Thus we have to
calculate the spin Green’s functions �s−k

� sk

	� of the 2D AF.

The Hamiltonian of the 2D Heisenberg AF on the square
lattice has the well-known form

H = J�
�ij	

sis j . �A2�

We perform for beginning all calculations for the isotropic
Heisenberg 2D AF at T=0 and then consider the effect of
finite T and of the additional small interaction stabilizing the
long-range order at finite T.

Instead of dividing the lattice onto two sublattices it is
convenient to represent operators sk

� as follows �see, e.g.,
Refs. 37 and 38�:

sk = x̂sk
x + ŷsk+k0

y + ẑsk+k0

z , �A3�

sk
x =� s

2
ak + a−k

† −
�a2a†�k

2s
� ,

sk
y = − i� s

2
ak − a−k

† −
�a2a†�k

2s
�, sk

z = s − �a†a�k,

�A4�

where the z axis is parallel to the magnetization of sublat-
tices, x̂ , ŷ , ẑ denote unit vectors directed along correspond-
ing axes, k0= �� ,0 ,�� is the antiferromagnetic vector, and s
is the spin value. Substitution of Eqs. �A3� and �A4� to Eq.
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�A2� leads to the following expression for the Hamiltonian:
H=E0+�i=2

6 Hi, where E0 is the ground-state energy and Hi
denotes terms containing products of i operators a and a†.
We consider in this paper the spin-wave approximation, i.e.,
we restrict ourselves by the bilinear part of the Hamiltonian
which has the form

H2 = �
k
�Ekak

†ak +
Bk

2
�ak

†a−k
† + aka−k�� , �A5�

where Ek=sJ0, Bk=sJk, and Jk=2J�cos kx+cos kz�. As is
seen from Eqs. �A1�, �A3�, and �A4�, the only nonzero com-
ponents of the spin Green’s function are xx and yy and tensor
d�
 has the form

d�
 = ���
, if �,
 = x,y ,

0, if � = z or 
 = z .
� �A6�

The corresponding components of ��
��� can be derived
using Green’s functions g�� ,k�= �ak ,ak

†	�, f�� ,k�
= �ak ,a−k	�, ḡ�� ,k�= �a−k

† ,a−k	�=g*�−� ,−k�, and f†�� ,k�
= �a−k

† ,ak
†	�= f*�−� ,−k�. For two of them we have the Dyson

equation

g��,k� = g�0���,k� + g�0���,k�Bkf†��,k� ,

f†��,k� = ḡ�0���,k�Bkg��,k� , �A7�

where g�0��� ,k�= ��−Ek+ i��−1 is the bare Green’s function.
Solving Eq. �A7� one obtains

g��,k� =
� + sJ0

�� + i��2 − 	k
2 , f��,k� = −

sJk

�� + i��2 − 	k
2 ,

�A8�

where 	k=s�J0
2−Jk

2 is the spin-wave energy. As a result of
direct calculations we have

Im ��
��� = − d�

s2

4�
� dk„�1 + cos�kR12���J0 − Jk�

+ �1 + cos��k + k0�R12���J0 + Jk�…

�
1

	k
���� − 	k� − ��� + 	k�� , �A9�

where the lattice constant is taken to be equal to unity and
the integral is over the magnetic Brillouin zone. If ����sJ
we have Jk�J0�1−k2 /4�, 	k=ck=�8sJk, and cos�kR12��1
− �kR12�2 /2. Notice that �k0R12�=� mod 2� if the impurity
is coupled to spins from different sublattices and both terms
in the first brackets in Eq. �A9� are proportional to k2. Then
integration in Eq. �A9� can be easily carried out if one takes
advantage of the approximation for magnons similar to the
Debye one for phonons: the spectrum is assumed to be linear,
	k=ck, up to cutoff momentum k! defined from the equation
2N=V�2��−1�0

k!dkk, where V is the area of the lattice. As a
result we lead to expression �6� for Im ��
���, where

! = ck! = 8��sJ, A =
2�

J
. �A10�

The factor A should be multiplied by 2 if the defect is
coupled to four host spins �two by two from each sublattice�.

It is well known that there is no long-range order in the
Heisenberg 2D AF at T�0.8 Nevertheless, it is shown
theoretically9–11 and confirmed experimentally12 that the spin
waves are well defined in the paramagnetic phase of the 2D
AF if their wavelength is much smaller than the correlation
length �exp�const/T�. Thus the above result for Im ��
���
is valid when ����Ja /�, where a is the lattice spacing.

It is easy to conclude that if a small interplane interaction
of the value of ��J is taken into account the above result
for Im ��
��� is valid when ����� �see the discussion in
Sec. II A�. At the same time Im ��
��� has another � depen-
dence if ���"�.

Finally, we note that when the impurity is coupled to one
host spin we have ��
���=N−1�k�s−k

� sk

	� instead of Eq.

�A1�. Comparing this equation with Eqs. �A1� and �A9� one
infers that the spectral function is proportional to a constant
in this case.

APPENDIX B: MATRIX STRUCTURE OF
PSEUDOFERMION GREEN’S FUNCTION AND THE

VERTEX FOR 2D AF

In this appendix we discuss the matrix structure of the
dressed pseudofermion Green’s functions Gmm��x� and the
pseudofermion vertex �Pmm��x+� ,x� for the 2D AF. Some
lower-order diagrams for the self-energy �mm���� and for
�Pmm� are shown in Figs. 3 and 4, respectively. Let us discuss
first the self-energy. Its matrix structure is determined by the
corresponding products of operators S� and tensors d�
. For
instance, this product for the second diagram in Fig. 3 has
the form ����

�S

�S
S��S
�d

�d���. One can make sure that
such combinations are proportional to the unit matrix using
the following evident representation of an arbitrary matrix A
of the size 2�2 via Pauli matrices:

A = a0 + ��a� , �B1�

where a0=Tr�A� /2 and a=Tr��A� /2. It is seen from the
view of the tensor d�
 given by Eq. �A6� that the combina-
tions of S� contain products of even number of matrices �x
and �y. According to Eq. �B1� such combinations are propor-
tional to the unit matrix.

The similar consideration can be carried out for the vertex
�Pmm��x+� ,x�, where P is one of the Pauli matrices. The
vertex matrix structure is determined by the products of op-
erators S�, tensors d�
, and P. For example, the correspond-
ing product for the fourth diagram in Fig. 4 has the form
����

�S

�S
PS��S
�d

�d���. It can be easily shown using
Eq. �B1� that such combinations are proportional to P.

APPENDIX C: CALCULATION OF THE IMPURITY
SUSCEPTIBILITY

We present in this appendix some details of the impurity
dynamical susceptibility calculation. We use for this the gen-
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eral expression �19� and Eqs. �26�, �33�, and �37� for the
Green’s function and the branches of the vertex. The expres-
sion for �P��� is derived up to the order of f2. In this order
the interaction does not change the average number of
pseudofermions N given by Eq. �15�, i.e., N=2e−�/T. To
show this let us express N as an integral of the Green’s
function39:

N = −
1

�
�
m
�

−�

�

dxn�x�Im Gmm�x�

= −
2e−�/T

�
�

−�

�

dxe−x/TIm G�x� , �C1�

where n�x�= �ex/T+1�−1 is the Fermi function and G�x� is
given by Eq. �26�. We make a shift by � in the last part of
Eq. �C1� and replace n�x+�� by e−�x+��/T as it was done in
Eq. �19� for �P���. Because ��x� and Z�x� are exponentially
small at negative x if �x��T �see Eq. �31�� the integrand in
Eq. �C1� does not increase exponentially as x→−�. It is easy
to make sure that the terms proportional to f2 cancel each
other in Eq. �C1�.

According to Eqs. �19�, �33�, and �40� the dynamical sus-
ceptibility can be represented as a sum of three components.
The first one, �1���, originates from Eq. �19� as a result of
replacement of the vertex by unity. The second, �2���, ap-
pears from the f2 terms in Eqs. �33� and �40�. The third,
�3���, is a result of replacement of the vertex by the third
term from Eq. �40�.

The expression for �1��� can be brought to the form

�1��� =
P2

2�
�

−�

�

dxe−x/T�G�x + �� + G*�x − ���Im G�x� .

�C2�

The integrand in Eq. �C2� does not increase exponentially as
x→−� because ��x� and Z�x� obey the property �31�. Using
Eq. �26� for Green’s functions it is convenient to represent
Eq. �C2� in the following form:

�1��� = �J0��� + J1��� + J2����

+ �J0
*�− �� + J1

*�− �� + J2
*�− ��� , �C3�

J0��� = −
P2

2�
�

−�

�

dxe−x/T 1

x + � + i�0

��x�
x2 + �0

2 , �C4�

J1��� = −
P2

4�i
�

−�

�

dxe−x/T 1

x + � + i�0

��− i��x��Z�x� + Z*�x�� + x�Z�x� − Z*�x��
x2 + �0

2 � ,

�C5�

J2��� =
P2

2�
�

−�

�

dxe−x/T Z�x + ��
x + � + i�0

��x�
x2 + �0

2 , �C6�

where in all denominators we replace ��x� and ��x+�� by
�0, their values at �x��T and �x+���T, respectively �see
Eq. �30��. It can be done because ���x��� �x� at �x��T.

The integration in Eq. �C4� can be easily carried out if one
notes that the main contribution arises from the area of x
�� ,�, where e−x/T�1−x /T �it will be clear soon that the
second term in this expansion is essential�. As a result we
have

J0��� = −
P2

2

1

� + 2i�0
1 −

i�0

T
� . �C7�

To take the integral in Eq. �C5� for J1��� we consider a
contour integral with the same integrand. The contour is pre-
sented in Fig. 6. It consists of four lines that are parallel to
the real axis. They pass through points x=0, x= i�0− i�, x
= i�0+ i�, and x= i�T. It can be shown using definitions of
��x� and Z�x� that the integrand is an analytical function
inside the contour. Note that the contour envelops the cut of
Z�x�* passing through the point x= i�0 along the real axis. As
a result we have

J1��� = −
P2

2�

f2R�
�!

�
−�

�

dxdx1e−x/T�x1�N�x1���x1�
��x + i�T��x1 + x + i�T� + ��x1 + x + i�T��x + i�T�

�x + i�T�3�x1 + x + i�T�2

+
P2

4�i

f2R�
�!

e−i�0/T�
−�

�

dxdx1
e−x/T�x1�N�x1���x1�

x + � + 2i�0
� 1

x1 + x − i�

1

x − i�
−

1

x1 + x + i�

1

x + i�
� , �C8�

FIG. 6. Contour of integration used in Appendix C for the im-
purity susceptibility calculation. This contour consists of four lines
which are parallel to the real axis. They pass through points x=0,
x= i�0− i�, x= i�0+ i�, and x= i�T.
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where the first term is the result of integration over the line
of the contour passing through x= i�T and the second term
describes the sum of integration over lines passing through
x= i�0− i� and x= i�0+ i�. It is seen from Eq. �C8� that the
first term is of the order of f6 and can be discarded. The
second term in Eq. �C8� can be simply calculated using
the equation �x1+x− i��−1�x− i��−1− �x1+x+ i��−1�x+ i��−1

=2�i���x1+x��x− i��−1+��x��x1+ i��−1�. As a result we have

J1��� =
P2

2

e−i�0/T

� + 2i�0

f2R�
�!

�
−�

�

dx
�x�N�x���x�
x + � + 2i�0

. �C9�

One can carry out the integration in Eq. �C6� for J2��� in a
similar way. As a result we obtain that J2���=J1��� and
�1��� has the form

�1��� =
P2

2 � 2i�0

T�� + 2i�0�1 − 2
f2R�
�!

�
−�

�

dx
�x�N�x���x�

x + 2i�0
�

+ 2R�
f2

�!
�

−�

�

dx
sgn�x���x�
x + � + 2i�0

� , �C10�

where we omit � in the denominator of the integrand in the
first term.

The quantity �2��� can be expressed as follows:

�2��� = J��� + J*�− �� , �C11�

J��� =
P2

2�
R1

f2

�!
�

−�

�

dxdx1e−x/T�x1�x1N�x1���x1�

�G�x1 + x + ��G�x + ��Im�G�x�G�x1 + x�� .

�C12�

The integral in Eq. �C12� can be taken similar to those of
J1��� and J2���, the result being

�2��� =
P2

2 � 2i�0

T�� + 2i�0�
2R1

f2

�!
�

−�

�

dx
�x�N�x���x�

x + 2i�0

− 2R1
f2

�!
�

−�

�

dx
sgn�x���x�
x + � + 2i�0

� , �C13�

where we omit � in the denominator of the integrand in the
first term.

The expression for �3��� can be brought to the form

�3��� = −
P2

2

�

T�� + 2i��
Z��

−�

�

dxe−x/TG�x + ��G*�x�K�x� .

�C14�

The area near poles of the Green’s functions is essential in
this integral. Therefore we can replace e−x/T by unity and
K�x� by K�0�= ��0−�� /�. As a result we have

�3��� =
P2

2
� 2i�

T�� + 2i��
−

2i�0

T�� + 2i�0��
��1 − 2R�

f2

�!
�

−�

�

dx
�x�N�x���x�

x + 2i�0

+ R1
f2

�!
�

−�

�

dx
�x�N�x���x�

x + 2i�0
� . �C15�

Summing Eqs. �C10�, �C13�, and �C15� we lead to Eq. �44�
for the impurity susceptibility.

APPENDIX D: GREEN’S FUNCTIONS OF 2D AF WITH
IMPURITIES

We derive in this appendix Green’s functions of operators
a and a† considered in Appendix A in the case of the 2D AF
with impurities. To investigate the influence of the impurities
we have to take into account the corresponding interaction
�4� in Dyson equations. It is assumed that N ,Ni→� and
Ni /N=n=const, where N and Ni are the number of spins in
the lattice and the number of impurities, respectively. Within
the linear spin-wave approximation the equations for g and
f† have the form

g��,k� = g�0���,k� − g2ns�1 + cos�kR12���f �0���,k�

+ g�0���,k���x����g��,k� + f†��,k��

+ g2ns�1 − cos�kR12���f �0���,k� − g�0���,k��

��y����g��,k� − f†��,k�� ,

f†��,k� = f†�0���,k� − g2ns�1 + cos�kR12���ḡ�0���,k�

+ f†�0���,k���x����g��,k� + f†��,k��

+ g2ns�1 − cos�kR12���ḡ�0���,k�

− f†�0���,k���y����g��,k� − f†��,k�� , �D1�

where the superscript �0� denotes Green’s functions without
impurities which are given by Eq. �A8� and �x��� and �y���
are the impurity susceptibility given by Eq. �49� with P=Sx

and Sy, respectively. Equations �D1� can be easily solved
with the result

g��,k� = ḡ�− �,k�* =
sJ0 + � − 2g2ns�����

D��,k�
,

f†��,k� = f�− �,k�* =
− sJk + 2g2ns�����cos�kR12�

D��,k�
,

�D2�

where �����=�x���=�y��� and the denominator D�� ,k� is
given by Eq. �65�.
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