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The layered spiral magnet Cs2CuCl4 displays several interesting properties that have been suggested as
evidence of proximity to a two-dimensional quantum spin liquid. In this paper we study a concrete version of
this proposal and suggest experiments that can potentially confirm it. We study universal critical properties of
two-dimensional frustrated quantum magnets near the quantum phase transition between a spiral magnetic state
and a spin liquid state with gapped bosonic spinons in the framework of an O�4�-invariant critical theory
proposed earlier �A. Chubukov, T. Senthil, and S. Sachdev, Phys. Rev. Lett. 72, 2089 �1994��. Direct numeri-
cal calculation of the anomalous exponent in spin correlations shows that the critical scattering has broad
continua qualitatively similar to experiment. More remarkably we show that the enlarged O�4� symmetry leads
to the same slow power-law decay for the vector spin chirality and the Néel correlations. We show how this
may be observed through polarized-neutron scattering experiments. A number of other less dramatic conse-
quences of the critical theory are outlined as well.
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I. INTRODUCTION

Despite the great amount of progress made in our theoret-
ical understanding of spin liquid phases2–4 of quantum mag-
nets, there are to date no convincing experimental examples
of such phases in spatial dimension d�2. A particularly
promising candidate—much discussed recently—is the ma-
terial Cs2CuCl4. This is a layered Mott insulator whose spin
physics is accurately modeled by a spin-1 /2 Heisenberg an-
tiferromagnet on an anisotropic triangular lattice. Neutron
scattering measurements have revealed several unusual prop-
erties of the spin excitations5 which have motivated intensive
theoretical research works.6–10 There is incommensurate spi-
ral magnetic order at low temperatures �below 0.62 K�. The
low-energy excitations of this ordered state are spin waves.
However, spin-wave theory fails to quantitatively describe
the spin-wave linewidth seen in inelastic neutron scattering.
In particular there are long tails that extend to reasonably
high frequencies in the inelastic scattering spectrum. This
structure may be understood as indicative of a broad con-
tinuum of excited states. The continuum survives upon heat-
ing above the magnetic phase transition �though the spin
wave itself does not�. In addition the phase diagram in an
external magnetic field shows several interesting features.

The broad continuum is reminiscent of spinon excitations
in one-dimensional Heisenberg antiferromagnetic chains.
However, the continuum disperses in both spatial directions
so that a two-dimensional description of the physics may be
more appropriate. A number of workers have therefore sug-
gested interpretations of the neutron data in terms of frac-
tional spin �spinon� excitations in two dimensions into which
the magnons decay. In particular Coldea et al.5 suggested
that the material may be viewed as being close to a quantum
phase transition between a spiral Néel state and a spin liquid
state. The purpose of the present paper is to explore this
possibility in greater detail and to suggest concrete experi-
mental tests to confirm �or rule out� this proposal.

We begin with some general considerations. It is by now
established that a number of different kinds of spin liquid
phases are theoretically possible in two-dimensional quan-
tum magnets. We will restrict attention to a particular kind of
spin liquid phase whose excitations consist of bosonic spin-
1 /2 spinons with a full spin gap. In addition there are gapped
Z2 vortices �visons� which act as sources of � flux for the
spinons. As shown many years ago in Ref. 1 such a spin
liquid phase admits a direct second-order transition to the
spiral Néel state which is simply driven by condensation of
the bosonic spinons. Specifically the transition was argued to
be in the universality class of the classical O�4� fixed point in
three dimensions. Here we point out several remarkable con-
sequences of this theory which may be used to test its appli-
cability to Cs2CuCl4 or other materials. Perhaps most inter-
estingly we show that the large extra O�4� symmetry that
emerges at the critical fixed point unifies seemingly different
competing orders. The Néel vector correlations have the
same slow power-law decay as the vector spin chirality. This
nontrivial prediction can potentially be probed in polarized-
neutron scattering experiments.

In passing we note that other more exotic spin liquid
phases with �possibly gapless� fermionic spinons could po-
tentially exist as stable phases11–14 but the transitions to the
Néel state have not been studied. The corresponding critical
theories are also likely to be more exotic—we will therefore
defer consideration of such spin liquid phases and the corre-
sponding critical points for the future and focus here on the
simpler case with gapped bosonic spinons.

A controlled calculation in which both the magnetically
ordered state and such a gapped spin liquid state appear is
provided by considering a large-N generalization of the S
=1/2 Heisenberg model7 on the anisotropic triangular lattice.
Specifically, the large-N limit of a bosonic Sp�N� Heisenberg
model15,16 was used to obtain the mean-field phase diagram
as a function of the ratio of intraplane anisotropic couplings,
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J� /J, and the strength of quantum fluctuations, �= “2S”,
where � plays the same role as 2S �=value of spin at each
site� in the SU�2� limit. It was found that, for a range of J� /J,
the semiclassical limit �large �� leads to a spiral magnetic
order. As the quantum fluctuations become stronger �small
��, a spin liquid state �Z2 spin liquid� with gapped deconfined
bosonic spinons emerges.

The possibility that Cs2CuCl4 is proximate to the quantum
critical point between the incommensurate spiral and spin
liquid states will affect the behavior at intermediate energy
and length scales. As mentioned above Chubukov et al.1

showed quite generally that the transition was in the univer-
sality class of the O�4� fixed point in three Euclidean dimen-
sions. This is much higher symmetry than in the original
microscopic model. This enlarged O�4� symmetry acts natu-
rally on spinon degrees of freedom which thus emerge as the
useful variables already at the transition to the spin liquid.
The theory predicts a large anomalous exponent �̄ for the
spin-spin correlation function since the spins are composite
operators in terms of spinon operators. Such composite op-
erators usually have large anomalous dimensions. A qualita-
tive physical picture is simply that the spin-1 magnons decay
rapidly into the spinons, thereby leading to broad line shapes
in the inelastic neutron scattering. However, right at the criti-
cal point the spinons are not free particles. From the large-N
calculation extrapolated to the physical case of SU�2� spins,
the anomalous exponent may be estimated to be 1.54.1 A
more accurate value of �̄ can be obtained directly by classi-
cal Monte Carlo simulations of the O�4� nonlinear � model
in three dimensions. In the present work and in Ref. 17, it is
found that �̄=1.373. It is worth noting that the neutron
experiments5 in Cs2CuCl4 were fit to functional forms that
also suggest large anomalous dimension �̄E in the range
0.7–1. There is, however, reason to question these measure-
ments of the actual numerical value of �̄ as we discuss in
Sec. V. Nevertheless, the large anomalous dimension pre-
dicted by the theory is qualitatively consistent with the broad
line shapes seen in experiment.

Thus it is certainly desirable to have other qualitatively
distinct predictions of the critical theory. It is our hope that
the enlarged O�4� symmetry and the consequent enhanced
vector spin chirality correlations will provide such a sharp
test. We also outline some other less dramatic consequences
of the extra O�4� symmetry that too may be useful.

From a theoretical point of view our considerations are
rather similar to those in a recent study18 of “algebraic spin
liquid” phases where too the low-energy theory is character-
ized by nontrivial enlarged symmetry as compared to the
microscopic model. There as in the present problem this en-
larged symmetry acts naturally on “spinon” degrees of free-
dom and leads to nontrivial relationships between the fluc-
tuations of rather different competing orders. Perhaps such
phenomena are common in correlated systems.

The rest of this paper is organized as follows. In Sec. II,
we introduce the model that we use to describe Cs2CuCl4.
We briefly review the O�4�-invariant critical theory in Sec.
III and discuss the anomalous exponent in Sec. IV A. In Sec.
IV B, we study the vector-spin-chirality and scalar-chirality
correlation functions. In Sec. V, we discuss possible experi-
ments to test our predictions and the critical theory. Finally,

we summarize our results and conclude in Sec. VI.

II. MODEL

The magnetic ions Cu2+ in Cs2CuCl4 carry S=1/2 spin
moments that reside on a stack of triangular layers.5 The
intralayer antiferromagnetic interaction �the interaction in the
b-c plane; see Fig. 1� is anisotropic with two coupling con-
stants J�0.375 meV along the b direction and J��J /3
along the zigzag bonds5 �see Fig. 1�. The interlayer interac-
tion �the interaction along the a direction� is weak5 with a
coupling constant J�=0.045J�J. Therefore the system is
quasi two dimensional and can be modeled by a two-
dimensional frustrated Heisenberg Hamiltonian on the trian-
gular lattice. The main part of the Hamiltonian reads

H = J�
�i,j�

Si · S j + J� �
��i,j��

Si · S j . �1�

Here Si are spin-1 /2 operators at the sites i of a two-
dimensional triangular lattice. The first sum runs over bonds
in the b direction, and the second sum runs over the zigzag
bonds. There is also a weak Dzyaloshinskii-Moriya
interaction.19 We will neglect this term when we consider the
critical theory and discuss later its role in experiments.

The weak interlayer interaction stabilizes magnetic long-
range order below T=0.62 K.20 The order is incommensurate
because of the frustrated anisotropic interactions in the trian-
gular planes and occurs at an incommensurate wave vector
Q= �0.5+�0�b* with �0=0.030�2� and b*= �2� /b ,0 ,0�. The
corresponding classical ordering wave vector is Q= �0.5
+�c�b* with �c= �1/��arcsin�J� /2J�=0.053. The substantial
difference is due to large quantum fluctuations that renormal-
ize the ordering wave vector.

Order parameter

The spiral ordering pattern may be represented using two
orthonormal unit vectors n1 and n2 through

�S�ri�� 	 n1 cos�Q · ri� + n2 sin�Q · ri� , �2�

where n1 and n2 satisfy

n1 · n2 = 0, n1
2 = n2

2 = 1. �3�

The n1,2 are clearly vectors under global spin rotation, and
together they define the order parameter for the spiral state.

FIG. 1. Schematic representation of the triangular lattice in the
b-c plane. The a direction is perpendicular to the plane. There are
two coupling constants: J along the horizontal chains and J� along
the zigzag bonds.
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In addition to global spin rotations the spin Hamiltonian, Eq.
�1�, is invariant under various lattice symmetries and time
reversal. It is useful and straightforward to work out the
transformation properties of n1,2 under these symmetries. We
find

Tl̂:�n1 + in2� → �n1 + in2�eiQ·l̂,

Rc,I:�n1 + in2� → �n1 − in2� ,

T:�n1 + in2� → − �n1 − in2� . �4�

Here Tl̂ is a unit translation along a lattice vector l direction,
Rc is reflection about the c axis, I is lattice inversion, and T
is time reversal. Other symmetry operations may be obtained
as combinations of the above.

III. THEORY OF THE QUANTUM TRANSITION

In this section we briefly review the theory of Ref. 1 for
the quantum transition between the Néel and spin liquid
states. We will also use this as an opportunity to clarify sev-
eral possible confusions with other superficially similar re-
sults in the literature.

The set n1 ,n2 defines the order parameter for the spiral
state. To study phase transitions out of the spiral state it is
necessary to allow fluctuations where n1,2 vary slowly as a
function of space and time. The symmetry properties in Eq.
�4� actually imply that the resulting continuum theory has an
extra U�1� symmetry over and above that of spin rotations.
This may be seen by considering translations along the b
direction. We have

�n1 + in2� → �n1 + in2�eimQx �5�

for a translation by m lattice sites. With incommensurate Qx,
this effectively translates into a full U�1� symmetry that ro-
tates between the n1 and n2 fields.

The order parameter manifold defined by n1,2 allows for
topological vortex defects with a discrete Z2 character.21

These Z2 vortices have energy logarithmic in the system size
in the ordered state due to the long-distance distortion of the
order parameter. Now consider disordering the spiral order
while keeping the core energy of these Z2 vortices finite.
Reference 1 argues that the resulting state is a fractionalized
spin liquid with bosonic spin-1 /2 spinons. The Z2 vortices
survive into the spin liquid phase but now only cost finite
�not divergent� energy.

A theory for this transition is obtained by writing

n1 + in2 = �
�z��
�z�, �6�

where � is the antisymmetric tensor, �a are the Pauli matri-
ces, and z
= �z↑ ,z↓� is a two-component complex unit vector
satisfying

z†z = 1. �7�

It is easy to check that the parametrization �6� satisfies the
constraints given by Eq. �3�. The z
 transform as spinors
under the SU�2� spin rotation and describe spin-1 /2 spinons.

This representation clearly has a Z2-gauge redundancy asso-
ciated with changing the sign of z at any point in space-time.
Thus a reformulation in terms of z may be fruitfully viewed
as a theory of the z fields coupled to a Z2-gauge field. The
corresponding Z2-gauge flux is associated with the Z2 vorti-
ces discussed above. These vortices stay gapped at the tran-
sition between the Néel and spin liquid states and may hence
be ignored for a low-energy description of the critical point.
Thus we may obtain the critical behavior by focusing only
on the spinons and ignoring their coupling to the Z2-gauge
field. Detailed arguments show that the critical theory is in
fact in the O�4� universality class in D=2+1 dimensions
where there is full rotational symmetry between the four real
numbers described by �z↑ ,z↓�. In effect the extra U�1� sym-
metry of rotation between n1 and n2 has been enlarged to
SU�2�. Combined with the SU�2� spin rotations the full sym-
metry is SU�2�
SU�2�	O�4�. Thus the critical properties
may be computed using the Euclidean action

S =
 d2xd� �
�=x,�

1

g
��z


*��z
. �8�

The relationship between the z and n1,2 fields may also be
expressed in a different way that will be fruitful later. Let us
introduce an SU�2� matrix U built out of z:

U = �z↑ z↓
*

z↓ − z↑
* � . �9�

Then U satisfies

U†�aU = Rab�b, �10�

where R is a 3
3 rotation matrix. Clearly,

Rab =
1

2
tr�U†�aU�b� . �11�

It is readily checked that n1 and n2 are the first and second
columns, respectively, of this rotation matrix. The third col-
umn represents the unit vector

n3 = n1 
 n2, �12�

which is orthogonal to both n1 and n2. Symmetry under
physical spin rotations corresponds to left multiplication of U
by an SU�2� spin rotation matrix:

U → VU , �13�

with V�SU�2�. The enlarged O�4� symmetry implies that
right multiplication

U → UV �14�

is also a symmetry of the critical fixed point.
Several comments are in order on these results. Prior to

Ref. 1, analysis of a continuum nonlinear � model appropri-
ate for noncollinear magnets had led to the suggestion of
enlarged O�4� symmetry in 2+� space-time dimensions.22

However, numerical calculations on stacked triangular lat-
tices near their finite-temperature ordering transition failed to
observe the predicted O�4� universality class.23 Rather the
evidence supports a transition in the “chiral” universality
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class of Refs. 23 and 24. How then are we to reconcile this
with our claims about the quantum-Néel–spin-liquid transi-
tion being in the O�4� universality class? The answer lies in
the nature of the paramagnetic phase. In the classical stacked
triangular lattice the natural paramagnetic phase is the trivial
one that is smoothly connected to the high-temperature limit.
The transition to this phase from the ordered state is obtained
by proliferating the Z2 vortices �which are line defects in the
three-dimensional classical model�. In principle an exotic
paramagnetic phase is also possible which would be the clas-
sical three-dimensional analog of the spin liquid: this re-
quires destroying the magnetic order without proliferating
the Z2 vortices. This paramagnet will be topologically or-
dered and will be separated from the trivial very-high-
temperature paramagnet by a phase transition. In this classi-
cal context, the arguments of Ref. 1 apply to the transition
between the Néel state and this topologically ordered para-
magnet which will indeed be in the O�4� universality class.
However, neither this nontrivial paramagnet nor the corre-
sponding transition was apparently accessed in the numerical
calculations.23 Equally it is hard to decide which of the two
possible paramagnetic phases were accessed in the 2+� cal-
culations of Ref. 22. The distinction between the two phases
is topological and hence sensitive to spatial dimension. This
is hard to disentangle in the � expansion.

Turning to the quantum problem at hand it differs from
the classical stacked magnet in an important way. There are
extra Berry phases that are sensitive to the microscopic spin
at each lattice site �i.e., spin 1/2 or spin 1, etc.�. A close and
familiar analogy is from the theory of collinear quantum an-
tiferromagnets in two dimensions where such Berry phases
spoil any general direct mapping to classical collinear mag-
nets in one higher dimension. In that case in the semiclassi-
cal limit the Berry phases are associated entirely with singu-
lar topological configurations known as hedgehogs. A similar
result also holds for the noncollinear quantum magnets of
interest in this paper. The Berry phases are associated en-
tirely with the topological Z2 vortex configurations. As these
Z2 vortices are gapped across the transition to the spin liquid
the Berry phases play no role in the low-energy universal
critical physics. Indeed the O�4� universality class will de-
scribe the Néel–spin-liquid transition for all spin-S magnets
regardless of the value of S. On the other hand, the phase
obtained when the Néel state is disordered by proliferating
the Z2 vortices will be strongly influenced by the Berry
phases. For spin 1/2 it is expected that the Berry phases will
lead to broken lattice symmetries in the resulting
paramagnet.25 The nature of the transition between such a
valence bond solid �VBS� ordered paramagnet and the Néel
state on the triangular lattice is not presently understood.
Preliminary analysis suggests that an interesting “Landau-
forbidden” second-order transition may be possible. How-
ever, in the present paper we restrict ourselves to studying
the transition to the spin liquid.

IV. CONSEQUENCES OF THE CRITICAL THEORY

A. Spin correlations

We begin by considering the spin-spin correlation func-
tion at the ordering wave vector which is readily accessed in

neutron scattering experiments. This can be expressed in
terms of the correlation functions of the vectors n1 and n2:

�S�r,�� · S�0,0�� = �n1�r,�� · n1�0,0��cos�Q · r� . �15�

We note that due to the symmetry of rotations between n1
and n2, they will both have the same correlations. Close to
the critical point, the correlation function has the usual
power-law behavior

�S�− q,�� · S�q,��� 	
1

��2 − k2�1−�̄/2 , �16�

where k=q−Q. Since n1 and n2 �and S� are composite op-
erators in terms of the z̄
 fields, one can expect that the
spin-spin correlation function has a large anomalous expo-
nent �̄. Indeed, the large-N calculation of �̄ for an O�2N�
theory gives1

�̄ = 1 +
32

3�2N
. �17�

For the physical case N=2, we have �̄�1.54. This is a large
number compared to anomalous exponents of noncomposite
operators.

To improve the large-N estimate of the anomalous expo-
nent, one can alternately perform Monte Carlo simulations of
the classical O�4� nonlinear � model in three dimensions
since this model is in the same universality class as the tran-
sition of interest. Ballesteros et al.17 measured the anomalous
exponent �T of the tensorial magnetization, which is defined
as

MT = �
TrM2� ,

M
� = �
i
��i
�i� −

1

4
�
�� ,

where �i
 are four components of the O�4� unity vector at
the site i in three dimensions. They found �T=1.375�5�. This
result is directly related to our case because of the following
argument. Using Eq. �6� and writing z↑= ��1+ i�2� and z↓
= ��3+ i�4�, where �
 are now real fields, we have

n1 = ��2
2 + �3

2 − �1
2 − �4

2

2��1�2 + �3�4�
2��1�3 − �2�4�

� , �18�

n2 = � 2��3�4 − �1�2�
�2

2 + �4
2 − �1

2 − �3
2

2��1�4 + �2�3�
� . �19�

We can see that the tensorial magnetization is related to n1
and n2 by symmetry and therefore the anomalous exponent
of the tensorial magnetization is equal to the anomalous ex-
ponent of the vectors n1 or n2. Then, from Eq. �15�, it is the
same as the anomalous exponent of the correlation function
at wave vector Q.

We have confirmed this conclusion by computing the
anomalous exponent of n1 directly. We simulate the O�4�
nonlinear � model in three dimensions on the simple cubic
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lattice using a cluster algorithm.26 We measure the anoma-
lous exponent �̄ in the following way. We calculate the total
z component n1

z =2��1�3−�2�4� of the vector n1:

M = �
i

n1i
z , �20�

where the sum runs over all lattice sites. In our simulations,
we measure the “magnetization” and “susceptibility”

m̄ =
1

L3 �M� ,

�̄ = �M2� ,

where L is the system size. We perform our simulations only
at the critical temperature found in Ref. 17 with very high
accuracy, �c=1/Tc=0.935 861�8�. To find the critical expo-
nents, we use finite-size scaling analysis. Close to the critical
point, observables satisfy the general scaling form

O = L�/�FO�tL1/�,L−�� , �21�

where O can be m̄ or �̄, � is the scaling exponent corre-

sponding to the operator O ��=−�̄=−��1+ �̄� /2 for m̄ and
�= �̄=��2− �̄� for �̄�, FO is a universal function, t= �T−Tc�,
and � is a universal exponent related to the leading irrelevant
operator. Exactly at the critical point t=0, one can write

O = L�/��a + cL−�� . �22�

We assume that the correction to scaling is negligible for
large lattice sizes and fit to a simplified scaling form

O = aL�/�. �23�

We have performed simulations for large enough lattices �up
to Lmax=96�. Fitting from Lmin=20 to Lmax, we obtain �̄
=1.373�3�.

The large value of �̄ is a reflection of the emergence of
spinons as useful degrees of freedom at the critical point.

B. Other competing orders

The extra O�4� symmetry actually has more striking con-
sequences for the critical properties. It implies that operators
other than the natural magnetic order parameter will have
enhanced power-law correlators. Consider the magnetic or-
der parameters n1,2. As discussed in Sec. III, they may be
regarded as the first and second columns of a rotation matrix
R. The third column of the rotation matrix is n3=n1
n2.
The enlarged O�4� symmetry at the critical point implies that
both left and right multiplications by an orthogonal matrix of
this rotation matrix R are symmetries of the critical theory.
Left multiplication is just physical spin rotation. However,
symmetry under right multiplication implies that n1,2,3 will
all have the same correlations. In particular n3 will have the
same slow power-law decay as n1,2 calculated in the previous
subsection. We can express the vector n3 in terms of the spin

operator as follows. Consider Sr+l̂
Sr, where l̂ is a unit
lattice vector. Using Eq. �2� and expanding the first spin
operator around r, we have

Sr+l̂ 
 Sr 	 n3 sin�Q · l̂� + derivative terms. �24�

We can ignore the derivatives terms since their contribution
to the correlation function is negligible. Consider the chiral-
ity vector

Cr = �
r�

Sr 
 Sr�, �25�

where the oriented sum is over an elementary plaquette. Us-
ing Eq. �24�, it is easy to show that

C = �sin Qx − 2 sin
Qx

2
cos


3Qy

2
�n3 	 n3. �26�

Thus the vector spin-chirality correlation function

�C�r,�� · C�0,0�� 	 �n3�r,�� · n3�0,0�� = �n1�r,�� · n1�0,0��
�27�

has the same power-law behavior at zero wave vector as
those of spins at the wave vector Q. This highly nontrivial
statement possibly provides a way to test the theory of Ref. 1
in experiments and in model numerical calculations.

C. Conserved quantities

Some less dramatic effects of the enlarged O�4� symmetry
are also worth noting. The O�4� group has six generators, and
these will all be conserved at the critical fixed point. Three of
these are just the conserved total spin Stot=�iSi—they are
the generators of left rotations of U. The remaining three are
conserved only in the low-energy critical theory �though not
in the original microscopic model�. They correspond to right
rotations of U. We will denote these Ka, a=1,2 ,3. The Ka
transform as vectors under the group SU�2�R of right rota-
tions of U. They generate rotations of na among one another
so that

�na,Kb� = i�abcnc. �28�

As is well known such conserved quantities have scaling
dimension dscale=2 with no anomalous dimension.27 Thus, at
the critical point at zero temperature,

�Ka�r,��Kb�0,0�� 	
�ab

��r�2 + �2�2 , �29�

where r is the spatial coordinate and � is the �imaginary�
time coordinate. A similar result also holds for the conserved
total spin. Away from the critical point at finite temperature
in the quantum critical region, the Ka will continue to be
approximately conserved. The exact conservation will be
spoiled by irrelevant operators that break the O�4� symmetry
down to SU�2�
 lattice space group. Thus at T�0 in the
quantum critical region we expect that the Ka will diffuse up
to a long length and time scale which will be determined by
T and the distance to the critical point. It is possible that the
presence of such extra nearly diffusive modes can also be
looked for in experiments.

But what do the Ka correspond to in terms of the under-
lying spins? A useful guess for the answer is provided by
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examining the transformation properties of Ka under the mi-
croscopic symmetries of the original lattice system. It is rea-
sonable that any lattice operator that has the same transfor-
mation properties will have some overlap in the continuum
theory with the Ka. With the further assumption that there are
no other operators in the continuum theory with smaller scal-
ing dimension that also have the same transformation, the Ka
will give the dominant correlations of such lattice operators.
Similar considerations were also used in Ref. 18.

The transformation properties of Ka under all physical
symmetries are fixed by the commutation relation, Eq. �28�.
The transformation properties of Ka are related to the trans-
formation properties of the matrix R. First, we list the latter
ones:

SU�2�spin: R → OR ,

Tl̂: R → R� cos�Q · l̂� sin�Q · l̂� 0

− sin�Q · l̂� cos�Q · l̂� 0

0 0 1
� ,

Rc,I: R → R�1 0 0

0 − 1 0

0 0 − 1
� ,

T: R → R�− 1 0 0

0 − 1 0

0 0 1
� ,

where O is an O�3� matrix and Tl̂ is the lattice translation

along the lattice vector l̂. We can use these transformations
and the condition that Ka are vectors under SU�2�R to obtain
the transformations of Ka:

SU�2�spin: �K1,K2,K3� → �K1,K2,K3� ,

Tl̂: �K1,K2,K3� → �K1,K2,K3�M ,

Rc,I: �K1,K2,K3� → �K1,− K2,− K3� ,

T: �K1,K2,K3� → �K1,K2,K3� ,

where

M = �cos�Q · l̂� − sin�Q · l̂� 0

sin�Q · l̂� cos�Q · l̂� 0

0 0 1
� . �30�

We can construct local spin operators that have the same
symmetry properties as Ka. We find that

K1�r� 	 cos�Q · r�S�r� · �S�r − x̂� + S�r + x̂�� , �31�

K2�r� 	 sin�Q · r�S�r� · �S�r − x̂� + S�r + x̂�� , �32�

K3�r� 	 S�r − x̂� · �S�r� 
 S�r + x̂�� . �33�

Thus K1+ iK2 transforms identically with the Fourier trans-
form of the bond energy at wave vector Q while K3 can be
identified with the scalar spin chirality along the chains.

V. EXPERIMENTAL IMPLICATIONS

A. Spin correlations

Quite generally in the quantum critical region the spin
correlations at the ordering wave vector must satisfy
scaling—for instance, as a function of � /T. Cs2CuCl4 orders
at low temperature. Consequently data at the lowest tempera-
tures and frequencies must be excluded from the scaling
analysis. Furthermore, it is precisely the very-low-T and low-
� range that will also be most sensitive to the presence of
weak spin anisotropies �such as Dzyaloshinski-Moriya inter-
actions�. However, the data at intermediate T and � will be
less affected by such spin anisotropies or by the low-energy
long-range order.

The value of �̄ found from Monte Carlo simulations can
be compared to �̄E estimated in experiments using a fitting
procedure.5 The experimental values fall in a range between
0.7 and 1. Thus the Monte Carlo result is still larger than the
experimentally estimated value. It is important to note the
following caveat on this comparison. The existing measure-
ments of �̄E were performed in inelastic neutron scattering
experiments where both the wave number and frequency
transfer to the sample were simultaneously varied. In par-
ticular typical data sets �such as for instance scan G of Ref.
5� involve increasing the frequency transfer while the mo-
mentum transfer varies from points in the two-dimensional
Brillouin zone far away from the ordering wave vector Q to
points close to Q. In the context of the ideas explored in this
paper the frequency dependence at fixed q far away from Q
will not be dominated by the singular long-distance critical
fluctuations and will be highly nonuniversal. In contrast the
frequency dependence for q close to Q will be determined by
the long-distance critical fluctuations and will be universal. It
is these latter fluctuations that are described by the calculated
exponent �̄. Thus the existing measurements of �̄E are quite
possibly severely contaminated by nonuniversal short-
distance effects. Hence the lack of quantitative agreement
between �̄ and �̄E is not surprising. However, the qualitative
observation of broad magnon linewidths is consistent with
the large �̄ obtained in the theory. Future experiments will
hopefully directly probe the fluctuations near the ordering
wave vector, thereby allowing for quantitative comparison.

As noted already in Ref. 1, NMR experiments may be a
useful way to directly measure �̄. For the nuclear relaxation
rate we have

1

T1
	 T�̄. �34�

Again this behavior will only obtain at intermediate tempera-
tures.
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B. Detection of vector spin-chirality fluctuations

A dramatic consequence of the critical theory studied in
this paper is the enhanced vector spin-chirality correlations
discussed in Sec. IV B. How can they be detected in experi-
ments? In this section we show how this may be done
through polarized neutron scattering. Our proposal builds on
and generalizes the pioneering ideas of Maleyev28 in the con-
text of classical noncollinear magnets.

The part of the neutron scattering rate RP that depends on
the incoming neutron polarization Pi is given by

RP�ki,Pi → k f� 	 �Pi · q̂��q̂ · b� , �35�

where q=k f −ki is the three-momentum transferred to the
sample and q̂ is the corresponding unit vector. The vector b
is given by

b
 =
�
��

2i
S��, �36�

where S�� is the spin structure factor. Thus the polarization-
dependent part probes the antisymmetric part of the structure
factor. By the usual arguments it is clear that b
 can be
obtained from a calculation of the imaginary-time Green
function �here 0����=1/T�

g�r,�� = �S�r,�� 
 S�0,0�� , �37�

g�q,i�n� = 

r�

eiq·r−i�n�g�r,�� . �38�

Specifically we have

b�q,�� =
− 1

1 − e−���g�q,i�n → � + i0+� − g�q,� + i0−�
2

� .

�39�

In the context of this paper using Eq. �2� we find

g�r,�� = �n1�r,�� 
 n1�0,0��cos�Q · r� + �n2�r,��


 n1�0,0��sin�Q · r� .

Clearly such correlators are zero if there is full spin isotropy.
In the specific case of Cs2CuCl4 the presence of a weak
Dzyaloshinski-Moriya �DM� interaction will lead to a non-
zero result. It is known that the DM interaction is nonzero
along oriented zigzag bonds. For a single triangular layer,

HDM = − D · �
r

Sr 
 �Sr+�1
+ Sr+�2

� . �40�

Here �1,2 are unit vectors along the oriented zigzag bonds as
shown in Fig. 2. In addition HDM is also staggered between
different layers. The DM vector is oriented along the a axis
and has magnitude D�0.02 meV�0.05 J. In the continuum
theory we may again use Eq. �2� to write

HDM � − d ·
 d2rn1 
 n2 �41�

=− d ·
 d2rn3. �42�

Here d	D. Let us now try to evaluate g to linear order in d.
We get

g�x� =
 d3x��n1�x� 
 n1�0��d · n3�x����cos�Q · r�

+
 d3x���n2�x� 
 n1�0���d · n3�x����sin�Q · r� .

Here x= �r ,�� ,x�= �r� ,��� are space-time coordinates. The
averages are evaluated in the isotropic theory. The first aver-
age vanishes due to the symmetry n3→−n3 ,n1→n1 present
in the action. We are therefore left with

g�x� = d

 d3x��n2�x� 
 n1�0�n3
�x���sin�Q · r� . �43�

Thus g is determined by the three-point correlation function
of n1,2,3. Using spin rotation invariance we have

g�r,�� =
d

3
sin�Q · r� 
 d3x��n2�x� 
 n1�0� · n3�x��� .

�44�

Such three-point correlators of scaling fields are severely re-
stricted by conformal invariance.29 As n1,2,3 all have the
same scaling dimension �= �1+ �̄� /2, we have �at T=0�

�n2�x� 
 n1�0� · n3�x��� 	
1

x�x���x − x���
. �45�

We now have to integrate over x� which is the coordinate
of n3. It is easy to see that this integral is infrared �IR�
divergent. This is because at large x�, the integrand behaves
as 1/x�2�. With 2�=1+ �̄�2.37, the integral over x� will
diverge in the infrared. Formally this just means that pertur-
bation theory in the DM interaction diverges at T=0 and the
correct answer will involve some fractional power of the DM
vector. However, for our purposes it is much more meaning-
ful and simpler to go to finite temperature where this diver-
gence will be cut off. Before doing that it is useful to under-
stand the origin of this divergence at T=0 better.

The divergence comes from large x��x. To discuss this
limit let us keep x� fixed and bring x close to 0. Then we
need the operator product expansion �OPE� of n2
n1. This

FIG. 2. Dzyaloshinski-Moriya interaction is nonzero along ori-
ented zigzag bonds that are denoted by vectors �1 and �2.

ORDERING IN Cs2CuCl4: POSSIBILITY OF A… PHYSICAL REVIEW B 72, 174417 �2005�

174417-7



is a vector in spin space, and the leading term will just be n3.
Scaling requires the equation

n2�x� 
 n1�0� 	
1

x�n3�x� . �46�

There is only one power of � on the right-hand side so that
both sides will scale identically. Now, if we calculate the
correlator with n3�x��, we will reproduce the limit of the
exact result, Eq. �45�, above when x� is large. It is now clear
that the infrared divergence in the integral over x� actually is
nothing but the divergence of the uniform susceptibility of
the vector spin chirality at zero temperature.

Armed with this insight let us discuss T�0. We will as-
sume that T is large enough that perturbation theory in D is
meaningful. This requires T bigger than an energy scale �D
set by D. For small D, it is easy to see from scaling that
�D	D1/�. Here we will also assume that we are interested in
the scattering at an external frequency ��T. This simplifies
things because then the sole effect of T�0 is to cut off the
IR divergence without affecting the rest of the correlations.

Using the OPE it is now clear that the answer is the Fou-
rier transform of

1

x��ch�T� , �47�

where �ch�T� is the uniform vector spin-chirality susceptibil-
ity at temperature T. From scaling we have

�ch�T� 	
1

T3−2� . �48�

Using this we may straightforwardly calculate the inelastic
scattering rate. For scattering right at the ordering wave vec-
tor Q and for ��T, we get

RP��� 	
�Pi · q̂��q̂ · D�

�3−�T3−2� , �49�

with 2�=1+ �̄�2.37.
This is a definite prediction that can possibly be tested. In

the actual experiments it will be necessary to take into ac-
count the staggering of the DM interaction between the dif-
ferent layers. Thus it is best to choose the a component of the
three-vector q to be �. We note that in the same range �
�T, the intensity in unpolarized neutron scattering behaves
as

R��� 	
1

�3−2� . �50�

Therefore, the dimensionless ratio of the polarization-
dependent part to the polarization independent part behaves
as

RP���
R���

= �Pi · q̂��q̂ ·
D

J
�� J

�
��� J

T
�3−2�

F� J�

J
� . �51�

Here, without loss of generality, we have used J to convert
all energy scales into dimensionless numbers. The function
F�J� /J� is an as-yet undetermined function of the dimension-
less ratio of J� and J. This equation is correct to linear order
in D. We expect that, for Cs2CuCl4 where J��J /3, F will be
a number of order 1. We note again that this is correct for
��T��D.

In practice successful confirmation of these predictions
will require a large enough window of energy scales where
the asymptotic critical behavior controlled by the O�4� fixed
point is visible. It is an open question whether such a win-
dow is available in Cs2CuCl4 or not.

VI. SUMMARY AND CONCLUSIONS

In this paper we have pursued a concrete version of the
idea that Cs2CuCl4, though magnetically ordered at low tem-
perature, may nevertheless be proximate to a spin liquid
phase. Such proximity suggests that the intermediate length-
and time-scale physics of Cs2CuCl4 may be governed by a
quantum critical point between a magnetic spiral and a genu-
ine two-dimensional quantum spin liquid. A theory for such a
quantum phase transition was obtained in Ref. 1 for a simple
�Z2� spin liquid with gapped bosonic spinons. We showed
that the spin correlations at the quantum critical point are
characterized by a large anomalous exponent �̄�1.37. This
is qualitatively consistent with the broad power-law tails ob-
served in inelastic neutron scattering in Cs2CuCl4. Further
we showed that the enlarged O�4� symmetry1 at the critical
fixed point has some remarkable consequences. The vector
spin chirality has the same slow power-law decay as the
natural magnetic order parameter. This sharp qualitative ob-
servation should be of great use in confirming �or ruling out�
the applicability of the theory of Ref. 1 to Cs2CuCl4. Build-
ing on Ref. 28, we showed how polarized inelastic neutron
scattering can be used to directly detect the vector spin-
chirality correlations. It is our hope that future experiments
will be able to use these results to clarify the physics behind
the interesting properties of Cs2CuCl4.
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