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We investigated the effect of intermolecular dipolar interactions on an ensemble of 100 three-dimensional
systems of 5�5�4 nanomagnets, each with spin S=5, arranged in a cubic lattice. We employed the Landau-
Lifshitz-Gilbert equation to solve for the magnetization curves for several values of the damping constant, the
induction sweep rate, the lattice constant, the temperature, and the magnetic anisotropy. We find that the
smaller the damping constant, the stronger the maximum induction required to produce hysteresis. The shape
of the hysteresis loops also depends on the damping constant. We find further that the system magnetizes and
demagnetizes at decreasing magnetic field strengths with decreasing sweep rates, resulting in smaller hysteresis
loops. Variations of the lattice constant within realistic values �1.5–2.5 nm� show that the dipolar interaction
plays an important role in the magnetic hysteresis by controlling the relaxation process. The temperature
dependencies of the damping constant and of the magnetization are presented and discussed with regard to
recent experimental data on nanomagnets. Magnetic anisotropy enhances the size of the hysteresis loops for
external fields parallel to the anisotropy axis, but decreases it for perpendicular external fields. Finally, we
reproduce and test a previously reported magnetization curve for a two-dimensional system �M. Kayali and W.
Saslow, Phys. Rev. B 70, 174404 �2004��. We show that its hysteretic behavior is only weakly dependent on
the shape anisotropy field and the sweep rate, but depends sensitively upon the dipolar interactions. Although
in three-dimensional systems, dipole-dipole interactions generally diminish the hysteresis, in two-dimensional
systems, they strongly enhance it. For both square two-dimensional and rectangular three-dimensional lattices
with B � �x̂+ ŷ�, dipole-dipole interactions can cause large jumps in the magnetization.
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I. INTRODUCTION

The need of smaller memory storage devices,1–14 the in-
terest in developing quantum computing,15 and the hope for
understanding the relationship between the macroscopic and
microscopic magnetic behaviors has led intense research into
the properties of nanoscale magnets.1–32 Many issues still
remain unclear and serious problems must be overcome in
order for them to be technologically useful. Prominent
among these is the loss of memory during magnetic relax-
ation.

Ferromagnetic nanodots are complex systems consisting
of up to hundreds of magnetic atoms within a single
dot.5,11,12 In this case, interparticle interactions along with
anisotropy effects dominate the dynamics of the systems, and
control the magnetization processes.8 Moreover, since inter-
dot exchange interactions are negligibly small, the dynamics
of the ferromagnetic nanodot arrangements are strongly in-
fluenced by dipolar interdot interactions.13,14

Single molecule magnets �SMM’s� consist of clusters of
only a few magnetic ions, and are thus among the smallest
and simplest nanomagnets, but are also well-characterized
systems exhibiting magnetic hysteresis.27 In SMM’s, the
one-body tunnel picture of the magnetization mostly explains
this phenomenon in the sense that the sequence of discrete
steps in those curves provides evidence for resonant coherent
quantum tunneling.28–30 Nevertheless, this one-body tunnel
model neglects intermolecular interactions, and is not always
sufficient to explain the measured tunnel transitions.31,32 A
close examination of the magnetization curves reveals fine
structures which cannot be explained by that model. Werns-
dorfer et al. suggest that these additional steps are due to

collective quantum processes, called spin-spin cross relax-
ation �SSCR�, involving pairs of SMM’s which are coupled
by dipolar and/or exchange interactions.31,32 If dipolar and/or
exchange interactions cooperate in the relaxation process,
then one might hope to be able to better control such loss of
magnetic memory.

Analyzing the relaxation of the magnetization is difficult
for both SMM’s and ferromagnetic nanodots. Besides dipolar
interactions, many other factors may be involved in such
processes. Geometric features, such as the shape and volume
of the magnets, as well as the type of lattice on which they
are placed, can directly influence the anisotropy barriers and
the easy axis directions. In the case of SMM’s, a quantum
treatment must be considered to show that resonant tunneling
of the magnetization results in the discrete steps appearing in
the low temperature T magnetization curves. Although in
many SMM’s the intercluster exchange interactions are neg-
ligible, as for ferromagnetic nanodots, in other SMM’s, such
interactions are comparable in strength to the dipolar
interactions.32 Besides the quadratic Heisenberg and qua-
dratic anisotropic intramolecular exchange interactions,
some SMM’s are thought to contain intramolecular interac-
tions of the Dzyaloshinskii-Moriya type.33 Additional higher
order, anisotropic spin exchange interactions further compli-
cate the problem. Therefore, by studying models that deal
with each one of these factors separately, one hopes to sim-
plify the problem, to build up gradually a more realistic sys-
tem, and at the same time, to elucidate how each of these
factors contributes to the magnetization process.

With regard to SMM’s, there have been recent approaches
to the quantum dynamics of the low-T relaxation.17,34–39

Prokof’ev and Stamp assumed a single relaxation mode,34 in
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which the dipolar and hyperfine fields are frozen unless an
SMM flips its spin. Then by assuming the effective field
around each SMM is that of randomly placed dipoles, they
obtained an expression for the low-T decrease proportional
to tp of the magnetization of each SMM from its fully mag-
netized state,34,40,41 where p�0.5–0.7, but p might be as
large as 0.7.34–37 This procedure was restricted to very small
deviations of the magnetization from its saturated value, so it
is not useful for studying the central portion of the hysteresis
curves, for which the magnetization can be small. Moreover,
as first argued for ferromagnets by Anderson,42 the spin-spin
and spin-lattice relaxation times can be very different, so that
such simple behavior is not expected. In fact, experiments on
SMM’s have shown that an exponential relaxation of the
magnetization is consistent with the data,38,39 so that as a
minimum, one requires two distinct relaxation times for
SMM’s, which could be very different from one another.42

The most commonly studied model of spin dynamics con-
taining two distinct relaxation parameters is the Landau-
Lifshitz-Gilbert �LLG� equation.43,44 Using the LLG equa-
tion, Kayali and Saslow �KS� investigated the hysteresis
curves at T=0 for two-dimensional �2D� square arrays of 4
to 169 ferromagnetic nanodots subject to dipole-dipole inter-
actions and a magnetic field applied in various directions
within the array’s xy plane.45 They included anisotropy ef-
fects via an effective field proportional to the z component of
each dot’s dipole moment. Earlier studies of square planar
lattices of 9 to 36 ferromagnetic dots were made by Stamps
and Camley.46 In addition, Zhang and Fredkin �ZF� studied
the LLG model to obtain the zero-field time decay of the
easy-axis magnetization of a three-dimensional �3D� cubic
lattice of 12�12�12 Stoner-Wohlfarth particles interacting
with each other via dipole-dipole interactions.14 Since the
size �or radius� of the Stoner-Wohlfarth particles was taken
to be much less than the lattice constant, they could be
treated as pointlike magnetic moments, the classical analog
of SMM’s.

Here we study only the effects of the intermolecular
dipole-dipole interactions upon the magnetization curves for
an ensemble of Nc=100 3D cubic crystals each containing
N=5�5�4 nanomagnets, all with the same magnetic mo-
ment. As in the ZF model of Stoner-Wohlfarth particles, we
take the lattice parameter to be much greater than the nano-
magnet size or radius. Except when a strong anisotropy field
is present, we assume that there is no long-range order in the
T regime of interest, so that in the absence of an external
magnetic field, the magnetization of each nanomagnet crystal
is essentially zero. We note that long-range ordering was
claimed to exist in such a system with Ising spin
anisotropy.47,48 In our studies with a strong anisotropy field
HA, hysteresis curves exhibiting a substantial zero-field mag-
netization were obtained for the applied magnetic induction
B �HA after the system had been fully magnetized by B. The
strength of the dipole interactions is primarily determined by
the lattice constant, a, which we vary from 1.25 nm to 2.5
nm. The dynamics of each nanomagnet are assumed to be
given by the LLG equation, which includes precession and
damping relaxation processes, the damping coefficient � of
which can also depend upon T.49,50 Then, the magnetic mo-
ment Mi

c of the ith nanomagnet within the cth crystal of our
ensemble obeys

dMi
c

dt
� �Mi

c � Bi
c,eff −

�

Ms
Mi

c � �Mi
c � Bi

c,eff� , �1�

Bi
c,eff = B + �Bi

c�dip, �2�

where �=g�B is the gyromagnetic ratio, Ms=g�BS is the
magnetic moment of an individual nanomagnet, and �Bi

c�dip

is the contribution to the effective magnetic induction Bi
c,eff

at the ith nanomagnet within the cth crystal arising from
dipole-dipole interactions between it and the other nanomag-
nets within the same crystal,

�Bi
c�dip =

�0

4�
�

j
�
3�M j

c · rij�rij − rij
2 M j

c

rij
5 , �3�

where the prime indicates that the j= i term is omitted. The
second term of Eq. �1�, the damping term, was first intro-
duced by Landau and Lifshitz43 and later by Gilbert to give a
phenomenological description of the relaxation of the mag-
netization. They did not derive it from first principles due to
the enormous complexity of summarizing all of the relax-
ation processes into a single term. As noted above, when
ferromagnetic interactions are present, � /� is generally ex-
pected to be �1.42 By extending to electronic spin systems
the Wangsness-Bloch model of nuclear spin magnetic relax-
ation by magnetic dipole coupling to a heat bath,49 Fredkin
and Ron showed that the damping term could be derived for
large spin values and �=q�H /kBT�1, where q and kB are
Planck’s constant divided by 2� and Boltzmanns’ constant,
respectively, and in our case H=Bi

c,eff.50 To the extent that
electric quadrupole interactions could be neglected, � varies
inversely with T for ��1, but depends upon � otherwise.50

More recently, a different derivation of the Gilbert damp-
ing term was derived from a spin Hamiltonian containing the
interaction between the spin and the radiation field, which is
induced by the precessing magnetization itself.51,52 In that
case, no explicit T dependence of � was given. We remark
that rather complex explicit expressions for � for the differ-
ent system of local spin moments arising from p-d kinetic-
exchange coupling of the itinerant-spin subsystem in ferro-
magnetic semiconductor alloys have been given recently.53

In any event, the damping coefficient � at some T value must
be determined experimentally for each system.

In order to study the magnetization of ferromagnetic dots,
KS used an extremely large value for the damping coeffi-
cient, � /�=0.6, a huge sweep rate, 	B /	t	3000 T/s, and a
small maximum external induction Bmax=2�0Ms. In our
studies of nanomagnet arrays, we used values of � /� that
varied from these values to values 12 orders of magnitude
smaller. Depending upon the � values, we also varied the
sweep rate 	B /	t from those values to the much smaller
	10−3 T/s, and varied Bmax from much larger values �2 T�,
comparable to those reported in SMM experiments,23,26 to
those used by KS. Similarly, the lattice constants reported in
the present work are in accordance with the near neighbor
separation in the most extensively studied SMM crystals.
Quantum processes within the individual SMM’s will be
treated in a separate presentation.54
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The present paper is organized as follows. In Sec. II, we
present our model system and a brief description of the over-
all calculation procedure that we followed. In Sec. III, we
solve the LLG for each nanomagnet subject to both the ex-
ternal and the combined dipolar inductions. In Sec. IV, we
present and discuss our main results for the magnetization
curves, which are evaluated at various values of the sweep
rate, T ,a, the anisotropy field, and � /�. When spin aniso-
tropy is present, we study the cases B �HA and B�HA. In
Sec. V, we reproduce one of the KS magnetization curves for
square 2D lattices, and vary some of their parameters to
show that the results are almost independent of the sweep
rate over the range 	300–6000 T/s. Analogously, we show
that the anisotropy field does not affect significantly the mag-
netization curves until its magnitude is comparable to
Bmax/�0. By varying the lattice constant, we also show that
the results of KS are very sensitive to the strength of the
dipolar fields, which mainly govern the behavior of the mag-
netization of such systems. Finally, in Sec. VI, we summa-
rize our main conclusions.

II. MODEL SYSTEM

In the present work we consider an ensemble of Nc=100
cubic crystals �or configurations�, each configuration consist-
ing of N=5�5�4=100 nanomagnets, each with ground
state spin S=5, which interact with one another only via
dipolar interactions. Each of the Nc system configurations c
=1,… ,Nc is constructed to have a starting total magnetic
moment Mc�0 at B=0. The hysteresis curves are obtained
for each configuration, and these are then averaged over the

Nc configurations. One then obtains the magnetization M� �B�
curves, where M� = 
Mc�c /V is the configuration averaged
magnetization, V is the crystal volume, and B= �B�.

A. Ensemble of random spin configurations

In order to proceed, we first find a large number Nc of
random spin configurations c of N=100 spins, such that for
each configuration, Mc /Ms�0 at B=0 and as T→
, where
the total magnetic moment

Mc�t,B� = �
i=1

N=100

Mi
c�t,B� . �4�

At the start of the iteration, we take t=0,B=0, and T→
 in
the absence of the dipole-dipole �or any other inter-spin� in-
teractions for configuration c. Then we select those configu-
rations for which �Mc� /Ms�0.1, which we deem sufficiently
close to Mc�0. Our resulting magnetization curves are
based upon the average over Nc=100 configurations, each
one containing N=100 similarly chosen nanomagnets.

We reiterate that N is the number of nanomagnets in each
configuration, and Nc is the number of configurations stud-
ied. Although we have chosen both of these numbers to be
100 in order to obtain reliable statistics, N and Nc have com-
pletely different meanings. Finding many �Nc� configura-
tions, each of which has an almost vanishing initial magne-
tization consumes a significant amount of computer time,

especially if the number N of nanomagnets per configuration
is not very large. However, choosing a rather small number
N of nanomagnets reduces the time required to calculate the
dipolar field at each nanomagnet due to all of its neighbors,
which must be calculated at each integration time step of the
LLG equation, offsetting the large amount of computer time
required to set up Nc initially nearly nonmagnetic configura-
tions.

B. Evolution of the magnetization versus field curves

In this model one increases the external magnetic induc-
tion B in discrete steps 	B, until B=Bmax, where Bmax
= �Bmax� must be large enough to align every nanomagnet in
its direction. How large Bmax must be generally depends
upon T, the field sweep rate 	B /	t��	B� /	t, the lattice
parameter a, and the crystal structure.27 In addition, the steps
�	B� must be small enough to give rise to numerically
smooth M�B� curves. We therefore set �	B�=Bmax/NB,
where the number of steps NB�1 should be on the order of
103. After each magnetic step, one allows each of the nano-
magnets to relax for a fixed amount of time 	t, which is
chosen to be sufficiently small that the nanomagnets do not
reach equilibrium. Otherwise, in the absence of a sufficiently
strong anisotropy field, no hysteresis would result.

First, we choose one of our configurations c �e.g., c=1�
and set the moments of the nanomagnets equal to their val-
ues in this initially nonmagnetic configuration, Mi

c=1�t
=0,B=0��i=1,…,N. That is, just after we turn on the magnetic
induction in the x direction by the amount B=	B, the nano-
magnets have not yet precessed from their initial configura-
tion. Then, we calculate the effective magnetic induction
Bi

c=1,eff at each of the i=1,… ,N nanomagnets for c=1. To do
so, we must calculate the dipolar induction in Eq. �3� due to
the presence of all the other nanomagnets.

Then, we let each of the nanomagnets evolve in the pres-
ence of its effective magnetic induction for a chosen fixed
time interval 	t. To do this accurately, we break 	t up into
Nt intervals dt=	t /Nt. Obviously, this is extremely time con-
suming, because it is necessary to recalculate the effective
induction at each nanomagnet after each time-integration
step of width dt. Once the whole set of moments Mi

1�t
=	t ,B=	B��i=1,…,N is obtained, we proceed to calculate the
configuration magnetic moment, Mc=1�	t ,	B�, for this
choice of fixed sweep rate, 	B /	t, from

Mc�t,B� =

�
i=1

N

Mi
c�t,B�exp�− Hi

c�t,B��

�
i=1

N

exp�− Hi
c�t,B��

, �5�

Hi
c�t,B� = − Bi

c,eff�t,B� · Mi
c�t,B� , �6�

by setting c=1, t=	t, and B=	B, where Bi
c,eff�t ,B� is given

from Eqs. �2� and �3�, =1/kBT, and kB is Boltzmann’s con-
stant. Since �Bi

c�dip as given by Eq. �3� in Bi
c,eff�t ,B� contains

a self-fieldless single sum, there is no site overcounting in
Eq. �6�.
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We are interested in Mc�B ,	B /	t�. In this nonequilib-
rium situation, the Mi

c ,Bi
c,eff and hence Hi

c for each nano-
magnet change after each time step dt at which they are
evaluated, but the statistical weighting in Eqs. �5� and �6� is
only evaluated at the end of each fixed interval 	t, which has
a one-to-one correspondence with 	B. Thus, this single-
configuration average can be directly compared to those in
different configurations after the same number of intervals.
Moreover, since 	t=	B�	B /	t�−1 ,Mc�t ,B� for our purpose
can be written as Mc��B /	B /	t� ,B�, which is effectively a
function of B and 	B /	t.

Next, we increase the external magnetic induction by an-
other equal step 	B, and let the nanomagnets precess during
another equal time interval, 	t, under the action of the new
effective induction. We continued increasing B in this equal
step fashion a total of NB times, until B=Bmax. At this point,
the incremental induction direction is reversed, setting B
=Bmax−	B for the same time interval 	t, repeating the pro-
cedure 2NB times, until B=−Bmax. After that, we reverse the
incremental induction direction once again, setting B
=−Bmax+	B for the same time interval 	t, etc., and continue
NB times until B=0 is reached, or until the configuration
magnetization hysteretic loop �if it exists� is closed. Then,
one repeats the entire procedure above described for each of
the other Nc−1 configurations c=2,… ,Nc, keeping the time
intervals 	t and the subintervals dt constant for each step in
each configuration. Once all of the calculations for each of
the Nc configuration are finished, we average the results over
the Nc configurations, obtaining,

�Mc� B

	B/	t
,B��c =

1

Nc
�
c=1

Nc

Mc� B

	B/	t
,B� . �7�

Then, the magnetization M� is easily calculated. Having

tabulated M� for every external magnetic induction step with
fixed 	B /	t , T , a , Ms , �, and Bmax, we generate the mag-
netization curve M�B� for this set of parameters.

C. Variation of experimental parameters

Unlike the parameters such as Bmax and dt, which are
details of the theoretical calculation, other parameters can in
principle be varied in experiments in a variety of materials.
Using the same initial dipole configurations we repeat the
whole procedure with different values of � ,	B /	t ,T, and a.
The only parameters that can be experimentally varied in
studies on a particular sample are 	B /	t and T, since the
other parameters are fixed. Nevertheless, the possibility of
setting the nanomagnets further apart by varying the compo-
sition of the nonmagnetic ligand groups in SMM’s, for ex-
ample, justifies the study of the variation of a. Also, given
that the damping term appearing in the LLG equation is phe-
nomenological, and that in most cases � should be deter-
mined experimentally, we have also examined its variation.
We note that � is expected to depend inversely upon T, un-
less T is sufficiently low that thermal processes no longer
dominate the relaxation.14 We keep Ms fixed.

III. INTEGRATION OF THE LLG EQUATION FOR ONE
NANOMAGNET

The magnetic moment of each nanomagnet is obtained by
numerically integrating the LLG equation. The time evolu-
tion of one nanomagnet must be determined synchronously
with all its neighbors in order to calculate the dipolar induc-
tion acting on each of them at a given time. To solve the
LLG equation for the ith nanomagnet in the cth crystal, we
first rotate its coordinates at each time integration step such
that Bi

c,eff�t� � ẑ�t�. We then solve the resulting differential
equations for either the coordinate spherical angles ��t� ,��t�,
or the components of Mi

c�t�, as shown in the Appendix. The
quantity relevant to each spherical angle or component of
Mi

c�t� is �t0
t d��Bi

c,eff����, which explicitly involves the past
history of �Bi

c,eff�t��. In order to decrease the computation
time, we approximate this integral for small time integration
steps dt= t− t0� t0,

�
t0

t

d��Bi
c,eff���� � �Bi

c,eff�t0��dt . �8�

In order to assure numerical accuracy of our results for
the greatly different experimental parameters studied, we had
to make appropriate choices for the numerical parameters
used in the calculations, as discussed in the Appendix. Gen-
erally, calculations with slow sweep rates require corre-
spondingly small � /� values. For the calculations leading to
the results presented in Figs. 1, 2, and 6–9, we take the
numerical parameters dt=1�10−4 s , Bmax=2.0 T,Nt=1000,
and NB=500, 1000, and 4000, respectively, for the different
sweep rates studied. For the calculations presented in Figs.
3–5, we take dt=6�10−12 s , Bmax=22.5 mT, Nt=1000, and
NB=1250.

IV. RESULTS AND DISCUSSION

A. Effects of damping and maximum induction values
on the hysteresis

We first neglect any spin anisotropy effects. In Fig. 1, we
plotted the average over Nc=100 configurations of the nor-
malized magnetization at the lattice constant a=1.5 nm,
sweep rate 	B /	t=0.005 T/s, and temperature T=0.7 K for
the four weak damping rates � /�=3�10−n, where n=10, 11,
12, and 13. These results appear, respectively, from left to
right �right to left� in the upper �lower� part of Fig. 1. The
magnetization curves show hysteresis for all four of these �
values. For the smallest � value we studied, � /�=3.0
�10−13, the hysteresis only occurs for external induction
magnitudes exceeding 3.0 T, observed by setting Bmax above
that value, which is well beyond the domain pictured in Fig.
1. We also note that in Fig. 1, the central regions for
�
M� / �NMs���0.8 are nonhysteretic. For each of these four
parameter value choices, the initial curve describing the first
increase of the average magnetization from essentially 0 to
its saturation value is indistinguishable from subsequent
similar curves obtained after completing the full hysteresis
paths. Hence, in this case, the main consequence of the
choice of Nc=100 configurations is the improvement in the
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statistics, reducing the noise that remains most evident in the
curves corresponding to the smallest � values.

From the inset to Fig. 1, we see that although the height
�in 
M� / �NMs�� of the hysteretic region decreases with de-
creasing �, the width �in B� of the hysteretic region increases
faster with decreasing �, so that the overall area of the hys-
teretic region increases with decreasing �. From a computa-
tional standpoint, for the parameter values studied in Fig. 1,
the smaller the value of �, the larger the required value of
Bmax to produce hysteresis. We also noticed that in these
magnetization curves, the hysteresis sets in at the point of an
abrupt change in slope in the initial curve, which describes
the first increase of the average magnetization from 0 to its
saturation value. Moreover, we conclude that Bmax must be
chosen to guarantee that the system reaches saturation at B
�Bmax, because of the different nature of the hysteresis
present in each curve. For example, in Fig. 1 the hysteresis
can occur only after saturation, but with smaller a values, if
the system has not saturated by B=Bmax, then the magneti-
zation will keep increasing for a number of subsequent 	B
steps, even though the direction of 	B �but not of B� has
been reversed.

B. Effect of temperature on the hysteresis

1. Temperature independent �

We first investigate the role of temperature that arises only
from the statistics, Eq. �5�, and present our results for a T
independent � in Fig. 2. In this figure, we have replotted the
inset of Fig. 1, excluding the curve for � /�=3�10−13, for
which the hysteresis occurred for B too large to display on
the same plot. Otherwise, the parameters are the same as in
Fig. 1, except that we have compared our results �gray
curves� for T=0.7 K shown in Fig. 1 with those �black
curves and circles� for T=0.1 K. Since the evolution of the
magnetization with B in this model is independent of T, we
note from Fig. 2 that the departures of the magnetization
curves from the points of saturation are the same at both T

values, so that the widths �in B� of the hysteretic regions are
nearly the same. However, the height in 
M� / �NMs� of each
hysteretic region decreases strongly with decreasing T, so
that the overall area of each hysteretic region decreases with
decreasing T. This particular result is in strong contrast to the
existing experimental results on SMM’s. Nevertheless, our
results are reasonable from the point of view of the LLG
equation and the way T enters our calculation. We reiterate
that we have so far neglected quantum and spin anisotropy
effects, the latter of which will be discussed in the following.

We remark that in Fig. 2, T only enters into the equations
of motion when the average magnetic moment is evaluated
from Eq. �5�. As for the Brillouin function that describes the
magnetization of a paramagnet in the absence of the dipole
interactions, the initial slope of the magnetization at low B
increases as T is lowered. This increases the alignment of the
moment of each nanomagnet at decreasing T, so that the
dipole-dipole interactions tend to be maximized, enhancing
the effect.

2. Temperature-dependent �

We now consider the effect of the temperature depen-
dence of the damping constant � upon the magnetic hyster-
esis, focussing upon the case of correspondingly fixed very
high sweep and damping rates. We assume that our choice of
spin value, S=5 for each nanomagnet, satisfies S�1. In this
limit, Fredkin and Ron showed that the damping of the
nuclear spin precession by magnetic dipole coupling to a
heat bath, as derived under the assumption of spin-orbit fac-
torization by Wangsness and Bloch, could be readily ex-
tended to the spins in magnetic systems.49,50 For S�1, they
found

��T�/� � T0/T , �9�

where T0=2��11
1 �1−e−��S2 /kB�,50 and �11

1 is a rate constant
�with units of s−1�, the expression for which is a complicated
orbital integral arising from the interaction of the local spin
with its surrounding molecular electronic orbitals in second-

FIG. 1. Magnetization curves for Nc=100, a=1.5 nm, 	B /	t
=0.005. From left to right for M�0, � /�=3�10−10 �dashed�, 3
�10−11 �thin dark gray�, 3�10−12 �light gray�, 3�10−13 �thick
black�. The inset highlights the hysteretic region of the first three of
these curves.

FIG. 2. Shown is the upper hysteretic region of the normalized
magnetization curves at T=0.7 K �gray� and T=0.1 K �black,
circles�. The T-independent damping constants � /� are 3�10−12

�a�, 3�10−11 �b�, and 3�10−10 �c�. The other parameters are the
same as in Fig. 1.
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order perturbation theory,49 and �=��Beff / �kBT�. For �
�1,T0→2��11

1 S2 /kB, which can be taken to be independent
of T and Beff, so that ��T−1, but for ��1, ��1/Beff, which
would completely change its effect. Here we only consider
the case ��1, for which Eq. �9� holds for constant T0. We
note that, as in Figs. 1 and 2, T also affects the results for the
magnetization from the statistics, Eq. �5�.

In Fig. 3, we have shown our results, averaged over Nc
=100 configurations, of the normalized magnetization as a
function of B in mT, for a=1.5 nm, 	B /	t=3000 T/s ,
��T� /�=T0 /T , T0=0.3 K, and T=5 K. For the calculations
presented in this figure, we used the numerical parameters
dt=6�10−12 s , Bmax=22.5 mT, Nt=1000, and NB=1250.
Note that although a has the same value as in Figs. 1 and 2,
the sweep and damping ���T� /�=0.06� rates are six and at
least eight orders of magnitude larger than in those figures.
For these parameters, there are three regions of hysteresis in
the pictured magnetization curve. The left inset is an enlarge-
ment of the upper hysteretic region, the mirror image of
which occurs in the lower region of the pictured magnetiza-
tion curve. In contrast to the behavior shown in Figs. 1 and 2,
at the top of the upper hysteretic region, the magnetization
does not rise abruptly to its saturation value, but first goes
through an extended nonhysteretic region. In addition, there
is a central hysteretic region, an enlargement of which is
shown in the right inset, along with an enlargement of the
same central hysteretic region obtained at T=0.25 K with the
same set of parameters. We note that at T=5 K, the onset
magnetization averaged over Nc=100 configurations, pic-
tured by the thin curve in the lower portion of the right inset,
does not coincide with the thick curve corresponding to the
central hysteresis loop region obtained subsequently to the
attainment of the saturation value by the magnetization. In
addition, we note that the thick central hysteresis loop exhib-
its reproducible oscillations with B-independent frequency f

at T=5 K, which oscillations have disappeared at the lower
T=0.25 K value, for which ��T� /�=1.2, pictured in the up-
per portion of the right-hand inset.

In order to investigate further the differences between the
starting magnetization curves and the curves obtained subse-
quent to saturation, in Fig. 4, we have shown the correspond-
ing central hysteresis loop portion of the magnetization ob-
tained for two individual configurations, using the same
experimental and numerical parameters as in Fig. 3 except
that T=10 K for which ��T� /�=0.03. As in Fig. 3 T enters
both through the statistical averaging and through the damp-
ing ��T�. In Fig. 4 the solid and open circles correspond to
the starting magnetizations of the two configurations, and the
coincident thick black and thin light gray curves correspond
to the central hysteresis loop region of their respective mag-
netization curves obtained after saturation. Note that after the
initial noisy regions, the starting magnetizations for these
two configurations exhibit comparably large amplitude oscil-
lations at the frequency f /2, the phases of which are very
different. However, after the attainment of the saturation
magnetization, these large amplitude oscillations are absent,
and replaced by smaller amplitude oscillations at the fre-
quency f , which are similar to the oscillations present in our
results obtained at T=5 K shown in the lower curves in the
right-hand inset of Fig. 3. We note that in the first oscillation
present on both sides of the central post-saturation hysteresis
loops obtained with these parameters at T=5 and 10 K show
additional small amplitude, higher frequency oscillations,
which may be higher harmonics of f . In addition, the ampli-
tudes of the fifth and sixth oscillations are larger at 10 K in
Fig. 4 than at 5 K in the lower right inset of Fig. 3.

We remark that the large amplitude oscillations present in
the starting magnetizations shown in Fig. 4 are absent in Fig.
3. This occurs due to the randomness of the oscillation
phases, which is averaged out in the Nc=100 configurations
studied in Fig. 2.

FIG. 3. The magnetization curves for Nc=100 at T=5 K, a
=1.5 nm, and 	B /	t=3000 T/s with Bmax=22.5 mT and ��T� /�
=T0 /T for �g�BBeff / �kBT��1 and T0=0.3 K are shown �Ref. 50�.
Left-hand inset, details of the upper portion of the curve. Right-
hand inset, details of the central hysteretic portion of the curve
shown, along with the central portion of the corresponding curve at
T=0.25 K. The thin curves beginning near to the origin represent
the magnetization onsets. These curves are offset for clarity, with
the scales on the right-hand �left-hand� sides corresponding to the
lower �upper� curves, respectively.

FIG. 4. The central loop and starting magnetization curves for
two separate configurations, each with Nc=1 �open and filled
circles� at T=10 K, a=1.5 nm, and 	B /	t=3000 T/s with
��T� /�=T0 /T for �g�BBeff /kBT�1 and T0=0.3 K are shown �Ref.
50�. The thin gray and thick black curves represent the identical
behaviors of the central hysteretic loop portion of the magnetization
for the same two configurations obtained after saturation. The ar-
rows indicate the direction of the magnetization hysteresis. Here
Bmax=22.5 mT. See text.
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From Fig. 4, we therefore conclude that our starting con-
figurations that were chosen to have �M� /Ms�0.1, appropri-
ate for SMM’s, lead to starting magnetization curves that are
very different from those that start at the saturation magne-
tization, but are subsequently identical. That is, after the at-
tainment of saturation, all configurations are identical.

3. External field directed towards the crystal corners with �„T…

We now consider the 3D case of the external magnetic
induction directed from the crystal center to one of its cor-
ners, B=B�x̂+ ŷ� /�2, the �110� direction. In Fig. 5, we show
the resulting central hysteresis region obtained from our cal-
culations for Nc=50, N=5�5�4, T=10 K, a=1.5 nm,
and 	B /	t=3000 T/s with ��T� /�=0.03. In this case, it is
sufficient to set Bmax=22.5 mT, which leads to full satura-
tion. We note that for this field direction, a small �−6 mT
�B�6 mT� hysteresis region appears on either side of the
origin, which is rather central to the full magnetization curve,
but vanishes over a small region close to the origin. There
are also tiny hysteresis regions near to saturation that appear
as dots in the inset depicting the full magnetization curve.

The nearly central hysteretic regions shown in Fig. 5 ex-
hibit reproducible jumps at specific B values, similar to those
observed at low T in SMM’s. However, we note that in this
figure, we have taken T=10 K, and have used a classical
spin model. We also note that we have used a rather small
sample �N=100� with a fast sweep rate and a large damping
coefficient in our calculations, and caution that such behavior
might not be present in large single crystals, especially with
much slower sweep rates. Nevertheless, this figure demon-
strates that steps in the magnetization do not necessarily have
a quantum origin, and that the sample shape can lead to
unusual hysteresis effects.

C. Effect of sweep rate on the hysteresis

From the curves obtained using the same numerical pa-
rameters as in Fig. 1 for different induction sweep rates at a

fixed, small damping rate in Fig. 6, it is clear that stronger
hysteresis is found for higher sweep rates, in agreement with
experiments on a variety of nanomagnets, including SMM’s.
This shows that the reversibility of the process depends on
how close to equilibrium the sweep rate allows the nanomag-
net spins to reach. That is, although for different sweep rates
the external induction is increased by the same amount 	B,
at higher sweep rates, the time 	t allowed for the nanomag-
nets to evolve towards equilibrium is less. This makes the
process less reversible and the hysteresis loops larger.

We also note that at the much higher sweep and damping
rates studied in Figs. 3 and 4 the magnetization also exhibits
a central hysteretic region, which exhibits oscillations at T
values not too low and/or damping constants not too large.

D. Effect of lattice constant on the hysteresis

In Fig. 7, we show hysteresis curves for two different
values of the lattice constant a, obtained using the same nu-
merical parameters as in Fig. 1. For weaker dipole-dipole
interactions �larger a�, the rise in the magnetization is steeper
with increasing B, and the rapid decrease in the magnetiza-

FIG. 5. The central loops �solid curves� of the magnetization
curve for Nc=50, N=5�5�4=100, with B along the �110� direc-
tion �B � �x̂+ ŷ� /�2� at T=10 K, with a=1.5 nm, Bmax=22.5 mT,
and 	B /	t=3000 T/s with ��T� /�=T0 /T, and T0=0.3 K. The
dashed curve is the starting magnetization curve. The arrows indi-
cate the direction of the hysteresis. Inset, the full magnetization
curve. See text.

FIG. 6. Hysteretic region of M�B� at 0.7 K, � /�=3�10−12,
and a=1.5 nm, for the sweep rates 	B /	t=0.04 T/s �thin black�,
0.02 T/s �dark gray�, and 0.005 T/s �thick light gray�. The inset
shows the entire curves.

FIG. 7. Magnetization curves for lattice constants a=1.5 nm
�gray� and a=2.5 nm �black�. 	B /	t=0.04 T/s , �=3�10−12� ,
T=0.7 K.
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tion from its saturation value upon decreasing B occurs at a
smaller value of �B�. Furthermore, we shall see that dipolar
interactions do not promote hysteresis in these systems, but
suppress it. Actually, the same conclusion was found recently
for magnetic nanoparticles in the framework of the general-
ized mean-field approximation.55

This peculiar hysteresis is easily understood by analyzing
the LLG equation. If the nanomagnet magnetization Mi

c is
parallel to its local magnetic induction Bi

c,eff ,dMi
c /dt=0, as it

will remain thereafter, so that Mi
c has reached equilibrium.

The only chance for the system to decrease its magnetization
from its saturation value is through the combined weak di-
polar induction, which strengthens with decreasing lattice
parameter a. The dipolar induction can oppose the system
from remaining completely magnetized, since it has small,
but nonvanishing components. Therefore, even when B
reaches its maximum �finite� amplitude Bmax and the mis-
alignments of each Mi

c with B are negligible, dynamic equi-
librium will not generally have been attained due to the lim-
ited time allowed for relaxation before the next change in B.
There will remain a slight deviation between the directions
of the Bi

c,eff and the Mi
c due to the presence of the Bi

c,dip,
which is especially important when B decreases from Bmax.

Of course, it is harder to decrease M at the very begin-
ning of the induction cycle. This is precisely the cause of the
hysteretic behavior, given that changes in Mi

c are propor-
tional to �Mi

c�Bi
c,eff�, which nearly vanishes when the direc-

tion of the incremental induction has just been reversed. We
conclude then that the smaller the lattice parameter �the
stronger the dipolar induction�, the greater the deviation of
Mi

c from the direction of Bi
eff. Hence, the easier it is to de-

crease M, making the magnetization curve less hysteretic.
This is shown in Fig. 7, in which the magnetization curves
resemble those obtained for Mn4 SMM’s.31 Those data show
an abrupt decrease in M at nearly zero external induction
that is not evident in the magnetization curves of other
SMM’s.28

It is important to note that the curves in Figs. 1–7 do not
show the strong hysteresis observed experimentally in most
SMM’s, which is especially large in the central region of the
M�B� curves. We remind the reader of our intent to focus
upon the effects of the dipole-dipole interactions, whereas
the most important features of SMM’s involved in their low-
T relaxation of the magnetization are generally thought to be
their quantum structure and magnetic anisotropy. Neverthe-
less, for this entirely classical and magnetically isotropic sys-
tem, we are indeed finding hysteretic curves. In addition, the
sweep rates in Figs. 1, 2, 6, and 7 are comparable to those
used in experimental SMM studies. At much larger sweep
rates, such as were studied in Figs. 3–5, an hysteretic central
region was found. However, the sizes and T dependencies of
these hysteretic regions were still, respectively, much smaller
and qualitatively different than observed in SMM’s.

E. Effect of spin anisotropy upon the hysteresis

It is straightforward to generalize our model to include
some of the effects of magnetic spin anisotropy. Here we
assume the nanomagnets contain sufficiently many spins that

their quantum nature can be neglected. We note that SMM’s
at low T values behave as quantum entities, because of the
small number of spins in each nanomagnet. In those systems,
most workers have assumed that in addition to the isotropic
Heisenberg and Zeeman interactions, the magnetic aniso-
tropy terms could also be written in terms of components of
the global spin operator S, with the overall dominant terms
often written as −DSz

2−E�Sx
2−Sy

2�.56 However, portions suffi-
ciently large for model comparison of the low-T magnetiza-
tion curves of two Fe2 SMM dimers have been studied
experimentally.57,58 In neither antiferromagnetic dimer case
was any evidence for either of those types of spin anisotropy
present.59 In contrast, in one of those cases, strong evidence
for a substantial amount of local, single-ion spin anisotropy,
in which the individual spins within a dimer align relative to
the dimer axis, is present in the data.57,59 In addition, the
global anisotropy in the ferromagnetic SMM Mn6 is ex-
tremely weak.60 Since the precise quantum nature of more
complicated SMM’s appears therefore to be poorly under-
stood, we shall investigate the quantum features of the mag-
netic hysteresis curves in SMM’s, including some effects of
local spin anisotropy, in a subsequent presentation.54

We therefore restrict our investigations of the role of mag-
netic anisotropy upon the magnetization curves of arrays of
nanomagnets to the simplest classical model of spin aniso-
tropy,

Bi
c,eff = B + Bi,dip

c + �0HA, �10�

where we take B=Bx̂ and studied the cases HA=HAx̂ and
HA=HAẑ. This is the 3D analog of the model studied by
KS.45 In this model, the magnetic anisotropy of each of the
nanomagnets points in the same direction, and in our finite
sized crystal consisting of 5�5�4 nanomagnets on a cubic
lattice, our chosen direction is one of the most general ones.
We first performed two studies of the magnetic hysteresis in
this model, for which the anisotropy field HA is directed,
respectively, along �100�, �B, and �001�, �B, and our results
are shown in Figs. 8 and 9, respectively. For both anisotropy
field directions, we take Nc=100, N=5�5�4=100, � /�

FIG. 8. Parallel 3D magnetization curves including different an-
isotropy field HA=HAx̂ strengths, with the external induction
B �HA. �0HA=0 �thin black�, 0.2 T �dark gray�, and 1.0 T �thick
dashed�, respectively. For each curve, Nc=100, N=5�5�4=100,
� /�=3�10−12, a=1.5 nm, 	B /	t=0.04 T/s, T=0.7 K, and Bmax

=2.0 T.
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=3�10−12, a=1.5 nm, 	B /	t=0.04 T/s , T=0.7 K, and
Bmax=2.0 T. The sweep rates used in Figs. 8 and 9 are
slightly faster than those used in SMM experiments but
much slower than those used in the calculations of KS. Since
a=1.5 nm in these curves, these curves also represent the
strongest realistic dipolar interaction we studied.

In Fig. 8, we show the portions of the parallel magnetiza-
tion curves with B �HA � x̂, that exhibit the resulting regions
of magnetic hysteresis for three HA values. For the �0HA
=0, 0.2, and 1.0 T values shown, all three curves are hyster-
etic, but the two lower HA values do not lead to a central
hysteresis region. Nevertheless, the largest anisotropy value,
HA=1.0 T, leads to a strong central hysteresis. We remark
that the trends shown in Fig. 7 are rather different from those
obtained for a single magnetic particle with magnetic
anisotropy.5

In Fig. 9, we show the portions of the 3D perpendicular
magnetization curves exhibiting the resulting regions of
magnetic hysteresis for the five anisotropy fields �0HA
=0,1 mT, 12 mT, 0.5 T, and 1.0 T, with the magnetic induc-
tion B � x̂�HA � ẑ. In each case, hysteresis occurs near to
magnetic saturation, but is absent in the central region for
small magnetic induction. At �0HA=1.0 T, this is distinctly
different from the large central hysteretic region observed for
parallel anisotropy. Note that the slope dM /dB at small B is
nonmonotonic with increasing HA, as it has a minimum at
curve �c�, corresponding to �0HA=12 mT.

Thus, we conclude that it is possible to obtain a central
hysteresis region using this classical model of dipolar inter-
actions with constant spin anisotropy. However, our results
suggest that such central hysteresis regions only arise for the
magnetic induction parallel to the spin anisotropy direction,
and for sufficiently strong anisotropy fields, HA�HA

min,
where 1.0 T��0HA

min�0.2 T.

V. DIPOLAR INTERACTION, INDUCTION SWEEP RATE,
AND ANISOTROPY DEPENDENCIES FOR A 2D

SYSTEM

To estimate the importance of the dipolar induction �espe-
cially when it becomes comparable to the external induc-

tion�, the anisotropy and the sweep rate, we have reproduced
one of the 2D calculations of KS.45 The KS calculation we
chose to reproduce was pictured in their Fig. 2�i�, and is
shown here as the left panel of Fig. 10. Then, we changed
some experimental parameters to see how the results depend
on the anisotropy strength, sweep rate, and lattice parameter.

Our calculations for a cubic lattice consisting of four 25-
particle layers differ from those of KS in many ways.45 They
used a 2D square lattices of cylindrical nanodots �here, we
take their 5�5 lattice with external induction aligned along
an array’s diagonal�, included a shape-dependent anisotropy
field perpendicular to the lattice, performed their calculations
at T=0, used a much larger damping constant than we gen-
erally did for 3D systems, and did not average their results
over an ensemble of 2D samples, because such systems do
not show variations in the resulting hysteresis loops for dif-
ferent initial states. Nevertheless, we both integrated the
LLG equation using the Runge-Kutta algorithm, and surpris-
ingly, KS’s system turned out to be very sensitive to the
dipolar field strength. The effective induction they consid-
ered can be written as

Bi
c,eff = B + Bi,dip

c + �0HAẑ . �11�

For lattice constant a=1.5 nm, spin S=5, and V /a3=0.5,
where V is the volume of the nanomagnet, the saturation
magnetization is Ms�55 Oe. Then, they took the dimension-
less dt=5�10−3, which implies a real time interval dt
=5.17�10−12 s. If the system evolves during 700 time steps
dt for some fixed value of B, then B is changed every 	t
�3.62�10−9 s. On the other hand, KS chose a maximum
external induction Bmax=2�0Ms�1.1�10−2 T. In addition,
they took fixed induction steps of magnitude 	B=2
�10−3�0Ms�1.1�10−5 T. Therefore, we estimate their re-
sulting sweep rate to be 	B /	t�3�103 T/s, as in our 3D
results shown in Figs. 3 and 4.

In the absence of any specific information, we then had to
induce the value of the anisotropy field that KS used to ob-
tain their figure. Fortunately, as discussed in the following,
the results are rather insensitive to it, unless HA becomes
comparable to Bmax/�0. In the right panel of Fig. 10, our 2D

FIG. 9. Upper region of the 3D perpendicular magnetization
curves with the external induction B=Bx̂�HA=HAẑ, for different
values of HA. Curves �a�–�e� correspond to �0HA=0, 1
�10−3 , 1.2�10−2, 0.5, 1.0 T, respectively. The other parameters
are the same as in Fig. 7. The arrows indicate the directions of the
field sweeps.

FIG. 10. �Left� Hysteresis loop M�B� in units of Ms, for a
weakly coupled array of 5�5 ferromagnetic nanodots in a square
lattice on the xy plane, from Fig. 2�i� of KS. The external induc-
tion is applied along the array diagonal �45° from the x axis� �Ref.
45�. �Right� Our results calculated for Nc=1 with 5�5 nanomag-
nets on a square lattice, � /�=0.6, T=0 K, 	B /	t=3000 T/s ,
�0HA=7.5�10−4 T, B=B�x̂+ ŷ� /�2.
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calculations with �0HA=0.75 mT are shown, and by compar-
ing that figure with Fig. 2�i� of KS pictured in the left panel
of Fig. 10, we see that the agreement is remarkably good.

Very recently, Takagaki and Ploog �TP� used a fourth-
order Runge-Kutta procedure to integrate the LLG equations
with N�N 2D nanomagnet lattices with magnetic anisotropy
and dipole-dipole interactions.61 They used a fixed time in-
terval dt=0.1q / ��Ms�, 20 times as fast as that used by KS,45

and continued interating until no further changes in the na-
nomagnet spin configurations were obtained. They obtained
results for N=5 which they described as considerably differ-
ent from those of KS, with a somewhat different magnetiza-
tion loop and a larger area of the hysteretic regions.61 In
addition, in the absence of anisotropy fields, the spontaneous
magnetization and the area of their hysteretic region did not
decrease substantially as the N increased to 57, the maximum
value they studied,61 in apparent contradiction to the predic-
tion by Prakash and Henley that the infinite system with
dipolar interactions alone is infinitely degenerate, and hence
does not exhibit a spontaneous magnetization.62 Although TP
claimed that their fourth-order procedure was intrinsically
more accurate than the second-order one used by KS and by
us, the apparent contradiction in the infinite system limit and
the specific fact that we obtained the excellent agreement
pictured in Fig. 10 and with HA=0 in Fig. 11 with one of the
N=5 results of KS both suggest that the procedure used by
TP might have been less accurate than they claimed.61

A. Anisotropy field dependence of the hysteresis

We first investigated the effects of changing the strength
of the anisotropy fields, and presented our results in Fig. 11.
The most important issue about the results shown in Fig. 11
is the fact that the curve obtained by KS �the left panel of
Fig. 10� is basically independent of the anisotropy field HA
for sufficiently small HA. That is, there are no essential dif-

ferences between that curve reproduced in the right panel of
Fig. 10 with �0HA=7.5 mT, and the one with HA=0. Strong
deviations from these essentially identical curves appear for
�0HA�4 mT, however. Since identical behavior is obtained
without any anisotropy, this implies that all hysteretic fea-
tures �including the stepped magnetization and demagnetiza-
tion� are due to the dipolar interaction. HA becomes impor-
tant only when it is comparable to Bmax/�0 and tends to
close the hysteresis loops, starting from the lower and upper
loops.

We note that by comparing Fig. 11 with Fig. 9, the details
of the hysteresis obtained with HA=0 for B along the �110�
direction are different in 3D and 2D samples. The hysteresis
is much larger in the 2D case pictured in Fig. 11, and has a
large loop in the central region that does not vanish at the
origin, plus large loops that extend up to saturation. In the
3D case constructed from four 2D planes each equivalent to
that used in the calculation shown in Fig. 11, the magnitude
of the hysteresis is reduced and its details have been greatly
altered.

B. Induction sweep rate dependence of the hysteresis

In Fig. 12, we show our results for a single configuration
of a square 2D lattice with N=5�5 for different sweep rates,
keeping the other parameters fixed at �0HA=0.75 mT, � /�
=0.6, a=1.5 nm, S=5, T=0, and B=B�x̂+ ŷ� /�2. From
Fig. 12, we note that the hysteresis is nearly independent of
induction sweep rate over the range 300 to 6000 T/s, dis-
tinctly different from the strong dependence found in 3D
systems shown in Fig. 5.

C. Lattice parameter dependence of the hysteresis

In Fig. 13, we have illustrated the effect of the lattice
constant a upon the hysteresis. In this figure, we kept the
other parameters fixed at S=5, T=0, 	B /	t=3000 T/s ,
�0HA=0.75 mT, � /�=0.6, and B=B�x̂+ ŷ� /�2. As a is var-
ied from 2.0 to 1.25 nm, the upper portions of the hysteresis

FIG. 11. Hysteresis loops for different strengths of HA for 5
�5 nanomagnets on a square lattice with Nc=1. S=5, T=0 K, a
=1.5 nm, 	B /	t=3000 T/s , � /�=0.6, B=B�x̂+ ŷ� /�2. The thin
gray and thick black curves with �0HA=0,0.75 mT, respectively,
are nearly indistinguishable. The small gray circles and dashed
curves correspond to �0HA=4.0,5.5 mT, respectively. The inset
shows the entire curves, which are symmetric with respect to the
origin.

FIG. 12. Hysteresis loops for different induction sweep rates
with 5�5 nanomagnets on a square lattice with Nc=1, S=5, T
=0 K, a=1.5 nm, �0HA=0.75 mT, � /�=0.6. The dashed gray,
thick black, and light solid gray curves correspond to 	B /	t
=300,1500,6000 T/s, respectively. The inset shows the entire
curves. B=B�x̂+ ŷ� /�2.
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curves appear from left to right, respectively. From Fig. 13, it
is readily seen that the magnetization curves are very sensi-
tive to a and hence to the strength of the dipolar interaction,
which is proportional to a−3. Our results for a=2.5 nm ex-
hibit a smaller hysteresis shifted further to the left, and all
indications of steps have disappeared. Although not shown in
Fig. 13, as a is increased further to 3.0 nm, the hysteresis
almost disappears entirely. We deduce that stronger dipolar
interactions �smaller a� result in larger hysteresis loops con-
taining increased widths of additional steps.

We then infer that contrary to the conclusion found for the
3D systems �based upon much smaller damping coefficients
and much slower sweep rates�, the dipolar interactions pro-
mote a hysteretic behavior in this 2D system.

VI. SUMMARY AND CONCLUSIONS

We first found Nc=100 sample configurations with an
overall magnetization close to 0. We then solved the Landau-
Lifshitz-Gilbert equation for a 3D cubic lattice of N=5�5
�4 nanomagnets, subject to dipole-dipole interactions and
spin anisotropy. These results should be relevant for an array
of Stoner-Wolfarth nanomagnets, and to some extent, single
molecule magnets, although the quantum nature of the latter
has so far been neglected. In the absence of spin anisotropy,
we varied the magnetic induction sweep rate 	B /	t, the
damping constant �, the lattice constant a, and the tempera-
ture T. We also considered the effects of a T-dependent
damping constant of the form ��T� /�=T0 /T suggested by
Fredkin and Ron. For slow sweep rates and small � relevant
for experimental studies on single molecule magnets, mag-
netic hysteresis appears in the regions of the magnetization
curves near to saturation, the area and onset magnetic induc-
tion strength of which increases with decreasing � and in-
creasing sweep rate. With decreasing T, the onset magneti-
zation magnitude of the hysteretic regions near to saturation
decreases. With decreasing a corresponding to increased
dipole-dipole interaction strengths, the onset of the hysteresis
regions near to saturation appears at increasing magnetic in-
duction magnitude.

At much larger sweep rates and damping constants, the
magnetization curves attain saturation at much smaller ap-
plied magnetic induction strengths. The hysteretic regions
just below saturation have moved somewhat below satura-
tion, and a new central hysteretic region appears. As one
follows the magnetization curve for a single configuration,
the starting curve exhibits oscillations at a rather constant
�magnetic induction independent� frequency f /2, but the
phase of the magnetization oscillations is a random function
of the configuration. After the attainment of magnetic satu-
ration, this central hysteretic region exhibits oscillations at f ,
twice that frequency, possibly with weak higher harmonics,
for T not too low, which are independent of the configura-
tion.

When the applied magnetic induction is in the �110� di-
rection �from the sample center to one of its corners�, mag-
netic hysteresis exhibiting steps and jumps appears within
the central region, but vanishes at and very near to the origin.
Although these steplike features are suggestive of the behav-
ior seen in single molecule magnets, they are present at
rather high T values, as they arise from the classical sample
shape effects.

In the presence of the magnetic anisotropy field HA, an
applied magnetic induction parallel to the anisotropy axis
leads to a large central hysteresis region, provided that the
magnitude of the spin anisotropy is sufficiently large. For the
applied magnetic induction perpendicular to the magnetic an-
isotropy, no central hysteresis region is present, although a
small amount of hysteresis near to saturation persists for suf-
ficiently small spin anisotropy strength, and the slope of the
magnetization curve at the origin is nonmonotonic, exhibit-
ing a maximum at a particular small value of the spin aniso-
tropy strength. These effects for the spin anisotropy are
qualitatively in agreement with those in many types of arrays
of nanomagnets, including single molecule magnets.

As a test of our numerical procedure, we studied the sim-
plified 5�5 2D square lattice with a perpendicular spin an-
isotropy field HA using the same procedure, and for a par-
ticular set of parameters, obtained quantitative agreement
with a hysteresis curve obtained for that system by Kayali
and Saslow.45 We showed that their hysteresis curve is basi-
cally independent of HA until �0HA is on the order of the
external induction. We also demonstrated that the magnetic
hysteresis does not depend significantly upon the magnetic
induction sweep rate, as opposed to the dependence we
found in our 3D system. In addition, we found that the mag-
netization of the 2D system is very sensitive to variations in
the lattice parameter a. Finally, we noticed that although di-
polar interactions also oppose the magnetization process in
2D systems, increasing the onset magnetic induction strength
for the attainment of saturation as in 3D systems, they in-
crease the area of the hysteresis, a behavior opposite to that
found for the 3D system with a much smaller damping co-
efficient and much slower sweep rate.

We expect our results to be relevant to the magnetization
processes in a variety of nanomagnet arrays, especially those
approximating arrays of Stoner-Wolfarth particles. In addi-
tion, some of the features we obtained should be relevant to
single molecule magnets, although the temperature depen-
dence of the effects is not in agreement with experiments on

FIG. 13. Hysteresis loops for lattice parameters a=2.5 nm �solid
black�, a=2.0 nm �dashed black�, a=1.5 nm �solid gray�, and a
=1.25 nm �dotted-dashed black�, for 5�5 nanomagnets on a square
lattice with Nc=1, S=5, T=0 K, 	B /	t=3000 T/s , �0HA=7.5
�10−4 T, � /�=0.6. The inset shows the entire curves. B=B�x̂
+ ŷ� /�2.
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those materials. Further studies of the magnetic hysteresis
using quantum models of the nanomagnets and their various
anisotropy types is warranted, and will be addressed
subsequently.54

ACKNOWLEDGMENT

This work was supported in part by the NSF under Grant
No. NER-0304665.

APPENDIX

We rotate our reference frame at every integration time
step in such a way that Bi

c,eff is along the z axis. In this case,
we can easily solve the LLG equation, Eq. �1�. For simplicity
of notation, we drop the subscripts i and superscripts c, and
remember that we are describing the precession of the ith
nanomagnet in the cth crystal. We define the axes to describe
the magnetization direction of this particular nanomagnet,

M̂ , �̂, and �̂, where �̂=M̂� �̂, and then write

Beff = Bzẑ = Bz�M̂ cos � − �̂ sin �� = M̂BM + �̂B�. �A1�

Since the magnitude of the dipole moment Ms is conserved,
in spherical coordinates Eq. �1� leads to

dM̂

dt
= �̂

d�

dt
+ �̂sin �

d�

dt
= �̂�B� + �̂�B�. �A2�

Finally, from

d�

dt
= = − ��Beff�sin � , �A3�

d�

dt
= − ��Beff� , �A4�

we obtain for a very small time interval dt,

��t0 + dt� � ��t0� − ��Beff�t0��dt , �A5�

��t0 + dt� � ��t0� − ��Beff�t0��sin���t0��dt . �A6�

These equations were used in our numerical calculations. In
order to relate the angles to measurable quantities, however,
we note that it is possible to integrate Eqs. �A3� and �A4�
exactly, obtaining

��t� = cos−1�tanh�tanh−1cos���t0��� + ��
t0

t

d��Beff������ ,

�A7�

��t� = ��t0� − ��
t0

t

d��Beff���� , �A8�

which is equivalent to that obtained using a somewhat dif-
ferent technique.3 We note that by expanding Eqs. �A7� and
�A8� to leading order in dt, we recover Eqs. �A6� and �A5�,
respectively.

However, these more general forms for ��t� and ��t� lead
to a more physical interpretation of our method. Since the
dimensionless magnetization components along and perpen-
dicular to Beff are Mz=cos � , Mx=sin � cos �, and My
=sin � sin �, we have

Mz�t� = tanh�tanh−1�Mz�t0�� + ��
t0

t

d��Beff����� , �A9�

Mx�t� = �1 − �Mz�t��2 cos���t�� , �A10�

My�t� = �1 − �Mz�t��2 sin���t�� . �A11�

Independent of the coordinates, we must assure that �for
the ith nanomagnet in the cth configuration� M changes its
direction smoothly, in order to obtain a reliable calculation

for the overall M� . Since each component of M cannot
change dramatically, we must therefore require ��2� and
��2�. These restrictions then require us to set the time
integration step width dt sufficiently small. If, for example,
� /� were on the order of 10+11 and �Beff� were in the range
10−3–10−2 T, we would require dt�10−11 s. For sweep rate
	B /	t�10−2 T/s, where 	t=Ntdt�10−4 s ,Nt must be on
the order of 107. Since we would need to recalculate the
direction of the magnetization of each nanomagnet Nt times
in each 	B step, this would be a significant challenge with
present day computers.

One thing we can do to make our calculations feasible for
the sweep rates used in SMM studies is to set � extremely
small, say � /��10−10, although such small � values have
not been reported in experiments. Otherwise, to study much
larger but perhaps more reasonable � values, we would have
to use much faster sweep rates, as in KS.45
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