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We study the presence of ferromagnetism in the phase diagram of the two-dimensional honeycomb lattice
close to half-filling �graphene� as a function of the strength of the Coulomb interaction and doping. We show
that exchange interactions between Dirac fermions can stabilize a ferromagnetic phase at low doping when the
coupling is sufficiently large. In clean systems the zero-temperature phase diagram shows both first-order and
second-order transition lines and two distinct ferromagnetic phases: one phase with only one type of carriers
�either electrons or holes� and another with two types of carriers �electrons and holes�. Using the coherent
potential approximation we argue that disorder further stabilizes the ferromagnetic phase. This work should
estimulate Monte Carlo calculations in graphene dealing with the long-range nature of the Coulomb potencial.
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I. INTRODUCTION

The ferromagnetic instability due to the exchange interac-
tion in a three dimensional �3D� electron gas attracted atten-
tion since the early days of quantum mechanics1 and has
been studied in great detail.2,3 Recent Monte Carlo
calculations4,5 have confirmed the presence of ferromag-
netism in the phase diagram of the 3D electron gas at low
doping. Similar studies have also suggested the existence of
a ferromagnetic phase in the diluted two-dimensional �2D�
electron gas6 with a first-order transition from a paramag-
netic phase to a ferromagnetic phase with full polarization.
As the electron density is reduced, electron-electron interac-
tions become stronger and dynamical screening disappear. At
the extreme limit of zero density the electron gas should
crystalize into a Wigner solid where the electrons feel the
unscreened Coulomb interaction. The elusive ferromagnetic
phase of the electron gas lurks between the Wigner crystal
and the Fermi liquid state that exists at higher doping when
electron-electron interactions are fully screened.6,7

In recent years, the experimental search for the ferromag-
netic phase of the diluted electron gas has been
unattainable.7–9 Nevertheless, there has been strong experi-
mental indications on the existence of ferromagnetism in
highly disordered graphite samples.10,11 The origin of this
phase is still unclear, and a number of different mechanisms
have been proposed.12–15 Nevertheless, there is no final word
on the origin of ferromagnetism in graphite. Graphite is a
layered material made out of graphene layers �a honeycomb
lattice with one electron per � orbital, that is, a half-filled
band�. The traditional view of graphite based on band-
structure calculations assumes coherent hopping between
graphene layers, and describes graphite as a low density
metal with almost compensated electron and hole pockets,
with 10−4 to 10−5 electrons per carbon.16 This traditional pic-
ture, however, completely disregards the strong and un-
screened interactions between electrons that should exist at
low densities. In fact, recent experiments in true 2D
graphene systems17–20 show that electron-electron interac-
tions and disorder have to be taken into account in order to

obtain a fully consistent picture of graphene.21 Recent theo-
retical results21 raise questions on the wisdom of thinking of
strongly correlated layered system such as graphite, as truly
3D. The claim is that the full 2D nature of graphene has to be
taken into account before graphene planes are coupled by
weak van der Waals interactions in order to form the 3D
solid.

One of the most striking features of the electronic struc-
ture of perfect graphene planes is the linear relationship be-
tween the electronic energy Ek with the two-dimensional mo-
mentum k= �kx ,ky�, that is, ��k�= ±�vF�k�, where vF is the
Dirac-Fermi velocity. This singular dispersion relation is a
direct consequence of the honeycomb lattice structure that
can be seen as two interpenetrating triangular sublattices. In
ordinary metals and semiconductors the electronic energy
and momentum are related quadratically via the so-called
effective mass m* �Ek=�2k2 / �2m*��, that controls much of
their physical properties. Because of the linear dispersion
relation, the effective mass in graphene is zero, leading to an
unusual electrodynamics. In fact, graphene can be described
mathematically by the 2D Dirac equation, whose elementary
excitations are particles and holes �or antiparticles�, in close
analogy with systems in particle physics. In a perfect
graphene sheet the chemical potential crosses the Dirac point
and, because of the dimensionality, the electronic density of
states vanishes at the Fermi energy. The vanishing of the
effective mass or density of states has profound conse-
quences. It has been shown, for instance, that the Coulomb
interaction, unlike in an ordinary metal, remains unscreened
and gives rise to an inverse quasi-particle lifetime that in-
creases linearly with energy or temperature,22 in contrast
with the usual metallic Fermi liquid paradigm, where the
inverse lifetime increases quadratically with energy.

As mentioned above, its is well known that direct ex-
change interactions can lead to a ferromagnetic instability in
a dilute electron gas.1,23 In this work we generalize the analy-
sis of the exchange instability of the electron gas to pure and
doped 2D graphene sheets. Although pure graphene should
be a half-filled system, we have recently shown21 that ex-
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tended defects such as dislocations, disclinations, edges, and
micro-cracks can lead to the phenomenon of self-doping
where charge is transfered to/from defects to the bulk in the
presence of particle-hole asymmetry. The extended defects
are unavoidable in graphene because there can be no long-
range positional carbon order at finite temperatures in 2D
�the Hohenberg-Mermin-Wagner theorem�. Furthermore, we
have also shown that although extended defects lead to self-
doping, they do not change the transport and electronic prop-
erties. Lifetime effects are actually introduced by localized
disorder such as vacancies and ad-atoms. Thus, we have also
considered the influence of disorder in the generation of fer-
romagnetism. It is worth noting that the possibility of other
instabilities in a graphene plane, related to the Coulomb in-
teraction have also been studied in the literature.24,25 The
nature of the exchange instability in a system with many
bands is also interesting in its own right,26 and it has not
been studied extensively. Furthermore, graphene is the basic
material for the synthesis of other compounds with sp2 bond-
ing: graphite is obtained by the stacking of graphene planes,
Carbon nanotubes are synthesized by the wrapping of
graphene along certain directions, and fullerenes “bucky-
balls” are generated from graphene by the creation of topo-
logical defects with fivefold and sevenfold symmetry. There-
fore, the understanding of the ferromagnetic instability in
graphene can have impact on a large class of systems. Fi-
nally, we also mention that a simple analysis using the stan-
dard Stoner criterium for ferromagnetism fails in graphene,
as the density of states of undoped graphene vanishes at the
Fermi level.27

The electron-electron interaction in graphene can lead to
other instabilities at low temperatures, in addition to the fer-
romagnetic phase considered here. A local on site repulsive
term can lead to an antiferromagnetic phase, when its value
exceeds a critical threshold.27,28 In the following, we will
concentrate on the role of the ferromagnetic exchange insta-
bility, which, as already mentioned, is important in electronic
systems with a low density of carriers, and which has not
been considered in the literature so far.

Our main results can be summarized by the zero-
temperature phase diagram g versus n �where n is the doping
away from half-filling� shown in Fig. 1. The strength of the
electron-electron interactions in graphene is parametrized by
the dimensionless coupling constant g defined as

g =
e2/�0

�vF
, �1�

where e is the charge of the electron and �0 the dielectric
constant of the system. Notice that g is exactly the ratio
between the Coulomb to the kinetic energy of the electron
system. This coupling constant replaces the well-known pa-
rameter rs��e2 /�0� / ��2kF /m*� of the nonrelativistic electron
gas �where kF is the Fermi momentum�. In the pure com-
pound �n=0� the paramagnetic-ferromagnetic transition is of
first order with partial polarization and occurs at a critical
value of g=gc�5.3. As the doping is increased, the ferro-
magnetic transition is suppressed �a larger value of gc is re-
quired� up to around n�0.2 where the first order line ends at
a tricritical point a line of second-order transitions emerges
with a fully polarized ferromagnetic phase. A unique feature
of the ferromagnetism in these systems, unlike the ordinary
2D and 3D electron gases, is the fact that there are two types
of ferromagnetic phases, one that has only one type of carrier
�either electron or hole� and a second phase with two types
of carriers �electrons and holes�.

The paper is organized as follows. In the next section we
present the model for a graphene plane in the continuum
limit taken into account the Dirac fermion spectrum and the
long-range Coulomb interactions. In Sec. III we discuss the
exchange energy for graphene through a variational wave
function calculation in three different situations: Dirac fermi-
ons without a gap, Dirac fermions with a gap, and Dirac
fermions with disorder treated within the coherent potential
approximation �CPA� approximation. Section IV contains
our conclusions. We also have included two appendixes with
the details of the calculations.

FIG. 1. �Color online� Zero-temperature
phase diagram of a clean graphene plane as a
function of the coupling constant g, Eq. �1�, and
doping away from half-filling. The dashed line
corresponds to a first order, and the continuous
line a second-order phase transition between the
paramagnetic and ferromagnetic phases. The dot-
ted curve corresponds to the value of g with �0

=1 and a Dirac-Fermi velocity of �vF

=5.7 eV Å, as defined by Eq. �1�. The points la-
beled 1–4 in the figure are discussed ahead in the
text in connection with Fig. 3.
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II. THE MODEL FOR A GRAPHENE LAYER

The valence and conducting bands in graphene are formed
by Carbon � orbitals which are arranged in an honeycomb
lattice �a non-Bravais lattice�. The extrema of these bands lie
at the � point and at the two inequivalent corners of the
hexagonal Brillouin Zone. When the filling is close to one
electron per carbon atom, the Fermi energy lies close to the
corners. Near these points, a standard long wavelength ex-
pansion gives for the kinetic part of the Hamiltonian the
expression

Hkin�k� � �vF	 0 kx + iky

ky − iky 0

 , �2�

which leads to the dispersion relation

��k� = ± �vF�k� . �3�

In a tight-binding description of the graphene plane with
nearest neighbor hopping energy t the Dirac-Fermi velocity
is given by

�vF =
3

2
ta , �4�

where a is the carbon-carbon distance �t�2.5 eV and a
=1.42 Å�.16 The eigenstates of Eq. �2� can be written as

�k,�,��r� � 	�a�r�
�b�r�


	�,

=
eik·r

�2
	 ei
k/2

�e−i
k/2 
	�, �5�

where a and b label the two sublattices of the honeycomb
lattice, 
k=arctan�ky /kx� is a phase factor, �= ±1 labels the
electron and holelike bands, and 	� is the spin part of the
wave function. The dispersion and the wave functions are the
solutions of the 2D Dirac equation. This approach in the
continuum requires the introduction of a cutoff in momentum
space kc in such a way that all momenta k are defined such
that 0� �k��kc, where kc is chosen so as to keep the number
of states in the Brillouin zone is fixed, that is, �kc

2

= �2��2 /A0, and A0 is the area of the unit cell in the honey-
comb lattice.

It is easy to show that with the dispersion given in Eq. �3�
the single particle density of states ��E� vanishes linearly
with energy at the Dirac point ��E�
 �E�. In this case, there is
no electronic screening29 and the electrons interact through
long-range Coulomb forces. The electron-electron interac-

tions can be written in terms of the field operators �̂�r� as

HI =
1

2
� dr1dr2�̂†�r1��̂†�r2�V�r1 − r2��̂�r2��̂�r1� , �6�

where V�r�=e2 / ��0r� is the bare Coulomb interaction. One
can now expand the field operators in the basis of states
given in Eq. �5�, that is,

�̂�r� =
1

�A



k,�,�
�k,�,��r�ak,�,�, �7�

where ak,�,� �ak,�,�
† � is the annihilation �creation� operator for

an electron with momentum k, band �, and spin � ��= ↑ ,↓
and A is the area of the system�. In this case, the Coulomb
interaction reads

HI =
2�e2

8�0A



k,p,q



�1,. . .,�4



�,��

1

q
��2�3ei�
*�p�−
�p+q�� + 1�

���1�4ei�
*�k�−
�k+q�� + 1�ak,�1,�1

† ap,�2,�2

† ap+q,�2
ak−q,�4,�1

.

�8�

It is easy to see that the Coulomb interaction induces scat-
tering between bands �interband� and also within each band
�intraband�. Furthermore, the 1/q dependence of the interac-
tion �that comes from the Fourier transform of the 1/r po-
tential in 2D� provides an electron-electron scattering that is
stronger than in 3D, allowing for the possibility of a ferro-
magnetic transition at weaker coupling. As in the case of the
Hund’s coupling in atomic systems, the spin polarized state
is always preferred when long-range interactions are present
since, by the Pauli’s exclusion principle, both kinetic and
Coulomb energies are minimized simultaneously. This
should be contrast with ultrashort range interactions of the
Hubbard type that almost always benefit antiferromagnetic
coupling via a kinetic exchange mechanism.

III. EXCHANGE ENERGY OF A GRAPHENE PLANE

In what follows we examine the required conditions for a
ferromagnetic ground state in graphene. Our purpose in this
work is not to obtain exact values for the critical couplings,
that may required more sophisticated approaches, but instead
our aim is to show that a ferromagnetic ground state in
graphene is possible in principle. In order to study the ferro-
magnetic instability we use a variational procedure that re-
spects all the symmetries of the problem. We assume that �i�
the ferromagnetic instability only affects states close to the
Dirac points in the region at the edge of the Brillouin zone
�that is, long wavelength approximation is still valid�, �ii� in
the ferromagnetic state the electronic bands are shifted rig-
idly �hence, self-energy effects such as Dirac-Fermi velocity
renormalizations are neglected�, �iii� even when the bands
are shifted, and a finite density of states is produced at the
Fermi energy, the Coulomb interaction remains unscreened
�this assumption is equivalent to assume that the chemical
potential shift is always small and that the screening length is
larger than the interparticle distance�, �iv� the ferromagnetic
state is uniform and translational invariant. Besides consid-
ering the case of a gapless system, we have also studied the
case where a gap � opens in the Dirac spectrum �that is,
when the dispersion relation becomes Ek= ±��+�2vF

2�. The
gapped case is interesting because it allows the study of the
crossover between the Dirac case when �=0 to the standard
2D case with a finite effective mass m*
� �see details
ahead�. We also briefly the discuss the effects of disorder on
the stabilization of the ferromagnetic state via a CPA ap-
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proximation in order to point out that disorder may be fun-
damental for the realization of a ferromagnetic phase in
graphite.

A. Gapless system

1. Exchange energy. Interband and intraband contributions

The possible ferromagnetic instability arises from the gain
in exchange energy when the system is polarized. A finite
spin polarization, on the other hand, leads to an increase in
kinetic energy. Thus, there are two competing energies in the
problem: the exchange energy that is minimized by polariza-
tion and the kinetic energy that is increased by it. The varia-
tional states that we consider in our approach are Slater de-
terminants of the wave functions given by Eq. �5� in the
configurations shown in Fig. 2.

As function of the Fermi wave vector kF the kinetic en-
ergy of the unpolarized state is

�Hkin� = K = −
A

3�
vF��kc

3 − kF
2� , �9�

and the exchange energy, for any doping, as determined from
Eq. �8� can be written as

Eex = −
A

�2��2

e2

4�0


�



�a,�b

�
0

2�

d�

�� kpdkdp
1 + �a�b cos �

�k − p�
nF

�,�a�k�nF
�,�b�p� , �10�

where nF
�,�a��b��k� is the Fermi occupation function, a�b� is

the band indice, and �a ,�b= ±1.
In the ferromagnetic state the degeneracy of the spin

states is lifted and the Fermi momentum of the up and down
spin states becomes k↑ and k↓, respectively. Depending on
the values of kF, k↑ and k↓, we can define the three cases
shown in Fig. 2. For a doping, � per unit area, the number of
electrons per Carbon away from half-filling n can be written
as

n = �A0. �11�

Because of the different values of k↑ and k↓ the system ac-
quires a spin magnetization, �=gs�Bm, where gs�2 is the
electron gyromagnetic factor, �B is the Bohr magneton, and
m=sA0 with s=n↑−n↓, is the spin polarization. Notice that
the maximum polarization allowed is m=2−2n since each
added �subtracted� electron leads to a doubly �empty� carbon
� orbital.

The total exchange energy �10� can be split into intraband
and interband contributions. In many band systems where the

FIG. 2. �Color online� Occu-
pied and empty states in the para-
magnetic and ferromagnetic
ground states of Dirac fermions
�a� half-filling case, �b� finite dop-
ing and one type of carrier in the
ferromagnetic phase, and �c� finite
doping and two types of carriers
in the ferromagnetic phase.
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different bands arise from different atomic orbitals, the over-
lap integral between Bloch states corresponding to different
bands can be neglected and, consequently, there are no inter-
band contributions to the exchange energy. An analogous
effect arises when the different bands are localized at differ-
ent sites of the lattice, as in the gapful case to be considered
below. There are also situations where the different bands
arise from the same orbitals at the same sites, but their
phases in a region much larger than the unit cell are such that
the overlap integral vanishes. This is the case for the two
different Dirac cones which can be defined in the honeycomb
lattice. We do not need to include in Eq. �10� terms due to
interactions between electrons near different Dirac points of
the Brillouin zone.

The case studied here, where the overlap between Bloch
states in different bands cannot be neglected, and a corre-
sponding term in the exchange energy has to the included is
generic to narrow gap semiconductors, and this term may be
important in lightly doped materials.

It is worth noting that these interband exchange effect
arise from the non local nature of the exchange interaction.
They cannot be studied when the exchange energy is ap-
proximated by a local term which only depends on the total
charge density.

2. Undoped case: n=0

The Fermi level in the paramagnetic case is at �F=0, and
the bands are half filled. Then, in the paramagnetic state one
has k↑=k↓. When the system polarizes the magnetization is
such that k↑=�2�s and the change in energy relative to the
paramagnetic state is given by

�E = �K + �Eex

=
A0

3�
�vFk↑

3 −
A0

�2��2

e2

4�0
�2k↑

3R1�1� − 4kck↑
2R0	 k↑

kc

� ,

�12�

where the functions Rn�x� are defined in Appendix A. Unfor-
tunately it is not possible to find an analytical expression
�using elementary functions� for the energy change as a func-
tion of the electron polarization s=k↑

2 / �2��. For k↑�kc, the
leading contribution comes from the expansion of function
R0�x��−x ln�x� for x�1 �see Appendix A�. Hence, the ex-
change energy increases as the polarization increases, and a
ferromagnetic state with small magnetization is not favored.
This effect can be cast as a logarithmic renormalization of
the Fermi energy, which reduces the density of states near
the Fermi level, and suppresses the tendency toward
ferromagnetism.30

At large magnetizations, kc
2 /s�1, the kinetic energy con-

tribution tends to a term proportional to vFkc
3 and the ex-

change contribution becomes negative and proportional to
−�e2kc

3� /�0. The exchange term dominates, and the system
undergoes a discontinuous transition to a state with polariza-
tion of order unity when

gc =
e2

�vF�0
�

16�

6R1�1� − 12R0�1�
� 5.3, �13�

which gives the critical coupling gc�n=0��5.3 for the ap-
pearance of ferromagnetism in the clean system, as shown in
Fig. 1.

3. Doped case, nÅ0, one type of carrier in the ferromagnetic
phase

In this case the doping, �, and magnetization, s, are such
that kF=�2�� in the paramagnetic paramagnetic phase, and
k↑=�2��s+�� and k↓=�2��s−�� in the ferromagnetic
phase. In this phase there is only one type of carriers, either
electrons or holes. The change in energy between the para-
magnetic and ferromagnetic phase is

�E = �K + �Eex

=
A0

6�
vF��k↑

3 + k↓
3 − 2kF

3� −
A0

�2��2

e2

�0
�k↑

3R1�1� + k↓
3R1�1�

− 2kF
3R1�1� + 2kck↓

2R2	 k↓
kc

 + 2kck↑

2R2	 k↑
kc



− 4kckF
2R2	 kF

kc

� . �14�

The behavior of the energy change as a function of the spin
polarization is shown in left-hand pannel in Fig. 3 for points
1 and 2 of the phase diagram in Fig. 1. Notice that the tran-
sition between the paramagnetic phase �point 2� to the ferro-
magnetic phase �point 1� is discontinuous with full polariza-
tion m=2−2n. In this case analytical expansion when s��
is now possible. For kF ,k↑ ,k↓�kc the value of the exchange
contribution is dominated by the expansion of R2�x� �see
Appendix A�. The contribution of the exchange interaction to
the term proportional s2 is positive at low doping, and a
continuous ferromagnetic transition is not possible. This con-
tribution becomes negative only for n=�A0�0.059. As in
the previous case, we can also analyze the system energy for
large values of the magnetization. We obtain an instability to
a ferromagnetic state with full polarization �m=2−2n�,
which for n�0 leads to a state with both electron and hole
carriers with different Fermi surface areas. The dependence
of the coupling constant gc on n is given in Fig. 1 by the
dashed line. �See more on the conclusions about a specula-
tive scenario for the origin of electrons and hole pockets in
graphite.�

4. Doped case, nÅ0, two types of carriers in the ferromagnetic
phase

In this case the calculation is analogous to the previous
one. The change in energy in this case is given by

�E = �K + �Eex

=
A0

6�
vF��k↑

3 − k↓
3 − 2kF

3� −
A0

�2��2

e2

�0
�k↑

3R1�1� + k↓
3R1�1�

− 2kF
3R1�1� − 2kck↓

2R1	 k↓
kc

 + 2kck↑

2R2	 k↑
kc
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− 4kc
2R2	 kF

kc

� . �15�

As in the two previous cases, the leading term when
kF ,k↑ ,k↓�kc is due to the expansion of the function R2�x�,
which leads to an increase in the exchange energy, which is
detrimental for ferromagnetism. The energy change as a
function of m is shown in the right hand panel of Fig. 3. We
show the energy at points 3 �paramagnetic� and 4 �ferromag-
netic� of Fig. 1. The transition in this case is second order
with only partial polarization m�n. As a consequence only
one type of carries exist. The dependence of the coupling
constant gc on n is given in Fig. 1 by the solid line.

B. Gapful system

A gap can open in the Dirac spectrum when the two sites
in the unit cell of the honeycomb lattice model become in-
equivalent equivalent. In this case, the kinetic energy Hamil-
tonian, �2� changes to

Hkin�k� � 	 � vF��kx + iky�
vF��ky − ky� − �


 , �16�

which leads to the modified dispersion relation

�k = ± ��2 + ��vF�k��2. �17�

For wave vectors such that �vF�k��� the energies and
wavefunctions are essentially the ones found in the absence
of the gap, as discussed previously. If the filling is such that
the Fermi wavevector satisfies this conditions, but kF�kc the
analysis presented earlier remains valid. At sufficiently low
fillings, �vF�kF���, the dispersion relation, �16� can be ap-
proximated by

�k � ± � ±
��vF�k��2

2�
, �18�

and the bands depend quadratically on the wave vector and
we can define an effective mass m*=� /vF

2 . Hence, the con-

tribution of the kinetic energy to the polarization energy is
formally similar to that obtained for a 2D electron gas with
parabolic dispersion discussed extensively in the literature.
In this case, the spinor wave function becomes

�k,��r� � 	eik·r

0

	�, �19�

for the upper subband, while the weight of the spinor is
concentrated on �b, Eq. �5�, for the lower subband. This
change modifies significantly the spinor overlap factor in the
calculation of the exchange integral, �10�. The overlap be-
tween Bloch states in different bands for momenta near the
Fermi points vanishes �see the discussion at the end of Sec.
III A 1�. These states do not give rise to interband contribu-
tions. The only interband contributions which need to be
included are due to interactions between states far from the
chemical potential among themselves, and between these
states at the bottom of the lower band and those at the Fermi
level. These terms are not modified when the system is po-
larized, and they do not contribute to the exchange instabil-
ity. The remaining intraband term is equivalent to that de-
rived for the electron gas with parabolic dispersion relation.
The change in energy when the polarized state is formed can
be written as

�E = �K + �Eex

=
A0

8�

vF
2

2�
�k↑

4 + k↓
4 − 2kF

4� −
A0

�2��2

e2

�0

4

3
�k↑

3 + k↓
3 − 2kF

3� ,

�20�

As in the usual case of the 2D electron gas, the system shows
an instability toward a ferromagnetic state when kF
� �16�e2� / ��vF

2�0�. In agreement with the previous discus-
sion, this instability vanishes when �→0.

FIG. 3. �Color online� Behav-
ior of the energy curves as func-
tion of the magnetization for the
points marked in the phase dia-
gram of Fig. 1.
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C. The effect of disorder

We approximate the effects of disorder on the average
electronic structure by means of the CPA.31 This approxima-
tion describes the effects of disorder on the electronic struc-
ture by means of a local self-energy ���� which is calculated
self-consistently. While CPA cannot describe localization ef-
fects, it still gives very good results for the physical proper-
ties of graphene.21

The total energy, including the exchange contribution, can
be expressed in terms of single-particle Green’s functions,
which are calculated within the CPA. The main steps of the
calculation are sketched in Appendix B. We assume that the
disorder is induced by vacancies, as likely to occur in
samples treated by proton bombardment. The amount of dis-
order is parametrized by the concentration vacancies nvac.
The CPA leads to a density of states which is finite at �=0,
and decays for ��vFnvac

1/2.21

Assuming that lim�→0Im ����=�0���vF� / l, where l is
the average distance between vacancies21 the calculations in
Appendix B admit some simplifications. If the concentration
of vacancies is small, �0��vF�kc�. At large energies the CPA
result vanishes quite fast as a function of energy
lim�→±�vF�kc�����=0. Disorder only changes significantly the
results obtained for a clean plane if �F��0. This regime
corresponds to electronic densities such that �n��n0
= ��0 /�vF�2 /2�.

In this limit, we can approximately write

n
k̃

± � � 0, �vF�k� � �0,

1/2 +
�F

��0
, �vF�k� � �0, � �21�

where the � index refers to the two subbands of the nonin-
teracting system �see Appendix B�.

The total density of carriers is obtained by integrating this

expression over k̃ �see Appendix B�. Finally, we can also
calculate the density of states per unit area and unit energy,
which, for �����0, becomes a constant:

D��� = D0 �
1

2�

�0

vF
2 ln	�vFkc

�0

, ���, ��F� � �0, �22�

A constant density of states implies that the total number of
carriers scales as n�D0�F, instead of the relation n
�F

2 ob-
tained for the clean system.

From Eqs. �21� and �22� we can infer that both the kinetic
energy and the exchange energy depend quadratically on the
density of carriers, since K�n�−K�0� and Eexch�n�−Eexch�0�
scale as �F

2�n��n2. In addition, we know that for n�n0 the
values of K�n� and Eexch�n� should be comparable to those
obtained in the absence of disorder. Then, we can write

K�n� � ckin
2A0�0

3

3��2vF
2 	 n

n0

2

,

Eexch�n� � − cexch
A0e2�0

3

3�2�0�3vF
3 	 n

n0

2

, �23�

where ckin and cexch are numerical constants of order unity. In
a spin polarized system, we have

Etot�n,m� =
1

2
�K�n + m� + K�n − m� + Eexch�n + m� + Eexch�n

− m�� , �24�

so that

�E = �K + �Eexch

= ckin
2A0�0

3

3��2vF
2 	 m

n0

2

− cexch
A0e2�0

3

3�2�0�3vF
3 	 m

n0

2

. �25�

The ferromagnetic phase is stable provided that

gc,disorder =
e2

�0�vF
�

2�ckin

cexch
, �26�

This result implies that, if n�n0 the critical coupling is in-
dependent of the amount of disorder.

We have estimated the ratio cexch/ckin performing numeri-
cally the calculation described in Appendix B for suficiently
low carrier concentration and density of vacancies. We find

gc,disorder =
e2

�0�vF
� 3.8, �27�

indicating that in the case of disorder ferromagnetism is sta-
bilized at a smaller value of the Coulomb interaction. Thus,
we can conclude that, at least in CPA, ferromagnetism will
be enhanced when disorder is present, in agreement with the
experimental data.10,11

The enhancement of the tendency towards ferromag-
netism in the presence of disorder is due to the increase in
the density of states at low energies. The existence of these
states implies that a finite polarization can be achieved with
a smaller cost in kinetic energy, in a qualitatively similar way
to the Stoner criterium which explains itinerant ferromag-
netism in the presence of short-range interactions.

IV. DISCUSSION AND CONCLUSIONS

We have analyzed the ferromagnetic instabilities induced
by the exchange interaction in a system where the electronic
structure can be approximated by the 2D Dirac equation, as it
is the case for isolated graphene planes. In pure graphene we
have found that, as a function of doping, a ferromagnetic
transition is possible when the coupling constant is suffi-
ciently large. Our findings are summarized in the zero tem-
perature phase diagram presented in Fig. 1. In this figure we
represent the critical coupling gc as function of the doping n.
There are two different regions in the phase diagram. For
small doping, n�0.2 the transition is first order, leading to a
ferromagnetic phase with spin polarization m=2−2n and
two types of carriers �electrons and holes�. For doping larger
than n�0.2 the transition becomes of second order with a
magnetization smaller than the doping n and one type of
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carrier �electrons or holes�. The connection between the
magnetization and the carrier type is unique to the Dirac
fermion problem. We should emphasize that our calculation
for the Dirac fermion problem is at the same level of the one
performed by Bloch, and therefore it is to be expected that an
exact solution of this problem will modify quantitatively the
phase diagram analyzed here. It is also worth remarking that
the electronic structure shown in Fig. 2�c� shows that, in the
ferromagnetic phase, a nominally half filled system has elec-
tron and hole pockets. The existence of these pockets does
not depend on the presence of intarlayer coherence, however

We have also analyzed the effect of the exchange interac-
tion in disordered systems using the CPA. A continuous tran-
sition into a ferromagnetic phase is possible, and the cou-
pling required for its existence is reduced with respect to the
clean case. This tendency can be qualitatively explained by
noting that the disorder leads to an increase of the density of
states at low energies, making the system more polarizable.
This explanation is rather general, and it should not depend
on the way the effects of disorder are approximated.

Finally, one would ask how our results can be translated
for the experiments in disordered graphite.10,11 If we naively
think of graphite as a stacking of isolated graphene planes
we can estimate the value of the coupling constant for graph-
ite to be g�2.8 �for �0�1�,16 and therefore far away from
the ferromagnetic region �corresponding to the dotted line in
Fig. 1�. The presence of disorder will definitely bring the
value of the critical coupling to lower values and according
to our calculations gc,disorder�3.8 would put dirty graphite at
the borderline of a ferromagnetic instability.

Nevertheless, the picture of graphene as a noninteracting
stacking of graphene planes is certainly incorrect. Because of
the absence of screening, long-range forces will play a major
role, and the graphene planes will interact via van der Waals
interactions. The problem of ferromagnetism in graphite still
depends on the better understanding of the coupling between
graphene planes. More work has to be developed in order to
understand the problem of ferromagnetism in graphite. In
any case, our results here are valid for single graphene planes
and it would be very interesting to investigate whether gra-
phitic devices17–20 studied recently can sustain any form of
ferromagnetism.
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APPENDIX A: CALCULATION OF THE EXCHANGE
INTEGRAL

The three-dimensional integral in Eq. �10� can be written
as a combination of integrals of the form

Rn�a� = �
0

2�

d��
0

1

xdx�
0

1

ydy
sgn�n� − �− 1�n cos �

�x2 + y2a2 − 2xya cos �
,

�A1�

where n=0,1 ,2, sgn�n� gives the sign of n and sgn�0�=0.
The values of the functions Rn�a�, for a=0, are R0�0�=0 and
R1�0�=R2�0�=�. We also have

R0�1� =
2

3
�− 2 + ��ln 2 + 1/2� + 4C − ��1 + ln 4�/2� � 1.109,

R1�1� = 8/3 + R0�1� � 3.776, �A2�

where C�0.915966 is the Catalan constant.
Assuming that 0�a�1 we define

Rn�a� = �
0

2�

d��sgn�n�1 − �− 1�n cos ��K��,a� , �A3�

where K�� ,a� is given by

K��,a� =
1

3a2 �− �1 + a3� + �1 + a2��1 + a2 − 2a cos � − �1

+ a3�cos � ln�1 − cos �� − a3 cos � ln a

+ cos � ln�a − cos � + �1 + a2 − 2a cos ��

− a3 cos � ln�1 − a cos � + �1 + a2 − 2a cos ��� .

�A4�

This expression allows us to obtain the expansions

R0�a� �
�

3
�− a ln a + S0�a�� , �A5�

Rn�a� �
�

3
�3 + �− 1�na ln a + Sn�a�� , �A6�

for n=1,2 and

S0�a� = 	2 ln 2 −
1

6

a −

9

80
a3 −

45

1792
a5 −

175

18432
a7,

�A7�

Sn�a� = − �− 1�n	2 ln 2 −
1

6

a −

3

8
a2 + �− 1�n 9

80
a3 −

3

64
a4

+ �− 1�n 45

1792
a5 −

15

1024
a6 + �− 1�n 175

18432
a7. �A8�

Note that R1�a�−R2�a�=2R0�a� is always satisfied.

APPENDIX B: CALCULATION OF THE EXCHANGE
ENERGY IN THE PRESENCE OF DISORDER

We write the one-electron energies in the absence of in-
teractions and disorder as
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�k
± = ± vF�k� , �B1�

up to some cutoff kc, where the two signs correspond to the
two bands in the electronic spectrum. Using the CPA, the one
electron Green’s function can be written as

G±�k,�� =
1

� − ���� − �k
± . �B2�

The occupancy of a given state at fixed chemical potential
�F is

nk
± = �

−�c

�F 1

�
Im G±�k,��d� , �B3�

where a frequency cutoff �c is also defined.

The total number o electrons, n, and the kinetic energy
can be written as

n = 

�=±

2

�
�

0

kc

n�k�
� kdk ,

K = 

�=±

2

�
�

0

kc

���k�n�k�
� kdk . �B4�

These one-dimensional integrals are calculated numerically.
Finally, the exchange energy is

Eexch = −
e2

4�4 � d2k1� d2k2
�n+�k1� + n−�k2��2 + �n+�k1� − n−�k2��2 cos�
�k1� − 
�k2��

�k1 − k2�
�B5�

and


�k� = arctan	 ky

kx

 . �B6�

This expression can be reduced to a three-dimensional inte-
gral, which is calculated numerically.

The total energy Etot�n�=K�n�+Eexch�n�, can be written as

Etot�n� = Etot�n↑� + Etot�n↓� . �B7�

The exchange instability towards ferromagnetism implies
that

Etot�n/2 − �n� + Etot�n/2 + �n� � 2Etot�n/2� , �B8�

so that

� �2Etot

�n2 �
n/2

� 0. �B9�
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