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The effect of quantum interference on the magnetoconductivity of a two-dimensional ferromagnet for arbi-
trary orientation of magnetization and external magnetic field has been investigated in the case when spin-orbit
interaction plays an important role. By means of the diagrammatic perturbation technique, analytical results for
the magnetoconductivity has been obtained as a function of the magnetization and characteristic relaxation
times due to elastic, inelastic, and spin-orbit scattering. The result shows a strong dependence of the orientation
of the magnetization with respect to the plane of the system on the conductivity. Depending on the orientation
and strength of the magnetization and the coupling of the electronic spin with the magnetization both negative
and positive magnetoresistance has been predicted. In addition, it is shown that, in order to explain the
experimental variation of the conductivity in thin ferromagnetic films, electron-electron interaction and domain
wall scattering must be considered.
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I. INTRODUCTION

The application of the effect of magnetoresistance in mag-
netoelectronics, field sensors, random access memory ele-
ments, and others1 created a huge interest on the studies of
the magnetic and transport properties of the magnetic mate-
rials realized in low dimensions. The interplay between mag-
netization and localization is central to the behavior of many
artificially tailored materials and has given rise to phenom-
ena such as giant magnetoresistance in metallic multilayers,
spin polarons in high Tc superconductors, and skyrmion in
two dimensional electron gases in semiconductors.2 In mag-
netic materials the ferromagnetic s-d exchange yields spin
splitting �Es which is comparable or larger than the thermal
energy or the Landau level splitting ��c due to the external
magnetic field.3 Thus the conduction electron spins in these
materials are polarized, which provides a flexible templet
for the studies of spin polarized transport and tunneling.4

At low temperatures, transport measurements �in ferro-
magnetic materials�5,6 indicate remarkable modification
of the quantum correction to the two dimensional �2D� mag-
netoconductivity in the weakly localized regime, and nega-
tive magnetoresistance �MR� at high field suggests suppres-
sion of weak electron localization �WEL� and spin dis-
order scattering. Although an extensive experimental7–9

as well as theoretical2,10–13 work related to the scattering
of electrons from impurities in nonmagnetic metals and
doped semiconductors have been performed to study the
quantum correction to electrical conductivity, the problem
of quantum effects on the ferromagnetic materials at low
temperatures requires further investigations. Recently a few
experimental14–18 and theoretical19–21 investigations have
been devoted to explore the effect of quantum interference
on the ferromagnetic systems.

At low temperatures the scattering of the electrons in met-
als is mainly governed by the elastic scattering from the im-

purities, which leads to WEL due to the phase coherent back
scattering. It is well-known that in nonmagnetic metals
electron-phonon and electron-electron interactions as well as
spin-flip scattering processes can destroy the quantum inter-
ference effects and that the presence of spin-orbit scattering
leads to weak antilocalization.7,13 Moreover, the observation
of anisotropic magnetoresistance �AMR�22,23 and the anoma-
lous Hall effect in ferromagnets24–26 emphasizes the impor-
tance of spin-orbit scattering in the transport properties of the
low-dimensional ferromagnetic materials. Thus, in this paper
we will study the magnetoconductivity of a two-dimensional
ferromagnet in presence of elastic scattering as well as spin-
orbit scattering. Here we will provide a general description
of the electronic transport in ferromagnets for arbitrary di-
rection of magnetization and magnetic field. Thus our work
provides the angular dependence of the magnetization and
external magnetic field on the magnetoresistance of a ferro-
magnetic material. Our discussion also includes the theoret-
ical prediction that, in order to achieve agreement with ex-
periment, electron-electron interaction and domain wall
scattering must be taken into account besides the usual quan-
tum interference effects. In fact, it is shown that domain wall
scattering destroys the WEL which confirms the experimen-
tal observation.18

II. CONDUCTIVITY AND MAGNETOCONDUCTIVITY

In order to investigate the transport properties of ferro-
magnetic metals we consider an idealized model where the
electrons go through the elastic scattering as well as spin-
orbit scattering from impurities. Here we consider a two-
dimensional ferromagnetic system in the presence of mag-
netic field and magnetization in an arbitrary direction. The
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Hamiltonian which represents our system �in the units �=1
and electronic mass m=1� is

H = H0 + HI, �1�

where

H0 =� d�r�†�r��� 1
2 �p� − eA� /c�2 − �JM� + g�BB� �s����r�� ,

HI =� d�r�†�r��V�r����r�� . �2�

Here, ��r�� is a spinor field with components ��r��↑ and

��r��↓, M� �Mx ,Mz� is the magnetization of the system, J is the

magnetic coupling strength between the magnetization M�

and the spin-angular momentum s� of the electron. B�=��

�A� � is the external magnetic field with A� being the vector
potential. The random field V�r�� of impurities consists of two
independent components: �i� The component independent of
electron spins, described by the random potential Vo�r� and
�ii� the spin-orbit interaction Vso�r��. The matrix element of
the potential has the form27

f�	 = Vo
�	 + iV1�k� � k�� ���	 �3�

for the transition �k� ,��→ �k� ,	� with Vo and V1 being the
constants representing the strength of the random nonmag-

netic elastic interaction and the spin-orbit coupling. k� and k��

are the initial and the final wave vectors of an electron scat-
tering from the spin state � to 	 and �� ��x ,�y ,�z� corre-
sponds to the Pauli matrices.

Let us assume that the motion of the electrons is confined
to the XY plane. From the form of the Hamiltonian it is

evident that the component of the spin along �g�BB� +JM� �
commutes with the unperturbed Hamiltonian �H0� and the
quantized axis of the electronic spin should be in the direc-

tion of �g�B� +JM� �. Therefore, we imagine a new system of

axis, say, X�Y�Z�, where the axis Z� is along �g�BB� +JM� �
and express the scattering potential in this system of axis.
However, the motion of the electrons is confined in the old

XY plane and there would be no component of k� or k�� along
the perpendicular direction of the plane. So we represent the
momentum of the electron in the X�Y�Z� axis such that the
momentum kz, which is along the perpendicular to the plane
of the motion of the electron, is always zero. The momentum

kx�, ky�, kz� in the X�Y�Z� coordinate system can be written in
terms of kx, ky, kz in the XYZ coordinate system as

kx� = kx cos �, ky� = ky, kz� = kx sin � , �4�

with

sin � = � 1
2JMx + �BBx�/�1, cos � = � 1

2JMz + �BBz�/�1,

�5�

�1 = �� 1
2JMx + �BBx�2 + � 1

2JMz + �BBz�2�1/2. �6�

In the case of weak scattering potential and upon averag-
ing over the random impurity potential V�r��, we obtain the
bare scattering amplitude

�	�

o = x1
�	
�
 − y1� �	

z � �

z − z1� �	

x � �

x − z2� �	

y ��

y ,

�7�

where

x1 = niVo
2 =

1

2��↑�o↑
=

1

2��↓�o↓
,

y1 = niV1
2�k� � k�� �z�

2 = niV1
2�k� � k�� �z

2cos2 � =
cos2 �

2��↑� so↑
z

=
cos2 �

2��↓� so↓
z ,

FIG. 1. Self-energies �↑ and �↓ corresponding to second-order
perturbation theory.

FIG. 2. The Dyson equation for particle-hole propagators. For
the corresponding cooperon equation see �13�.
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z1 = niV1
2�k� � k�� �x�

2 = niV1
2�k� � k�� �x

2sin2 � =
sin2 �

2��↑� so↑
x

=
sin2 �

2��↓� so↓
x , z2 = 0.

Here, ni is the concentration of the impurities in the system,
�↑ and �↓ are the densities of states at the Fermi-level for the
up-spin and down-spin electrons. For a two-dimensional sys-
tem �↑=�↓=� is a constant and the relaxation times are �0↑
=�0↓, � so↑

z =� so↓
z =� so↑

x =� so↓
x .

In order to calculate the conductivity of the system, we
follow the method introduced by Altshuler et al.28 We first
obtain the Green’s function and the particle particle propaga-

tor with A� =0 and incorporate the contribution of the vector

potential A� due to the magnetic field perpendicular to the
plain of motion of the electron in the quasiclassical approxi-
mation. However, this approximation is only applicable
when the Landau orbit is much larger than the in-plane mean
free path of the charge carrier. The conductivity of our sys-
tem is calculated within the Kubo29 formalism. In this

method the dc-conductivity for �A� =0� is expressed as

� = �I
↑ + �I

↓ + �II
↑ + �II

↓ , �8�

where, the Boltzmann contribution to the conductivity for
up-spin ��= ↑ � and down-spin ��= ↓ � electrons is

�I
� =

e2

16�3m2 � d�
df

d�
� d2k k2�G��

R ��,k��G��
A ��,k��� , �9�

and the weak localization correction to the conductivity of
up-spin and down-spin electrons is given by

�II
� = −

e2

64�5m2 � d�
df���

d�
� d2k k2�G��

R ��,k��G��
A ��,k��G��

R ��,− k��G��
A ��,− k���

�� d2q �����0,q� −
e2

64�5m2 � d�
df���

d�
� d2k k2�G��

R ��,k��G��
A ��,k��G−�−�

R ��,− k��G−�−�
A ��,− k���

�� d2q �−�−���0,q� . �10�

In the above expression f��� is the usual Fermi-function,
G↑↑

R�A�, G↓↓
R�A� are the retarded �advanced� single-particle

Green’s-function for spin-up and spin-down electrons, and
↑↑↑↑�0,q�, ↑↓↓↑�0,q�, ↓↓↓↓�0,q�, ↓↑↑↓�0,q� are the renor-
malized scattering amplitudes in the Cooper channel which
represent the maximally crossed diagrams. These scattering
processes are responsible for the quantum interferences or
weak localization in the system.

In the presence of impurities the charge carriers acquire a
relaxation time through the elastic and spin-orbit scattering
from impurities. This is obtained from the imaginary part of
the self-energies �↑ and �↓ sketched in Fig. 1.

After evaluating the self-energy diagram from the interac-
tion expressed in Eq. �2� we obtain the scattering lifetime for
up-spin and down-spin electrons,

1

��

=
1

�−�

=
1

�
= ���x1 + y1 + z1� =

1

�o
+

cos2 �

� so
z +

sin2 �

� so
x ,

�11�

and the corresponding single-particle Green’s-function for
up-spin and down-spin electrons is given by

G��
R ��,k�� = �� − k2/�2m� + sgn����1 − i/��−1. �12�

The effect of quantum interferences can be taken into ac-
count by considering a particular group of electron hole
propagators, the so-called maximally crossed diagrams.7,28

The contribution of this group of electron-hole propagators,
denoted by the renormalized scattering amplitudes
↑↑↑↑�0,q�, ↑↓↓↑�0,q�, ↓↓↓↓�0,q�, ↓↑↑↓�0,q�, are evaluated
from the Dyson equation shown in Fig. 2. The diagrammati-
cal expression is equivalent to the following equation:27

�	�
�0,q� = �	�

o + �

��

��������	�
�0,q� , �13�

where

����0,q� =
1

4�2 � d2k G�
R��,k��G�

A��,k� + q�� . �14�

Although the inelastic processes such as electron-electron
scattering or electron-phonon scattering are not included in
this calculation, one realizes that they cause an exponential
decay proportional to exp�−t /��� with time t, where �� is the
relaxation time related to the inelastic processes mentioned
above, in the current because the phase coherence between
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the interfering electronic wave functions decays with this characteristic time. When we introduce the destruction of the phase
coherence due to the inelastic processes we finally obtain the conductivity of a two-dimensional ferromagnetic system when
Bz=0,

�I
↑ + �I

↓ + �II
↑ + �II

↓ = e2��D↑↑ + D↓↓� −
e2

8�2

�	
1 +
P1�D↑↑ − D↓↓��
�S1

2 − 4R1T1
�ln
�1 + 1/�

�1
� + 
1 −

P1�D↑↑ − D↓↓��
�S1

2 − 4R1T1
�ln
�2 + 1/�

�2
�

+ 
1 −
P1�D↑↑ − D↓↓��
�S1

2 − 4R1T1
�ln
�3 + 1/�

�3
� + 
1 +

P1�D↑↑ − D↓↓��
�S1

2 − 4R1T1
�ln
�4 + 1/�

�4
�

−
2 sin2 ��D↑↑ + D↓↓�

�1 + 4�1
2�2��so

x R 1

�Q2
2 − 4R2P2

	ln
�5 + 2D↑↓/��D↑↑ + D↓↓���
�5

��
− 	ln
�6 + 2D↑↓/��D↑↑ + D↓↓���

�6
���� , �15�

with

D�� = �� + sgn����1��/m ,

D�−� = D−�−��1 + 2i sgn����1��−3,

�1 = D↑↑
S1 − ��S1

2 − 4R1T1

2T1
+

1

��

,

�2 = D↑↑
S1 + �S1

2 − 4R1T1

2T1
+

1

��

,

�3 = D↓↓
S1 − �S1

2 − 4R1T1

2T1
+

1

��

,

�4 = D↓↓
S1 + �S1

2 − 4R1T1

2T1
+

1

��

,

�5 = D↑↓
Q2 − �Q2

2 − 4R2P2

2P2
+

1

��

, �16�

�6 = D↑↓
Q2 + �Q2

2 − 4R2P2

2P2
+

1

��

,

and

P1 = �2���2��x1 − y1��2y1 + z1� + z1
2� ,

S1 = P1�D↑↑ + D↓↓�� ,

R1 = �4���2�y1
2 + y1z1� ,

T1 = �2���2��x1 − y1�2 − z1
2�D↓↓D↑↓�

2,

P2 = 2����x1 + y1 − z1�D↓↑D↑↓,

Q2 = 2�� z1 − 2i�1� �x1 + y1�
1 − 2i�1�

D↑↓

+
z1 + 2i�1� �x1 + y1�

1 + 2i�1�
D↓↑� ,

R2 =
4�1

2

1 + 4�1
2� 2 .

An external magnetic field perpendicular to the two-
dimensional plane �Bz� has a strong influence on quantum
interference. The vector potential due to the perpendicular
magnetic field modifies the phase of the wave functions and
leads to a partial destruction of quantum interference. Here
we consider a two-dimensional system in which the mean
free path is much smaller than the cyclotron radius. In this
case the major effect of the vector potential on the electronic
wave function or the Green’s function is the change of the
phase between two different points.28 Then, in presence of
the breakdown of the time reversal symmetry of the system
due to the magnetic field Bz, the weak localization correction
to the conductivity ��II

↑ +�II
↓ � reduces to
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�II
↑ + �II

↓ = −
e2

8�2	
1 +
P1�D↑↑ − D↓↓��
�S1

2 − 4R1T1
��
1

2
+

�1 + 1/�

D↑↑a
� − �
1

2
+

�1

D↑↑a
�� + 
1 −

P1�D↑↑ − D↓↓��
�S1

2 − 4R1T1
��
1

2
+

�2 + 1/�

D↑↑a
�

− �
1

2
+

�2

D↑↑a
�� + 
1 −

P1�D↑↑ − D↓↓��
�S1

2 − 4R1T1
��
1

2
+

�3 + 1/�

D↓↓a
� − �
1

2
+

�3

D↓↓a
�� + 
1 +

P1�D↑↑ − D↓↓��
�S1

2 − 4R1T1
�

��
1

2
+

�4 + 1/�

D↓↓a
� − �
1

2
+

�4

D↓↓a
�� −

2 sin2 ��D↑↑ + D↓↓�
�1 + 4�1

2�2��so
x R 1

�Q2
2 − 4R2P2

	�
1

2
+

�5

D↑↓a
+

2/�

�D↑↑ + D↓↓�a
�

− �
1

2
+

�5

D↑↓a
� − �
1

2
+

�6

D↑↓a
+

2/�

�D↑↑ + D↓↓�a
� + �
1

2
+

�6

D↑↓a
���� , �17�

where a=4eBz /c and ��x� is the digamma function.

III. DISCUSSION AND CONCLUSION

In this work we have investigated the effect of quantum
interference on the conductivity of a two-dimensional ferro-
magnet in presence of spin-orbit scattering. By means of the
diagrammatic techniques in perturbation theory, we have cal-
culated the magnetoresistance of a ferromagnetic metal when
magnetization of the system and external magnetic field are
along any arbitrary direction, which generalizes the results
obtained by Dugaev et al.20,21 and by Kirkpatrick et al.12,25

The analytical results for the magnetoconductivity have
been obtained as a function of magnetization, coupling of the
electronic spin with the magnetization of the system and the
characteristic lifetimes due to elastic, inelastic, and spin-orbit
scattering. We show that the effect of spin-orbit �SO� scatter-
ing on conductivity depends strongly on the orientation of
the magnetization with respect to the plane of the motion of
the charge carriers.

In the case of a two-dimensional ferromagnet with in-
plane magnetization, spin-flip process due to the SO interac-
tion introduces a weak antilocalization in the system. How-
ever, the spin polarization of the conducting electrons due to
its coupling with the magnetization reduces the spin-flip
scattering in the system and leads to a suppression of the
antilocalization effect. As a result, the quantum correction to
the conductivity is always negative for a strong ferromagnet
�JM��1�, which manifests negative magnetoresistance.
However, in the absence of magnetization the system shows
weak antilocalization instead of weak localization.

In Fig. 3 we show the variation of weak localization or
weak antilocalization contributions to the magnetoconductiv-
ity as a function of the applied field �perpendicular to the
film� of a nonmagnetic as well as a ferromagnetic system in
presence of spin-orbit scattering. When the magnetization is
vanishingly small we observe weak antilocalization which is
in good agreement with the well-known results of Hikami et
al.27 �solid and dashed curve�. The destruction of weak an-
tilocalization in the presence of magnetization, both, in plane
�dotted curve� and out of plane �dash-dotted curve�, are
shown in this figure to understand the role of ferromagnetic
correlation in the conductivity. When the magnetization is

perpendicular to the plane of the motion of the electrons, the
spin-flip scattering due to the SO interaction is absent and
only the spin-conserving scattering process contributes to the
conductivity. This spin-conserving scattering also suppresses
the localization correction to the conductivity, but the WEL
correction to the conductivity is always negative and the con-
ductivity increases with the increase of the external magnetic
field. When the orientation of magnetization is along the
plane only spin-flip scattering is present in the system. Since
the presence of magnetization destroys spin-flip scattering, a
stronger localization is observed in Fig. 3.

However, for an arbitrary orientation of magnetization
both scattering processes, namely the spin-conserved scatter-
ing and the spin-flip scattering, are present and since the two
scattering processes affect the response of the external field
differently, the magnetoresistance of a 2D ferromagnet de-
pends significantly on the orientation of the magnetization.
In Fig. 4 we have demonstrated the dependence of the ori-

FIG. 3. �Color online� The variation of weak-localization or
weak-antilocalization contributions to the conductivity ��II� with

respect to the external magnetic field B� �perpendicular to the film� is
shown for nearly nonmagnetic systems �solid and dashed curves� as
well as ferromagnetic systems with out of plane magnetization
�dash-dotted curve� and in-plane magnetization �dotted curve�. The
results of a nearly nonmagnetic system �dashed curve� are com-
pared with the well-known results of Hikami et al. �Ref. 27� �solid
curve�.
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entation of magnetization on the magnetoconductivity of a
two-dimensional ferromagnet. For this purpose we consid-
ered three cases: �i� The magnetization is perpendicular to
the 2D plane �dashed curve�, �ii� the magnetization is along
the 45° direction to the 2D plane, and �iii� the magnetization
is parallel to the 2D plane. A comparison of our result for the
perpendicular magnetization configuration �dashed curve�
with the previous calculation of Dugaev et al. �solid curve�21

shows a good agreement of our result with the corresponding
results of Dugaev et al.

In view of our observation from Fig. 3 it is clear that the
magnetoresistance can be positive or negative depending on
the orientation and the strength of the magnetization. More-
over, as shown in Fig. 4, the orientation of the magnetization
is determined by the strength of the anisotropic field and the
strength of the magnetic field. Thus, the direction of the sys-
tem magnetization changes with the variation of the mag-
netic field. Therefore, one should take into account the
proper orientation of the magnetization for the comparison of
the experimental results with theoretical predictions. We be-
lieve that our results will provide a realistic estimation for
the WEL correction to the magnetoresistance of a ferromag-
netic thin film.

In Figs. 5–7 we made an effort to understand whether the
WEL is the only major effect which introduces the magne-
toresistance in the two-dimensional ferromagnetic system at
low temperatures. Here we compare the response of the
variation of magnetic field and temperature to the WEL cor-
rection to the transport properties with the corresponding ex-
perimental observation of magnetoconductivity of a cobalt
film of thickness 10 nm.18 As the magnetization of this sys-

tem is along the 2D plane we restrict ourself to the in-plane
magnetization configuration in order to compare our result
with experimental findings. In Fig. 5 we have compared the
variation of the localization contribution to the magnetoresis-
tance with the experimental observations of Brands et al.18

We tentatively associate the discrepancy of the theoretical
prediction and the experimental observation �Fig. 5� to the
strong anisotropic magnetoresistance �AMR� effects in the
ferromagnetic system. It is to be noted that in our calculation
we did not take into account the AMR effect which signifi-
cantly contributes to the magnetoresistance of a ferromag-
netic system.

At low temperatures the variation of resistance with re-
spect to temperature mainly originates from the quantum in-
terference and from the electron-electron interaction �EEI�.
The electron-electron interaction modifies the transport prop-
erties in two ways, �i� it modifies the self-energy, hence pro-
ducing the inelastic lifetime for the electronic states and
leads to a phase decoherence, characterized by ��, in the
system, �ii� it modifies the current-current correlation giving
an additional temperature dependent contribution to the con-
ductivity. For a two-dimensional electronic system the cor-
rection due to the EEI effects to the conductivity is given
by30 �assuming the screening length to be large�,


��EEI� =
e2

2�2�
ln�kBT�0� . �18�

In Figs. 6 and 7 we have compared the theoretical and
experimental results of the temperature variation of resis-
tance �Rs� of a thin Co film for different magnetic fields.
Although the weak localization contribution to the resistance

FIG. 4. �Color online� The weak localization contribution to the
magnetoconductivity ��II� for a ferromagnetic system with magne-
tization �M� perpendicular to the thin film �dashed curve� is com-
pared with the results of Dugaev et al. �solid curve� �Ref. 21�. To
show the dependence of magnetoconductivity with the orientation
of magnetization, the magnetic field dependence of �II is presented
for three different orientations of magnetization, �i� M perpendicu-
lar to the plane of the thin film, �ii� M along the 45° direction to the
plane of the thin film, and �iii� M parallel to the plane of the thin

film. In all cases the external field B� is applied along the perpen-
dicular to the thin film.

FIG. 5. �Color online� The weak localization contribution to the
magnetoresistance 
G=��0�−��B� �=�Rs�B�−Rs�0�� /Rs�0�2, Rs�0�
being the zero field resistance of the unit area of the material� of a
2D ferromagnetic system with magnetization parallel to the plane is
compared with the experimental data from Ref. 18 ��� for the

external magnetic field B� applied in the out of plane direction for
��=10−11 s �solid curve�, 10−12 s �dashed curve�, and 10−13 s �dash-
dotted curve�.
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predicts a strong variation of slopes in Rs vs T curves with
respect to the magnetic field �curves with �w=� in Fig. 7�
this feature is absent in the experimental observation. We
tentatively associate this discrepancy to the existence of con-
ductance fluctuations originating from inhomogeneous mag-
netization and magnetic fields due to the polycrystalline mor-
phology of the samples.31 The interfaces of the differently
oriented polycrystallines produce changes in the orientation
of magnetization, which introduces phase decoherence be-
tween the interfering electrons and results in a suppression of
the quantum interference effect. In order to determine the
influence of misorientation of the local magnetization on
WEL, we estimate the modification of the conductivity due
to scattering of the electrons from a domain wall following
Tatara et al.32 In this work32 it has been shown that the con-
tribution due to domain wall scattering �scattering life time
being �w� to the conductivity can be taken into account by
changing the phase coherence lifetime �� by

1

��

→
1

��

+
1

�w
, �19�

with

1

�w
=

nw

6�kF
2�0


 �F

JM
�2

, �20�

where � is the width of the domain wall, nw is the concen-
tration of domain walls, and kF and �F are the Fermi momen-
tum and Fermi energy of the system. For �=500 Å, JM

=0.02 eV, and �=3.0 eV, �w is estimated as 3.03�0=0.3
�10−13 s.32 When we introduce the EEI effect and the do-
main wall scattering due to the polycrystalline morphology
of the sample we observe a good agreement with the theo-
retical and experimental observation of the temperature de-
pendence of the resistivity in the low temperature regime
�Fig. 6�. In Fig. 7 also we found a good agreement between
the theoretical and experimental results when we plot the
logarithmic slope �G�10� as a function of the magnetic field.

From our studies we find that the complete features of
magnetoresistance of a realistic ferromagnetic system at low
temperatures cannot be explained by taking into account the
quantum-interference phenomena only. For a more complete
understanding of the transport properties of a 2D ferromag-
net in the presence of a magnetic field, the effect of AMR
and nonhomogeneity of the magnetization in the system33

should be considered rigorously.
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FIG. 6. �Color� The temperature variance of resistance Rs of a
ferromagnetic system with magnetization parallel to the plane of the
thin film has been shown for different perpendicular magnetic fields
Bz of strength 0.0 T, 0.5 T, and 4.0 T �solid curves� for JM
=0.02 eV, �0=10−14 s, and �so=10−13 s. The result of our calcula-
tion is compared with the experimental observation of Brands et al.
�Ref. 18� for the magnetic field Bz=0.0 T �blue diamonds�, 0.5 T
�red squares�, and 4.0 T �green circles�.

FIG. 7. �Color� The lower three curves show the theor-
etical WEL contribution of the change of the conductivity
due to the change of the temperature defined by �G�10�
=��10 K�−��1 K�{=�Rs�1 K�−Rs�10 K�� /Rs�10 K�2}, which has
been plotted as a function of magnetic field �perpendicular to the
film� for ��=10−11 s �solid curve�, 10−12 s �dashed curve�, and
10−13 s �dash-dotted curve� at 1 K when JM =0.02 eV, �0=10−14 s,
�so=10−13 s. When EEI is included the theoretical curve for ��

=10−12 is shifted upward �double-dotted dashed curve�. If in addi-
tion domain wall scattering is taken into account �WEL+EEI
+DW, solid red curve�, the results of our theoretical calculations
compare very well with the experimental observation of Brands et
al. �Ref. 18� �blue diamonds�.
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