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Vortex-phonon interaction
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Kelvin waves—helical waves on quantized vortex lines—are the normal modes of vortices in a superfluid.
At zero temperature, the only dissipative channel of vortex dynamics is phonon emission. Starting with the
hydrodynamic action, we derive the Hamiltonian of vortex-phonon interaction, thereby reducing the problem
of the interaction of Kelvin waves with sound to inelastic elementary excitation scattering. On the basis of this

formalism, we calculate the rate of sound radiation by superfluid turbulence at zero temperature and estimate
the value of short-wavelength cutoff of the turbulence spectrum.
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Since the early study of phonon scattering by vortex
lines,! much interest has been attracted by the problems of
the interaction of Kelvin waves with density-distortion
modes.>”’ In helium, Kelvin waves (kelvons) are a
fundamental ingredient of the evolution of superfluid
turbulence.>*#-12 A Kolmogorov-type cascade of Kelvin
waves has been argued®!%!2 to be responsible for the decay
of superfluid turbulence at zero temperature.'! As proposed
by Vinen,>* the sound radiation by short-wavelength kelvons
leads to a dissipative cutoff of the Kolmogorov energy flux.
In neutron stars, the excitation of Kelvin waves due to the
interaction with the nuclei in the solid crust is suggested to
be the main mechanism of pulsar glitches.”> Not long ago,
quantized vortices were created in atomic Bose-Einstein
condensate'® (BEC). Since then, nonlinear kelvon dynamics
have become an attractive topic in the field of ultracold
gases.” 14 Recent experiment in gaseous BEC by Bretin et
al.® and the subsequent numerical simulation by Mizushima
et al.% describe the excitation of Kelvin waves by the quad-
rupole modes. In their theoretical study, Martikainen and
Stoof’ obtained the interaction Hamiltonian of kelvons with
the quadrupole modes in a model of a vortex line in a stack
of two-dimensional BEC.

We develop a systematic approach to the problem of in-
teraction of phonons with vortices in the hydrodynamic re-
gime, i.e., when any physical length scale is much larger than
the vortex core size a,, which allows one to describe vortices
as geometrical lines.® We derive the interaction Hamiltonian

basing the analysis on the small parameter ﬂ:aOE <1, where

k is the largest wave number among kelvons and phonons. To
employ the transparent description in terms of the normal
modes, we confine ourselves to the case of weak nonlinear-
ity. For kelvons, this implies that the amplitudes b, of the
Kelvin waves of the typical wavelength A ~k~! are much
smaller than N, which is expressed by the small parameter
o, =bik<<1. For phonons this requires that 7<<n, where 7 is
the number density fluctuation in a sound wave and n is the
average number density. The obtained result allows us to
rigorously describe the radiation of sound by kelvons, which
we apply to the problem of superfluid turbulence decay at
zero temperature. We should mention that, in superfluid tur-
bulence, kelvons are actually superimposed on vortex kinks
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with curvature radii much larger than kelvon wavelengths.'?
We shall neglect such large-scale curvature and address this
issue at the end of the report.

The condition agk~ B<<1 implies that the typical vortex
line velocities are much smaller than the speed of sound.
Along with n<<n it leads to the fact that the vortex-phonon
coupling contributes only small corrections to the dynamics
of the noninteracting vortex and phonon subsystems. There-
fore, a perturbative approach is applicable, provided the in-
teraction energy is written in terms of the canonical vari-
ables. Normally, the form of the canonical variables comes
from the solution of the interaction-free dynamics. However,
when studying vortices separate from phonons, one naturally
neglects the compressibility of the fluid,® since finite com-
pressibility leads only to higher-order “relativistic” correc-
tions. As a result, the dynamics of vortices are described by
the Hamiltonian, written in terms of the geometrical configu-
ration of the vortex lines.!” When the vortices are absent, the
phonon modes come from the bilinear Hamiltonian for the
density fluctuation 7(r,¢) and the phase field ¢(r,7), which
determines the velocity in the density wave (see, e.g., Ref.
15). If finite compressibility of a superfluid is taken into
account in order to join the subsystems, the positions of vor-
tices and the fields 7(r,t), ¢(r,7) are no longer the sets of
canonical variables because of the variable-mixing term in
the Lagrangian. Introducing the interaction, one has to simul-
taneously reconsider the canonical variables.

The small parameters allow us to obtain an asymptotic
expansion of the canonical variables by means of a system-
atic iterative procedure. Physically, the procedure restores
the retardation in the adjustment of the superfluid velocity
field to the evolving vortex configuration. It qualitatively
changes the structure of the Hamiltonian with respect to the
terms responsible for the radiation of sound and the relativ-
istic corrections to the vortex dynamics.

Long-wave superfluid dynamics at zero temperature are
described by the Popov’s hydrodynamic action'®

(n+7n) 1

S:fdtd3r[—(n+ 7 - V> = —#*|. (1)
2

2m0

Here the spatial integral is taken over the macroscopic fluid
volume, ®(r,?) is the phase field, which determines the ve-
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locity according to v=(1/mg)V® (h=1), m, is the mass of a
particle, x is the compressibility, the dot denotes the deriva-
tive with respect to time, and the vortex core radius is given
by ay~ \x/nmy.

The phase ® is a non-single-valued function and contains
topological defects, the vortex lines. The velocity circulation
around each vortex line is quantized

§ V®(r) - dr=2m. (2)

The defects can be separated from the regular contribution
O =D+ o, (3)

where @, is non-single-valued and satisfies Eq. (2), while ¢
is regular and V¢ is circulation free. The standard decompo-
sition into vortices and phonons is done by introducing an
additional constraint that to the zeroth approximation elimi-
nates the coupling between @, and ¢ in the Hamiltonian,
namely

Ady(r) =0. (4)

(Physically, this parametrization is suggested by the velocity
potential of an incompressible fluid.) With Egs. (3) and (4)
the Lagrangian becomes

L= f &r{-n® - n¢— nd,] - H, (5)

where H=H o+ Hy,+H;|

nt?

Hvor=Lfd3r|V®02v (6)
2m0
H =fd3r Vg + —of (7)
ph 2my 2% ’
1
H{m=—fd3r[77|V¢o|2+2nV<P-V¢o]- (8)
2m0

The coupling between the vortex variable, @, and the den-

sity waves, {7, ¢}, is determined by H,,, and the time deriva-

tive term [d°r 77<I50, both being first-order corrections to the
noninteracting parts. Following standard perturbative proce-
dure, we first neglect this coupling to find the noninteracting
normal modes. The vortex part of the Lagrangian is then
given by Ly, =—nJd°r ®y—H,,,. For the sake of simplicity,
from now on we consider a solitary vortex line; the generali-
zation 1is straightforward. Let the two-dimensional vector
Po(z0) =(x0(z0) ,yo(z0),0) describe the position of the vortex
line in the plane z=z, of a Cartesian coordinate system,
where the z direction is chosen along the vortex line. The
field @, is a functional of p(z), hence

. )
fd37®0=JdeQ'_jd3r¢o. (9)
oo

To obtain [d°r 6150, it is sufficient to calculate the integral
[dPré @, where 5@, is the variation of the phase field due
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to the distortion of the vortex line by 8py(z). Using the iden-
tity A(p?)=4, with p=(x,y,0), and Eq. (4), we obtain

Jd3r 8®0=ifd3rv 6D,V (pH)]. (10)

The variation ®,(r) can be viewed as being produced by
two vortex lines with opposite circulation quanta and sepa-
rated by 8py(z). In view of Eq. (2), the field ®y(r) experi-
ences a jump of 27 across the surface S that extends be-
tween these vortex lines along the vector field 8py(z),
therefore the integration volume must have a cut along S.
Applying the Gauss theorem, we rewrite Eq. (10) as the sur-
face integral (1/2)$56®(p-dS) yielding

f Py = f a2 % poD]-poa). (1)

Introducing the complex variable w(z)=\nmyx/2[x(z)
+iy(z)], where k=2m/my is the velocity circulation quan-
tum, we obtain

1 " ; .
Lyor = 5 f dz[iw w —iw w] = Hyo{w,w' ], (12)

which implies that w(z) and w”(z) are the canonical variables
with respect to L,,. The energy (6), rewritten in terms of
w(z) and w"(z) gives the vortex Hamiltonian.'? In this report,
we keep only the bilinear term of the expanded with respect
to a;<<1 Hamiltonian, the remaining terms determine the
interaction of kelvons.'? The result is!”

H,o = > skaZak, g = (kldm)In(1/kag)k?,  (13)
k

where @, and a] are the kelvon creation and annihilation
operators, obtained, assuming the periodicity along z, by the
Fourier transforms a,=L""?[w(z)exp(~ikz)dz, where L is
the system size in the z direction, and w(z) is understood as
a quantum field.

The sound waves are described by the Lagrangian
Lyw=[d*r(-n¢)—Hy[ 7, @], with Hy, given by Eq. (7). We
assume that the system is contained in a cylinder of radius R
with the symmetry axis along the z direction and that the
system is periodic along z with the period L. In the cylindri-
cal geometry, the phonon fields 7(r, 6,z), ¢(r,8,z) are pa-
ramTetrized by phonon creation and annihilation operators
CyCy as
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7= 2 Vo2 x,c,+ x,cl],
N
. ,f— *
o=—i2 12w x.c, - x.cl.
N

Xs = Xs(r,0.2) = Ry (Y,,(0) 2, (), (14)

where Rong (1) =79,/ R) 21, (q,7), Y,,(6)
=Q2m) " exp(imb), Z,(z)=L""*expliqz), s stands for
{g,,m,q.}, and J,(x) are the Bessel functions of the first
kind. The phonon Hamiltonian then reads

H,y, = > wscjcs, w,=cq, (15)

N

: ) [
with g=Vg;+q; and c=\n/sm.
Now we address the coupling between phonons and vor-
tices. In terms of the obtained variables, the Lagrangian (5)
takes on the form

L= idwa} + >, i¢,ci —T—-H, (16)
k s

where T=[dr n®y=T{ay,dy,a},d},c,, ¢ cl,¢l}, and H
=H o+ Hpyy+ Hjy. The coupling term T plays a special role in
the Lagrangian (16). This term is linear in time derivatives of
the variables and thus cannot contribute to the energy in
accordance with the Lagrangian formalism. Moreover, be-
cause of the time derivatives in 7, the equations of motion in
terms of {a,a}}, {c,,c!} take on a non-Hamiltonian form.
This implies that the chosen variables become noncanonical
in the presence of the interaction, and therefore, the total
energy H in these variables cannot be identified with the
Hamiltonian.

There must exist such a variable transformation {ak,a,t},
{cs,c:}—>{a'k,&',i}, {ES,EI} that restores the canonical form of
the Lagrangian, L=3,i@a,+3ic,c —H{d,.a,.c,.¢}. The
canonical variables are obtained by the following iterative
procedure. The term 7 is expanded with respect to a;<<1,
B<1, and np<n yielding T=T"+T®+--- Then the vari-
ables are adjugted by akaak+a,(<l), csﬂcs+c§1), where
a,ﬂl)({ak,az,cs,cﬁ) and cil)({ak,a}:,cs,cj}) are chosen
to eliminate the term 7" in Eq. (16). As a result,
T—0+T'?@+--- where the prime means that the structure of
the remaining terms has changed. At the next step, 7'®? is
eliminated by ak—>ak+a§(2), c‘v—>c‘v+c§,2), and so on. By
construction, the canonical variables are given by
Zik=ak+a,(<l)+a,(<2)+---, Es=cs+c§1)+c§2)+- -+, and likewise for
the conjugates. In practice, only the first few terms are
enough, as the rest give just higher-order corrections.

The explicit expression for 7 is obtained following the
steps of the derivation of Eq. (11). The only difference here
is that the role of the auxiliary function p? is played by Q,
defined by AQ(r)= 7(r),

T=2n f 2 X VO(poD.D)]-po(2).  (17)

In accordance with g,p9~ Bkpy<< 1, we expand the radial
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functions, retaining only the greatest term for each particular
angular momentum m. Switching to the cylindrical coordi-
nates, po=(py cos vy, py sin v, 0), and noticing that

9 pyd
{ypo— - —°—}qu,<r) Y,,(6)
ar  pydl r=pg,6=y

dw™/dt, m=0
x , (18)

dw'lm™yide, m<0
we obtain

d
T= —iA; —(ay. ...
Ek { i s,kl...kmcadt(akl a,)

m
sky. .k,

, d . .
_ lBS»k1~~~’<mCSE(a}<1 a,Lm)} +H.c., (19)

where the sum is over all s with m # 0 and

Ak, == OMADG ook g
Bygy i, = (= D"MOm=1DAGS oot o

r— n(1—|m\)/2(m0K)(z—\m|)/2q\m\+1/2 )

Naogq r
5= 2|m\/2+1|m|! . (20)

1(ml=Dr2p172

where @(m)={; "={ . Thus,
ak=a~k (21)

(we omitted the terms that do not contain phonon operators
and thus result only in relativistic corrections to the kelvon
spectrum and kelvon-kelvon interactions),

Cg= Ex + (1 - 5m,()) 2 [Ax,kl...kmﬁltl cee 5}:m
kl"'km

+Bgy ok Qi - 1 s={q.m.q.}. (22)

The Hamiltonian H is then given by the energy (6)—(8) in
terms of the variables {a@,,a,},{c,,¢ }. Up to neglected rela-
tivistic corrections, the variable transformation does not
change the spectrum of the elementary modes: the zero-order
Hamiltonians are given by Egs. (13) and (15) in terms of
{dk,d,t},{av,ﬁj}. The transform (22) applied to Eq. (15) gen-
erates the interaction term

Hi(;?d) = E (1 - 5m,0)[wsAs,kl...km51Tcl s altmEI
s.k;}

+ @By G, .o C]+He (23)

Remarkably, the energy term o[dr 5|V®g|* in Eq. (8),
which results in the same operator structure as Eq. (23), is
irrelevant, being smaller in 8<< 1. It can be checked, straight-
forwardly, that the term «[d’r nV @-V®, in Eq. (8) gives
Fetter’s amplitudes of the elastic and inelastic scattering of
phonons1 (see, however, the remark at the end of the report).
In addition, this term leads to a macroscopically small split-
ting of the phonon spectrum due to the superimposed fluid
circulation.

A kelvon is known to carry a quantum of (negative) an-
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gular momentum projection.” The interaction (23) explicitly
conserves the angular momentum: a real process of the emis-
sion of a phonon with the angular momentum (—m) requires
an annihilation of m kelvons. Since g;~ (agk)wy, the total
momentum transferred to phonons in a radiation event
should be small in order to satisfy the energy conservation.
Thus, the radiation by one kelvon is kinematically sup-
pressed. The leading radiation process is the emission of the
m=-=2 (quadrupole) phonon mode, the events involving
more than two kelvons being suppressed by «a;<<1. First-
order processes of the two-phonon emission come from the
term [d’r pV ¢-V®, of Eq. (8). The amplitude of these
processes is suppressed by the relativistic parameter S<<1.

The Hamiltonian (23) can be used to obtain the rate of
sound radiation by superfluid turbulence at zero temperature.
At large wave numbers, where the radiation is appreciable,
Kelvin-wave turbulence is characterized by «;<<1 and fea-
tures the spectrum n;={aja;) = k~'"."> The occupation num-
ber decay rate is nkz—Es,kIW&k’kl, where Wi ik, is the prob-
ability of the event |0y, my,m; )— |1, m=1,m ~1) per unit
time. Applying the Fermi Golden Rule to W, with the
interaction (23) and replacing the sums by integrals, we ob-
tain

(mor/2)>
np=———"—

In’(1/agk)(agk)’kn}. (24)
15mnmy,

Following Ref. 12, this formula allows us to obtain the mo-
mentum scale Ky, at which the kelvon cascade is cut off by
the radiation of sound

[af/RJ?
~————q,
ph [In(Ry/ay) 4! 0

where R is the typical distance between the vortex lines in
the tangle.

(25)

PHYSICAL REVIEW B 72, 172505 (2005)

Finally, we comment on Vinen’s estimate of the power
radiated per unit length of the vortex line, Eq. (2.24) of Ref.
4. The power at the momentum k can be determined by
IM,=—2 _iep 1y /L, with 1y, given by Eq. (24). In Ref. 4,
the retarded potential method is employed giving the esti-
mate H,thb,fomk, while HkOCn,%. In the quasiparticle lan-
guage, II; implies that the radiation is governed by the con-
version of one kelvon into a phonon. Vinen argues that this
process becomes allowed in superfluid turbulence, where
kelvons are actually superimposed on vortex kinks of typical
size ~Ry>k~!, or, equivalently, the kelvon coupling to a
kink lifts the ban on single-kelvon radiative processes by
effectively removing the momentum conservation constraint.
We note that the probabilities of such elementary events are
likely to be suppressed exponentially, as it is generically the
case, say, for soliton-phonon interactions (see, e.g., Ref. 18
and references therein.) The processes involving kelvon-kink
coupling should contain an exponentially small factor
~exp(—Rpk), which arises from the convolution of the
smooth kink profile with the oscillating kelvon mode.

In the problem of phonon scattering from a vortex, the
answer depends on whether the vortex is pinned or free.'” In
fact, the elastic scattering matrix element of Ref. 1 corre-
sponds to the pinned case only. In the Hamiltonian formalism
developed here, the difference is due to an additional matrix
element generated by the |m|=1 term of the interaction
Hamiltonian (23) in the second order of perturbation theory.
We are indebted to Edouard Sonin for raising this question.
Furthermore, a second-order amplitude generated by a com-
bination of the |m|=2 term with the |m|=1 one is of the
same order as the direct first-order amplitude of inelastic
phonon scattering. Thus, the result of Ref. 1 for inelastic
scattering needs to be corrected accordingly.
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