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The spin-S quantum Heisenberg ferromagnet with anisotropic spin exchange interactions in one dimension
is investigated by means of the Green’s function method. The magnetic properties of this model are found to
be dependent of the anisotropy. It is shown that the crossover of the anisotropic system to Heisenberg isotropic
behavior happens at high temperatures T�T1, and to an XY kind of behavior at some low temperatures T
�T2. For S=1/2 ferromagnetic chain system �C6H11NH3�CuBr3, our prediction of the crossover temperature
T2 and inverse correlation lengths are in agreement with the experiment results and numerical calculations.
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I. INTRODUCTION

In recent years one-dimensional magnetic systems have
attracted a great deal of theoretical and experimental
interest.1 Several theoretical techniques have been employed
to understand the magnetic properties of these systems.
High-temperature series expansions,2 spin-wave theory,3,4

Monte Carlo method,5 renormalization group analysis,6,7

conformal field theory,8 and the Green’s function
approach9,10 are some of the methods used in these studies.

The two-time Green’s function method used in Refs. 9
and 10 is known as the standard method in the study of
magnetic systems.11 In this method one obtains a nonlinear
differential equation in which the higher-order Green’s func-
tions are coupled with the lower-order ones. Each of the
higher-order Green’s functions is again written down in the
form of a nonlinear equation and so on. To obtain tractable
solutions, decoupling procedures have been invoked to ter-
minate the hierarchy of Green’s functions generated by the
equations of motion. Many results for the thermodynamic
properties in three-dimensions have been obtained12–17 in a
frame of the simplest decoupling, i.e., the Tyablikov
decoupling.18 The decoupling provides a simple enough way
for giving results in good agreement with other approaches
and experiments in a wide range of temperatures and mag-
netic fields.

The Tyablikov decoupling is still valid even in fewer than
three dimensions. Yablonskiy9 used it to study the equilib-
rium properties of one- and two-dimensional isotropic quan-
tum Heisenberg models, giving good qualitative agreement
with the modified spin-wave theory4 and the Schwinger
bosonic and fermionic representation.19 Hamedoun et al.10

applied this method to quantum Heisenberg models with
long-range ferromagnetic interaction, and found that there
exists a phase transition at a finite temperature in contrast
with the well-known Mermin-Wagner theorem.20

In this paper, we apply the Tyablikov decoupling, and
provide a simple way to obtain the static properties of the
spin-S quantum Heisenberg ferromagnet with anisotropic
spin-exchange interactions in one dimension. The zero-
temperature properties of this system are known.21 Our mo-
tivation to study this problem is less of an analytical study on
the crossover of one-dimensional finite-temperature proper-

ties of the anisotropic system than it is to study the isotropic
or the XY properties. Most numerical and experimental stud-
ies are confined to the weak anisotropy for S=1/2. The
crossover to an XY kind of behavior was observed experi-
mentally at temperature T�4 K for the S=1/2 ferromag-
netic chain system �C6H11NH3�CuBr3 �CHAB�.22 The agree-
ment with experiment was found from some numerical
analysis23 and the transfer-matrix calculations.24 Campana
et al.7 estimated the crossover temperature T�10 K in the
framework of the real-space renormalization-group ap-
proach. However, those works failed to explain how the
crossover behavior is dependent upon the exchange interac-
tion J and the anisotropic parameter b. In this work, we show
that anisotropy can have a rather drastic effect on the corre-
lation functions and susceptibilities for any S. It is found that
the crossover of the anisotropic system to Heisenberg isotro-
pic behavior happens at high temperatures T�T1= 4

3S�S
+1�J�1−b2�1/2, and to an XY kind of behavior at some low
temperatures below T2�2T1 / �1+b / �b−1+�1−b2��.

In Sec. II, using the formalism of the Green’s function, we
present the basic self-consistent equations for the correlation
functions. In Sec. III the magnetic properties of this model
are found to be dependent of anisotropy. The crossover with
respect to anisotropy is explored. Section IV contains the
discussions and conclusions.

II. MODEL

In this paper we will apply Green’s function method with
the Tyablikov decoupling to the spin-S quantum Heisenberg
ferromagnet with anisotropic spin-exchange interactions. Its
Hamiltonian is given by

H = − J�
�i,j	

�Si
zSj

z + Si
xSj

x + bSi
ySj

y� − h�
i

Si
z, �1�

where the summation is taken over all nearest-neighbor pairs
on a one-dimensional lattice. Si

x, Si
y and Si

z represent the three
components of the spin-S operator for a spin at site i. J is the
exchange interaction, b denotes the anisotropic parameters
with 0�b�1. The magnetic field h is applied along the z
axis. Here we have chosen the xz plane as the easy plane, and
the y direction as the hard axis of magnetization. The above
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Hamiltonian stands for isotropic ferromgnets for b=1, the
XY model for b=0. For S=1/2 the model �1� can describe
the compounds CHAB.

It is convenient to introduce the spin raising and lowering
operators Si

±=Si
x± iSi

y, which satisfies the commutation rela-
tions �Si

+ ,Sj
−�=2Si

z�ij and �Si
± ,Sj

z�= �Si
±�ij. Then the above

Hamiltonian can be rewritten as

H = − J�
�i,j	


Si
zSj

z +
1 + b

4
�Si

+Sj
− + Si

−Sj
+� +

1 − b

4
�Si

+Sj
+ + Si

−Sj
−��

− h�
i

Si
z. �2�

In order to calculate the magnetic properties of this
model, we introduce two retarded Green’s functions

��Si
±�t� ;eaSj

z
Sj

−		, as

��Si
±�t�;eaSj

z
Sj

−�t��		 = − ı��t − t����Si
+�t�,eaSj

z
Sj

−�t���	 . �3�

Here �A�t�	�Tr�A�t�e−�H� /Tr�e−�H�, and A�t�=eıHtAe−ıHt,
where � is the inverse of the temperature T. ��t� is the step
function, and a is the Callen parameter.12 The equations of
motion for these two Green’s functions follow in a straight-
forward fashion, which are given by

ı
d

dt
��Si

+�t�;eaSj
z
Sj

−		 = ��t��ij��a� + h��Si
+�t�;eaSj

z
Sj

−		

+ J�
	

�2��Si+	
z �t�Si

+�t�;eaSj
z
Sj

−		

− �1 + b���Si
zSi+	

+ �t�;eaSj
z
Sj

−		

− �1 − b���Si
zSi+	

− �t�;eaSj
z
Sj

−		� , �4�

ı
d

dt
��Si

−�t�;eaSj
z
Sj

−		 = − h��Si
−�t�;eaSj

z
Sj

−		

− J�
	

�2��Si+	
z �t�Si

−�t�;eaSj
z
Sj

−		

− �1 + b���Si
zSi+	

− �t�;eaSj
z
Sj

−		 − �1 − b�


��Si
zSi+	

+ �t�;eaSj
z
Sj

−		� . �5�

Here ��a�= ��S+ ;eaSz
S−�	 with ��a=0�=2�Sz	. According to

the Tyablikov decoupling,18 we approximate the higher-order
Green’s functions on the right-hand sides of the above equa-
tions as

��Sl
z�t�Si

±�t�;eaSj
z
Sj

−		 = m��Si
±�t�;eaSj

z
Sj

−		 .
Here the value of magnetization �Si

z	 is considered to be in-
dependent of its site i, and setting �Si

z	=m for any site i.
After Fourier transforming these equations with respect to

the space and time variables, we obtain a set of algebraic
equations that are readily solved for the transformed Green’s

functions gk��� and fk��� of ��Si
+�t� ;eaSj

z
Sj

−		, and

��Si
−�t� ;eaSj

z
Sj

−		, respectively. The solutions that are found
can be written

gk��� = ��a��� + E1 + h�/��2 − �k
2� , �6�

fk��� = ��a�E2/��2 − �k
2� , �7�

where

�k = ��h + E1�2 − E2
2�1/2, �8�

E1 = 2mJ�2 − �1 + b�cos k� , �9�

E2 = 2mJ�1 − b�cos k . �10�

From the spectral theorem and the solutions of the Green’s
functions �6� and �7�, we find the correlation functions

�eaSj
z
Sj

−Si
±�t�	 =

1

N
�

k

eık·�i−j�G−±�k,t� . �11�

Here G−+�k , t� and G−−�k , t� are the correlation functions in
the momentum space. They are

G−+�k,t� =
��a�

2
 e−ı�kt

�k

�k + E1 + h

e��k − 1
+

eı�kt

�k

�k − E1 − h

e−��k − 1
� ,

�12�

G−−�k,t� =
��a�

2

E2

�k
 e−ı�kt

e��k − 1
−

eı�kt

e−��k − 1
� . �13�

Similarly, we may also calculate the correlation functions

�eaSj
z
Sj

�Si
��t�	, with �=x ,y. Setting t=0 and for a=0, we find

�Sj
xSi

x	 =
1

N
�

k

eık·�i−j�m
h + E1 + E2

2�k
coth

��k

2
, �14�

�Sj
ySi

y	 =
1

N
�

k

eık·�i−j�m
h + E1 − E2

2�k
coth

��k

2
. �15�

When i= j and t=0 in Eq. �11� for a=0, and using the rela-
tion

�Si
−Si

+	 = S�S + 1� − �Si
z	 − ��Si

z�2	 ,

we have the magnetization m= �Si
z	 which is obtained from a

solution of the equations

m =
�S − ��1 + �2S+1 + �S + 1 + �2S+1

�1 + �2S+1 − 2S+1 , �16�

2 + 1 =
1

N
�

k

E1 + h

�k
coth

��k

2
. �17�

III. MAGNETIC PROPERTIES

In this section, we use our solutions of the Green’s func-
tions to derive formulas for the magnetic properties as a
function of temperature and anisotropy for the case S.

In the following, we will firstly calculate the tempera-
ture and anisotropy dependence of the uniform-field suscep-
tibility � and the equal-time correlation functions �S0

�Sn
�	,

�=x ,y, in the paramagnetic phase. The susceptibility when
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the applied field is small is defined by �=m /h. From Eqs.
�14�–�17� we obtain for the equations which determine the
susceptibility and the equal-time correlation functions at
temperature T�0. The results are

8

3
S�S + 1��J = ��1 + 1/�4�J��2 − 1�−1/2

+ ��1 + 1/�4�J��2 − b2�−1/2, �18�

�S0
xSn

x	 = �4�J sinh �x�−1e−�xn, �19�

�S0
ySn

y	 = �4b�J sinh �y�−1e−�yn. �20�

Here �� is the so-called inverse correlation length for the
spin components S�, �=x ,y, which are given by

1 +
1

4�J
= cosh �x = b cosh �y . �21�

For any T�0 and b�1, �S0
ySn

y	� �S0
xSn

x	 and �x��y. This
may be explained by the fact that the anisotropy has an ten-
dency to destroy the growth of the correlation along the hard
axis. It is shown that as the temperature and anisotropy vary,
the behavior of the anisotropic system changes smoothly
from an XY type �if b=0� to an isotropic type �if b=1�.
Equation �18� suggests that no transitions at finite tempera-
ture exist in one dimension, which agrees with the Mermin-
Wagner theorem,20 and is a fundamental difference from the
corresponding three-dimensional case.14

For ��1+1/4�J�2−1� / �1−b2��1, i.e.,

T � T1 =
4

3
S�S + 1�J�1 − b2, �22�

the behavior of the system crosses over to the Heisenberg
isotropic behavior, with very small corrections due to the
anisotropy. In this case, Eqs. �18� and �21� can be calculated
to be

� =
1

4J
��1 + �1 − T1

2�2/4�2/��̃J�2 − 1�−1, �23�

�x = − ln��1 + �1 + T1
2�2/4�2/��̃J�2 − �1 − T1

2�2/4�/��̃J�� .

�24�

�y = − ln��1 + �1 − T1
2�2/4�2/��̃J�2 − �1 + T1

2�2/4�/��̃J�� .

�25�

To the zero order of b, they agree with Ref. 9. Here

�̃=4S�S+1�� /3. To the nontrivial order of b, one will find
the corrections to the behavior due to the anisotropy in the
following two limit cases. For T1�T�

4
3S�S+1�J,

� =
1

2
�̃2J�1 + T1

2�2/2� , �26�

�S0
xSn

x	 =
1

3
S�S + 1��1 + T1

2�2/4�e−�xn, �27�

�S0
ySn

y	 =
1

3
S�S + 1��1 − T1

2�2/4�e−�yn, �28�

where �x= ��̃J�−1 and �y = �1− �̃J ln b� / ��̃J�. If b=1, those
agree with the isotropic result,9 and qualitatively coincide
with the modified spin-wave theory4 and the Schwinger
bosonic and fermionic representation.19

In the case of T�
4
3S�S+1�J, the susceptibility is approxi-

mately

� = �̃�1 + �̃J + �̃2J2�3 − b2�/4�/4. �29�

This indicates that the anisotropy is devoted to the suscepti-
bility only in order of T−3. This is similar to a three-
dimensional situation.17 However, the anisotropic effect is
more pronounced in one dimension. In this case the correla-
tions have same expressions as Eqs. �27� and �28�, but with

different inverse lengths �x=ln�2/ ��̃J�� and �y =ln�2/

�b�̃J��.
Let us consider the opposite region T�T1. For ��1

+1/4�J�2−1� / �1−b2��1, i.e., T�T1, the behavior of the
system crosses over to the XY behavior,25 with the correc-
tions due to the anisotropy. The results are

� =
1

4J
��1 + �1 − b2��2T1/T − 1�−2 − 1�−1, �30�

�S0
xSn

x	 =
1

3
S�S + 1��2 − T/T1�e−�xn, �31�

�S0
ySn

y	 =
T

3T1
S�S + 1�e−�yn, �32�

�x = − ln��1 + �1 − b2��2T1/T − 1�−2 − �1 − b2�2T1/T − 1�−1� ,

�33�

�y = − ln���1 + �1 − b2��2T1/T − 1�−2

− �1 − b2�1 + �2T1/T − 1�−2�/b� . �34�

It is noted that �y is independent of the temperature T in the

nontrivial order of b. As T→0, �x= �2�̃J�−1 diverges, as in
the XY case. In order to estimate the crossover temperature
T2, we may choose ��1+1/4�J�2−1� / �1−b2�=c as a variable
parameter instead of T. In our case, c takes the value of
�2T1 /T−1�−2 which yields the condition c�1. To the non-
trivial order of �c in the argument, �y is found to be
−ln��1−�1−b2� /b�, and the upper limit of �x is approxi-
mately to be −ln�1−�c�. Since �x��y in the XY case, we
obtain c� �b−1+�1−b2�2 /b2. Then the crossover of the an-
isotropic system towards the XY kind of behavior is esti-
mated at low temperatures T below

T2 � 2T1/�1 + b/�b − 1 + �1 − b2�� . �35�

IV. CONCLUSIONS AND DISCUSSIONS

In this paper we studied the magnetic properties of the
spin-S one-dimensional quantum anisotropic Heisenberg fer-
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romagnet by means of the Green’s function method. The
magnetic properties of this model are found to be dependent
on the anisotropy. Since the magnetic anisotropy tends to
suppress part of the fluctuation along the the hard �y� axis,
for any T�0 and b�1, the correlation �S0

ySn
y	 is always

smaller than �S0
xSn

x	. As the temperature decreases and enters
in the low-temperature region of T�T2, the anisotropy
strongly destroys the thermal fluctuations along the hard axis
so that the correlation �S0

ySn
y	� �S0

xSn
x	. This means that the

anisotropic system exhibits an XY kind of behavior. How-
ever, as the temperature gets larger, the fluctuations due to
the thermal motion of the spins are more intensive. At very
high temperature T�T1, all spin components have to ten-
dency to display the same number of fluctuations, which
leads us to conclude that the system behaves as it does in the
isotropic case. Although the anisotropic effect is very weak
at very high temperatures, the anisotropy gives rise to very
small corrections to the isotropic behavior. As seen in Eqs.
�23�–�29�, it is shown that the anisotropy plays different roles
in the xx and yy correlations. As compared with the isotropic
case, the anisotropy destroys the growth of the correlation
along the hard axis, but helps the growth of the correlation
along the easy axes.

Due to the anisotropy, there exist two different kinds of
inverse correlation lengths �x and �y for b�1. And �x��y is
hold for T�0. As the parameter b increases �i.e., the aniso-
tropy gets weak�, the difference between �x and �y decreases.
�x is less dependent on the anisotropy than �y. Above T1, Eq.
�21� describes the isotropic correlation length �as seen in
Eqs. �24� and �25� for b=1� fairly well. In Eq. �32�, the
out-of-plane �yy� correlation vanishes for T→0, which re-
sults from the limiting of spin fluctuation perpendicular to
the easy xz plane. In the low-temperature region T�T2,
quantum mechanics can effectively confine spins in the easy
plane, as in the XY model.26,27 Therefore the low-temperature

properties of the system are mainly dominated by the spin
components within the easy plane.

Because CHAB is a S=1/2 nearly isotropic quantum sys-
tem which can be described by model �1�, it is interesting
to compare our results with those of the experimental and
theoretical studies. In the case of S=1/2, taking b=0.95 and
J=55 K,22 we estimate the characteristic temperature
T1=17.17 K, the crossover temperature T2�7.43 K, and the
small parameter c�0.0762. The value of T2 is in agreement
with T2�4 K for CHAB by neutron scattering experiment,22

4.5 K by numerical calculations,23 and 3 K by transfer-
matrix calculations.24 And it is comparable to T2�10 K by
renormalization-group approach.7 For T�T1, the inverse
correlation length �y takes the value of 0.323, which agrees
with the range from 0.3 to 0.4 �Refs. 24 and 22� and is
smaller than 0.44 �Ref. 23� Our �x is consistent with Ref. 23
in each asymptotic region. If one wants to get more proper-
ties �such as specific heat� in agreement with experiment and
numerical calculations, he may choose the Kondo-Yamaji
decoupling technique28 �which is at a stage one step further
than the Tyablikov decoupling� to deal with the Green’s
functions. This will be left for the coming work.

In this work, we show that anisotropy can have a rather
drastic effect on the correlation functions and susceptibilities
for any S. The magnetic properties of this model are found to
be dependent on the anisotropy. It is found that the crossover
of the anisotropic system to Heisenberg isotropic behavior
happens at high temperatures T�T1, and to an XY kind of
behavior at some low temperature T�T2.
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