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Molecular dynamics �MD� simulations are a valuable tool to characterize the microscopic mechanisms
underlying friction. However, the lowest shear rate accessible by current MD methods is at least four orders of
magnitude larger than those typically used in experiments. Using the transient-time correlation function, we
show how MD simulations can be extended to study systems subjected to a realistic shear rate. We demonstrate
the usefulness of this approach by studying the frictional response of a simple fluid confined to a film of about
five molecular diameters.
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Friction is an extremely complex phenomenon, common
to many technological, geological, and biological applica-
tions. To understand friction, one needs to be able to charac-
terize what is going on the “single asperity” level, i.e., at the
molecular level.1 Experiments using the surface forces appa-
ratus �SFA�,2 which monitor the frictional response of a fluid
confined between smooth mica sheets, play a key role in
identifying the microscopic mechanisms underlying this phe-
nomenon. Atomistic molecular dynamics �MD� simulations
provide another route to analyze this phenomenon at the mo-
lecular level. Early MD studies on model systems have
helped us to understand liquid layering under
nanoconfinment3 and the nature of transitions between
“smooth” and stick-slip sliding.4 Since then, accurate force
fields for the mica sheets and the confined fluid have been
developed. This opened the door to realistic simulations of
the SFA experiment. MD studies were recently carried out
for confined water5 and confined dodecane6 under shear. The
results so obtained were consistent with experimental find-
ings. However, a direct comparison between simulation and
experiment still remains impossible. This is because the low-
est shear rates accessible by MD are at least four orders of
magnitude larger than those typically used in experiments.
This limitation directly stems from the MD method. In MD
simulations, properties are averaged over the steady state,
which becomes very noisy for low shear rates. Having a
large signal-to-noise ratio �and hence subjecting the fluid to
large shear rates� is therefore crucial to obtain meaningful
averages in the steady state. This basically prevents access-
ing the frictional response for realistic shear rates. Current
MD methods are therefore unable to shed light on a number
of recent experimental measurements on films of about 5–8
molecular layers. Does the viscosity of organic solvents di-
verge at such narrow confinement as these fluids undergo
freezing?7,8 Is the efficiency of water-based lubricants, ubiq-
uitous in biological systems, related to the specific properties
of nanoconfined water, whose viscosity under those condi-
tions is less than three times its value for the bulk?9 Does this
discrepancy only result from different experimental protocols
and should all the fluids actually have similar rheological
responses when nanoconfined?10

In this work, we address the inability of current MD
methods to study nanoconfined liquids subjected to low �re-
alistic� shear rates. We apply a nonlinear generalization of

the Green-Kubo relations, the so-called transient time corre-
lation function �TTCF� formalism11–14 and demonstrate that
this approach allows to study the rheological response of a
confined fluid subjected to an arbitrarily low shear rate.
TTCF gives an exact relation between the nonlinear steady-
state response and the so-called transient time correlation
function. We briefly outline the general derivation proposed
by Evans and Morriss11 to show how it can be applied to
fluids �either in the bulk phase or nanoconfined� undergoing
shear flow. Let us consider a phase variable B���, where �
denotes a phase space point. In the Heisenberg representa-
tion, the average of B at time t is �B�t��=�d�f�0�B�� ; t�,
where f�0� is the initial distribution function. If we differen-
tiate this expression with respect to time, we obtain, for time-
independent external fields

d�B�t��
dt

=� d�f�0�
d�

dt
·
�B�t�
��

. �1�

By integrating by parts and realizing that the boundary term
vanishes in periodic systems,11 we see that

d�B�t��
dt

= −� d�B�t�
�

��
·

d�

dt
f�0� . �2�

Finally, integrating with respect to time, we obtain the non-
linear nonequilibrium response

�B�t�� = �B�0�� − �
0

t

ds� d�B�s�
�

��
·

d�

dt
f�0� . �3�

We now need to specify the equations of motion for the
system. The nonequilibrium MD method used in all the stud-
ies of simple liquids employs homogeneous shear fields in
the so-called SLLOD equations of motion11 together with
appropriate periodic boundary conditions.15 This method cor-
rectly describes an isolated bulk system under arbitrarily
strong shear.11 For a fluid undergoing Couette flow in the x
direction with a velocity gradient along the y direction, the
SLLOD equations for a particle i are as follows:

ṙi =
pi

m
+ �̇yiex,
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ṗi = Fi − �̇pyi
ex, �4�

where �̇ denotes the shear rate, m the mass of the particle,
and ex is an unit vector colinear to the x axis. Applying the
SLLOD equations of motion is actually equivalent to �i� ini-
tially superimposing the appropriate linear velocity profile to
the actual velocities of the molecules of the fluid and �ii�
afterwards applying Newton’s equations of motion to this
fluid. The internal energy is defined as H0���=�ipi

2 / �2m�
+��qi�. The rate of change in internal energy due to shear is

equal to Ḣ0=−�̇VPxy, where Pxy =�i�pxipyi /m+Fxiyi� /V is
the opposite of the shear stress and V the volume of the
system. Adiabatic shearing causes a monotonic increase in
internal energy. The system heats up and there is no well-
defined final steady state from which transport coefficients
can be calculated. In reality, viscous heat is dissipated to the
environment through container walls, which are omitted in
simulations of the bulk. Constant temperature in MD simu-
lations is achieved by adding a “thermostat term” to the
equations of motion. If the initial distribution is canonical
and if the dynamics of the system follows the SLLOD equa-
tions, then, to the first order in the number of particles,11

��/��� · �f�0�d�/dt	 = − Ḣ0f�0�/�kBT� = �̇VPxyf�0�/�kBT� .

�5�

The average of B at time t is equal to

�B�t�� = �B�0�� −
V�̇

kBT
�

0

t

�B�s� · Pxy�0��ds . �6�

If we choose B�t�= Pxy�t�, the equilibrium average �Pxy�0�� is
equal to 0 and we obtain the following expression for
�Pxy�t��:

�Pxy�t�� = −
V�̇

kBT
�

0

t

�Pxy�s� · Pxy�0��ds . �7�

We now present how TTCF can be applied to a nanocon-
fined fluid. Let us consider a fluid confined between two
walls, separated from each other by a distance L along the y
axis. We consider as a starting point �t=0� for our study a
configuration of the system at equilibrium. At time t=0+, the
two walls are driven at a constant velocity, equal to v /2, in
opposite directions. The fluid particles obey at all times
Newton’s equations of motion, supplemented by a “thermo-
stat term.” Unlike for the bulk, shear does not appear explic-
itly in the equations of motion: it is induced by the two
moving walls. A sketch of the system is presented in Fig. 1.
The confined fluid is therefore subjected to a shear rate of

v /L. The rate of change of internal energy Ḣ0 due to shear is
equal to −�v /L�PxyV for the confined fluid. The value of the
shear stress −Pxy�t� is equal to −�Fx�t� / �2S�, where S is the
surface of a wall. �Fx�t� is the projection on the x axis of the
difference between the forces exerted by the fluid on the top
wall and on the bottom wall, respectively. Using Eqs. �3� and
�5� and substituting �Fx�t� / �2S� for Pxy�t�, we obtain

�Pxy�t�� = −
vV

4kBTLS2�
0

t

��F�s� · �F�0��ds . �8�

This expression coincides with that recently obtained by Pe-
travic and Harrowell, who applied linear response theory to
evaluate the viscosity of a confined fluid.16

We apply TTCF to evaluate the viscosity of a simple liq-
uid in the bulk and when confined to a film of about five
molecular diameters. Wall and fluid particles are identical
and interact with each other through a Weeks-Chandler-
Andersen potential (��r�=−4���� /r�6− �� /r�12	+� for r
�21/6 and 0 otherwise). In the rest of the paper, we use a
system of reduced units, in which � is the unit of length, �
the unit of energy and m is the unit of mass. Simulations
were carried out at constant volume and constant tempera-
ture. Temperature control is achieved through the use of a
configurational thermostat. This thermostat, which does not
require making any assumption about the flow profile, is es-
pecially well suited for the study of inhomogeneous
systems.17,18 We study the bulk liquid at a temperature T
=0.75 and a number density n=0.84, which corresponds to a
state point close to the triple point. The equilibrium pressure
for this state point is 6.4. In order to simulate the confined
fluid at the same state point, we adjusted the thickness of the
film to 5.43 so that the parallel pressure �Pxx+ Pzz� /2 in the
confined fluid is equal to 6.4 and matches that of the bulk
liquid �the resulting density for the confined fluid is 0.8408�.
Simulations are carried out on systems of 250 atoms for the
bulk liquid and 490 atoms for the confined fluid. Each wall is
two layers thick and there are 98 atoms in each layer. The
wall atoms are rigidly fixed to the lattice sites of the �111�
face for a fcc structure. The equations of motion were inte-
grated with a fourth-order Runge-Kutta method and a time
step of 5	10−4. Using a self-starting method to integrate the
equations of motion is absolutely essential in studies of the
transient response. For both the bulk and the confined fluid,
we generated 30	105 equilibrium configurations which
served as starting points for the nonequilibrium trajectories
�these equilibrium configurations were selected, every 2.5
time units, over the course of a single equilibrium trajectory�.
Following Evans and Morriss,11 we used phase-space map-

FIG. 1. Projection on the x-y plane of the simulated system.
Filled circles stand for wall atoms while open circles represent fluid
atoms.
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pings of the initial phases in order to improve the statistical
reliability of the results and to reduce the number of equilib-
rium configurations/independent starting points required. For
the bulk, we used the four following mappings: the identity
mapping �x ,y ,z , px , py , pz�→ �x ,y ,z , px , py , pz�, the time re-
versal mapping �x ,y ,z , px , py , pz�→ �x ,y ,z ,−px ,−py ,−pz�,
the y-reflection mapping �x ,y ,z , px , py , pz�→ �x ,−y ,z , px ,
−py , pz�, and the Kawasaki mapping, which is the combined
effect of time reversal and y-reflection mappings, i.e.,
�x ,y ,z , px , py , pz�→ �x ,−y ,z ,−px , py ,−pz�. For the confined
fluid, we also used four similar mappings in which the
y-reflection mapping was replaced by the x-reflection map-
ping. This is because, for the confined fluid, applying the
y-reflection mapping does not have any effect on the value of
Pxy. This arises from the fact that we measure the projection
of the force along the x axis in order to determine Pxy. Thus,
applying the x-reflection mapping will have the desired re-
sult, i.e., reverse the sign for the value of Pxy. In effect,
phase-space mappings ensure that �Pxy�0�� is exactly zero.
They also allow one to obtain four different nonequilibrium
trajectories for every single equilibrium configuration/
starting point. In all cases, TTCF averages were therefore
estimated over 1.2	105 nonequilibrium trajectories.

We plot in Figs. 2 and 3 the variations of the shear stress,
estimated from Eqs. �7� and �8�, with time in the bulk and in
the confined fluid respectively, for shear rates ranging from
2	10−8 to 0.5. If the WCA particles are meant to represent a
molecule like water, the shear rates simulated here range
from approximately 103 to 1011 s−1. For all shear rates inves-
tigated, the shear stress reaches a plateau after a transient
time of 0.6 for the bulk and a transient time of 2 for the
confined fluid. The difference between the two transient
times mainly results form the difference in the simulation
method. For the bulk, at t=0, a linear flow profile is added to
the equilibrium velocity of each particle and the relaxation
starts from this state at t=0+. For the confined fluid, at t=0,
the velocity of each particle is its equilibrium velocity and
shear is induced by the moving walls at t=0+. The initial
state is therefore much closer to the steady state in the case

of the bulk than in the case of the confined fluid.
Figures 2 and 3 also show a comparison, for shear rates

larger than or equal to 10−3, between the TTCF estimates for
the shear stress and a direct average of the shear stress, per-
formed over all 1.2	105 nonequilibrium trajectories. The
results are in excellent agreement for both the bulk and the
confined fluid, provided that the shear rate is larger than
10−3. This proves the validity of Eqs. �7� and �8�. As the
shear rate gets close to 10−3, the direct average exhibits
larger fluctuations and the uncertainty in the determination of
the steady state average steeply rises. This is best seen in the
case of the confined fluid for v=5	10−3 �which corresponds
to a shear rate of 10−3� as the behavior of the direct average
for the shear stress becomes erratic in the steady state. This
shows that for a shear rate of 10−3, there is already too much
noise to obtain a reliable steady state average for the shear
stress and hence the viscosity. On the contrary, TTCF esti-
mates remain reliable, regardless of how weak the signal-to-
noise ratio is.

By dividing the value obtained in the plateau for the shear
stress by the shear rate, we can estimate the value of the
shear viscosity for the bulk and for the confined fluid. The
shear viscosity so obtained is plotted in Fig. 4. For both
systems, the viscosity is found to reach a plateau at low shear
rates. The viscosity remains constant for shear rates smaller
than 0.1 in the case of the bulk and for shear rates smaller
than 0.001 in the case of the confined fluid. The value in the
Newtonian plateau is equal to 2.22±0.1 for the bulk and to
2.58±0.1 for the confined fluid. These results are in agree-
ment with our expectations. Confined fluids have longer re-
laxation times. Therefore, the transition from Newtonian to
non-Newtonian occurs at a lower shear rate than for the bulk
and the viscosity of the confined fluid is larger. For large
shear rates, both the bulk and the confined fluid exhibit a
shear-thinning regime. To further assess the reliability of the
TTCF approach, we checked that the TTCF estimates for the

FIG. 2. �Color online� Evolution of shear stress in the bulk with
time obtained from TTCF �solid lines� or from an average over all
trajectories �dashed lines with circles�. The applied shear rate is
equal to 1	10−7 �bottom curve�, 1	10−6, 1	10−5, 1	10−4, 1
	10−3, 0.01, 0.05, 0.1, 0.3, and 0.5 �top curve�.

FIG. 3. �Color online� Evolution of shear stress in the confined
fluid with time obtained from TTCF �solid lines� or from an average
over all trajectories �dashed lines with circles�. v is equal to 1
	10−7 �bottom curve�, 1	10−6, 1	10−4, 5	10−3, 0.1, 0.5, and 1
�top curve�. The value for the shear rate can be obtained by dividing
v by L=5.43.
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shear viscosity were in good agreement those obtained with
the standard method from the steady state average of the
shear stress. As indicated earlier, such a comparison can only
be drawn at large shear rates. Even for a simple fluid con-
fined to a film of 5.43 molecular diameters, the standard

method is unable to locate the onset of the Newtonian pla-
teau �as shown on Fig. 3, there is already too much noise in
the steady state for a wall velocity of 5	10−3 shear rate of
10−3�. This demonstrates the usefulness of the TTCF ap-
proach.

Using TTCF, we have been able to devise a simulation
method to study the response of a confined fluid subjected to
realistic shear rates. Up to now, simulations of confined flu-
ids under shear were limited to shear rates several orders of
magnitude larger than the experimental shear rates. This
method allows for a direct comparison between MD and ex-
periments and therefore, greatly improves the relevance of
nonequilibrium MD findings. We have been able to show
that, even on a simple fluid, TTCF allows us to access the
whole range of rheological responses. TTTCF should be par-
ticularly helpful in understanding the frictional response of
more complex molecules such as oil-based lubricants, which
have longer relaxation times and whose rheology at realistic
shear rates is currently inaccessible6 �note, however, that the
relaxation time of the confined lubricant has to remain within
the time scales accessible by MD simulations�. Finally, we
add that TTCF is a very general formalism and can be ap-
plied to study a system subjected to any kind of perturbation
such as, for instance, an electric field.19
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FIG. 4. �Color online� Variations of shear viscosity with the
applied shear for the bulk �circles� and for the confined fluid
�squares�. Dashed lines indicate the Newtonian plateau in both
cases.
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