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Ab initio calculation of elastic properties of solid He under pressure
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The high-pressure equation of state and elastic properties of solid He (*He) have been calculated using
density functional theory formulated in the framework of the exact muffin-tin orbitals method. The theoretical
results, obtained within the generalized gradient approximation for the exchange-correlation functional, are in
good agreement with the experimental data available for pressures between 13 GPa and 32 GPa. We predict
that at 0 K the hexagonal phase of He remains mechanically and thermodynamically stable up to the highest
pressure considered in the present study (~150 GPa). The calculated anisotropy ratios of He are similar to
those observed in the case of hexagonal metals with ¢/a~1.63. On the other hand, we find that hydrostatic
pressure has negligible effect on the anisotropy of He. This indicates that He can be used as a quasihydrostatic
medium in high-pressure experiments up to at least 150 GPa.
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With the refinement of new high-pressure techniques,
there has been accelerated interest in the properties of rare
gas solids (RGS). Solid helium is one of the most important
among the RGS’s, because it is considered as the best quasi-
hydrostatic medium.!* Consequently, modern He-based
technologies have made considerable progress in the experi-
mental high-pressure studies. Especially, the diamond anvil
cell technique, in conjunction with Brillouin scattering spec-
troscopy and synchrotron x-ray method, has proved to be a
very useful approach for measuring the elasticity of solids at
extreme conditions.>8

An obvious question that is raised in connection with the
high-pressure measurements is the hydrostatic limit of the
pressure medium.! Below this pressure limit, the medium
acts as a quasihydrostatic pressure-transmitting environment.
At higher pressures nonhydrostaticity develops, which might
affect the measured physical properties. During the last few
decades, numerous experimental investigations focused on
the high-pressure physical properties of solid He.*~'® Most
recently, Zha et al.® determined the complete set of room-
temperature single-crystal elastic constant of He between 13
and 32 GPa. From the theoretical side, a number of model
calculations were carried out on the dense RGS’s.!”2! For
instance, Tsuchiya and Kawamura,?> using the first-
principles theories, calculated the elastic properties of Ne,
Ar, Kr, and Xe for pressure up to ~100 GPa. However, to
our knowledge, no ab initio study of the elastic properties of
He has been reported so far. The aim of this study is to fill
this gap and present a density functional>»?* description of
the equation of state and elastic properties of solid He under
high-pressure.

The self-consistent calculations were performed using the
Exact Muffin-Tin Orbitals (EMTO) method.>>* For the
exchange-correlation functional we employed the local den-
sity approximation (LDA).?® In addition to the LDA, the to-
tal energy was calculated using two gradient level approxi-
mations, namely the local airy gas (LAG) (Ref. 31) and
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generalized gradient (GGA) (Ref. 32) approximations. None
of these functionals account for the long-range van der Waals
interaction between loosely packed He atoms.>* Therefore, in
the present work we limit our study to high pressures, where
the van der Waals term is expected to become minor com-
pared to the many-body interatomic forces.?

The equation of state of He was determined for the hex-
agonal close packed (hcp), face centered cubic (fcc), and
body centered cubic (bcc) crystallographic structures. The
first two structures are present in the low-pressure phase dia-
gram of He,!*3435 whereas the latter was suggested to be the
stable phase at very high pressures.'®!7:!° The total energies
were calculated for 12 different volumes between ~20 and
~60 Bohr® per atom. According to the experimental equa-
tion of state,®3* these volumes correspond, approximately, to
pressures between 10 and 150 GPa. For each volume V, the
theoretical hexagonal axial ratio (c¢/a), was determined by
minimizing the total energy E(V,c/a) of hexagonal structure
calculated for 7 c¢/a ratios close to the energy minimum. For
the elastic constant calculation, the bulk modulus B was ob-
tained from a Murnaghan-type function’® fitted to the ab ini-
tio total energies. Then, the five hexagonal elastic constants
C11> C12, €135 €33, and c44 Were obtained from the bulk modu-
lus, B=[cx3(cy +¢12)=2¢1,]/C, the logarithmic volume de-
rivative of c/a, dln(c/a)y/dIn V=—(c33—c—cja+c13)/C,
where C=cyj+cp+2c33—4cq3, and three isochoric strains,
as described in Ref. 37. Using volume conserving deforma-
tions allows us to identify the calculated elastic constants
with the stress-strain coefficients used for wave propagation
velocity.’’=3? In the calculations we included the s, p, and d
EMTOQ'’s. The Green function was calculated for 32 complex
energy points distributed exponentially on a semicircular
contour enclosing the He 1s? states. For the reciprocal space
integrals a sufficiently thick k-mesh was used, so that the
total energy for elastic constant calculations was converged
to within ~1 uRy.
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FIG. 1. Theoretical (present results) and experimental equation
of state for solid He. The theoretical pressure-volume curves have
been obtained using the LDA (open squares), LAG approximation
(open diamond), and GGA (open triangle) for the exchange-
correlation functional. Filled circles: room-temperature data (Ref.
8); filled squares: temperature reduced data (Ref. 34). In the inset,
we show the theoretical enthalpy as a function of pressure for the
bce and fee structures relative to the stable hep phase.

At low temperature and pressures below ~12 GPa, He
crystallizes in the hep structure.'*3*3 With increasing tem-
perature a fcc phase is stabilized from ~15K and
~0.1 GPa to ~285 K and ~12 GPa. Apart from this small
fcc stability field, the hep structure remains the stable phase
of solid He up to 58 GPa, the highest pressure considered
in experiments.>* The stability of the hcp phase is fully
supported by the present theoretical results. In the inset
of Fig. 1, we plotted the enthalpy difference (AH;..=Hj..
—Hhcp) as a function of pressure p. For comparison, in the
inset we also show AH,, obtained for the bee structure. All
three density functionals predict the hcp structure as the
most stable low-temperature phase of He. At 10 GPa the
calculated LDA, LAG, and GGA enthalpy differences are
AH.=0.03, 0.01, and 0.02 mRy/atom and AH. =0.44,
0.28, and 0.29 mRy/atom. We find that the pressure further
stabilizes the hcp phase relative to the cubic structures,
with an average JAH/dp slope of 0.15 and
0.70 mRy per 100 GPa, for the fcc and bcc structures, re-
spectively.

The LDA, LAG, and GGA equation of states for the hcp
He are compared with the available experimental data®3* in
Fig. 1. As one can see, the LDA strongly overestimates the
bonding, giving ~15% smaller volume near p=15 GPa than
the experiment. This overbinding is reduced to below 5% at
pressure above 100 GPa. At the same time, both gradient
level approximations give results in good agreement with
experiments. The correspondence between GGA and experi-
ment is remarkable at pressure <30 GPa. For higher pres-
sure LAG outperforms the other two approximations.

From a theoretical point of view, it is instructive to inves-
tigate the accuracy of the present density functionals at low
pressures. With this purpose, we carried out additional self-
consistent calculations for volumes between 60 and
300 Bohr?. From these results, for the LDA equilibrium vol-
ume we obtain 72 Bohr®. This value is significantly lower
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FIG. 2. Elastic constants of hcp He as functions of pressure.
Open triangles: present results; filled circles: experimental data
(Ref. 8). In the insets, data between 0 and 40 GPa are shown.

than the low-pressure experimental data: 237 Bohr® at
25 kbar, obtained by Franck and Wenner,® and 309 Bohr® at
zero pressure, quoted by Young.** Within the gradient level
approximation, no energy minimum was found in the energy-
volume relation, in accordance with Ref. 22. However, be-
cause the experimental elastic constant for the hcp He are
available for p=13-33 GPa,® and for this pressure range the
GGA was found to give the best agreement with the experi-
mental p-V data, in the rest of the paper we present and
discuss only results obtained within this approximation.

The complete set of hexagonal elastic constants is
plotted as a function of pressure in Fig. 2. We can see that the
theoretical elastic constants agree very well with the avail-
able experimental data.® The small discrepancies (see insets)
are below the typical errors obtained for the transition metals
in conjunction with the GGA.3'*42 We find that all five
elastic constants are positive and increase monotonously
with p for the entire pressure interval considered in this
study. The conditions for the mechanical stability of a hex-
agonal crystal are: c,>0;c;1>|cpal, ¢j1c33>(cp3)* and
c33(cp+c12)>2(c13)** The present theoretical ¢;; values
satisfy these conditions for any pressure p, ensuring the me-
chanical stability of hcp He under pressure.

Within the accuracy of the EMTO method, the axial ratio
of the hexagonal He is calculated to be ideal, i.e. (c/a),
=~ 1.63, and show negligible volume dependence. This is in
line with experimental findings below 23.3 GPa.'* Due to
this flat volume dependence of (c/a),, at each pressure we
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FIG. 3. The bulk and shear modulus of hcp He as a function of
pressure. Open triangles: present results; filled circles: experimental
data (Ref. 8). In the inset, data between 0 and 40 GPa are shown.

have c33—c;;=cj,—c3. The calculated anisotropy of the
compressional wave, Ap=cs3/cyy, is 1.12-1.13, and shows
no pressure dependence. This result is in slight disagreement
with experiment, where ¢;;=~c3; and c;,~c; was found
within the experimental error bars. Therefore, the theoretical
results violates the isotropy condition for a hexagonal
symmetry.*3> The pressure factors of the two shear wave
anisotropies, Ag; =(c;+c33—2c13)/4cy=1.60-1.66, and
Agy=2c44l(cy;—¢12)=0.87-0.83, are also calculated to be
small. These anisotropy ratios are somewhat different from
the experimental ones.® In particular, we find that the calcu-
lated Ag, for He is relatively close to that of solid H,.® It is
interesting to note that the theoretical anisotropy ratios are
within the range of those obtained for hexagonal metals with
(c/a)y=1.63. For instance, Mg has Ap=1.04, Ag;=1.19, and
Ag,=0.98. These figures for Co are 1.17, 1.52, 1.06 and for
Re are 1.12, 1.36, 0.95.* We conclude that at 0 K the hcp He
has similar anisotropy as the hcp metals from the Periodic
Table.

In Fig. 3, the theoretical bulk modulus (B) and shear
modulus (G) are compared with experimental values.® The
polycrystalline shear modulus was calculated from the
single-crystal elastic constants using the Voigt-Reuss-Hill av-
eraging method.*> The Debye temperature ®, and the two
sound velocities Vp and Vj, derived from the polycrystalline
elastic moduli, are plotted in Fig. 4. In both figures, we see a
very good agreement between the theoretical and experimen-
tal data over the whole pressure range considered in the ex-
periment.

In the Voigt-Reuss-Hill averaging method, one calculates
the arithmetic mean of the upper (Gy) and lower (Gp)
bounds for the shear modulus. The Gy and Gy bounds can
also be used to characterize the polycrystalline solids formed
by randomly oriented anisotropic single crystal grains.*®
These quasi-isotropic materials are isotropic only in a statis-
tical sense, and, therefore, it is useful to define a measure of
elastic anisotropy as A=(Gy—Gg)/(Gy+Gg).* In the case of
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FIG. 4. Debye temperature (upper panel) and sound velocities
(middle and lower panels) of hcp He as functions of pressure. Open
symbols: present results; filled circles: experimental data (Ref. 8).
In the insets, data between 0 and 40 GPa are shown.

hcp He, our calculated anisotropy ratio is ~0.02, and shows
negligible pressure dependence. Most of the cubic and low
symmetry crystals have elastic anisotropy ratios between
0.0-0.21.4346 On this scale, the anisotropy of hcp He can be
considered to be small.

In summary, using the EMTO method, in combination
with three density functionals, we have calculated the equa-
tion of state and elastic properties of solid He. We have ob-
tained that all three functionals predict the hcp structure as
the most stable low-temperature phase of He at pressures
between ~10 and 150 GPa. At these pressures, the LAG and
GGA provide equation of states, which are in excellent
agreement with experiments, whereas the LDA strongly
overestimates the bonding. The calculated GGA elastic con-
stants are also in good agreement with experimental data.
Theory predicts that the anisotropy of hcp He is comparable
to that of hexagonal metals with ¢/a=1.63. Therefore, this
solid, at least at low temperature, fails to be isotropic. On the
other hand, no peculiar features in c;; have been observed
with increasing pressures. We have found that the anisotropy
ratios of He exhibit a very weak pressure dependence. This
result supports that solid He can be used as a quasihydro-
static pressure-transmitting medium in high-pressure devices
up to at least 150 GPa.
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