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Electron backscattering in a Luttinger liquid with an impurity is investigated in the presence of zero point
motion of the phonon lattice. The impurity can mean either a mass defect, an elastic defect, or a pinning defect.
The phonon spectrum is then affected by the presence of the defect, which enters in the renormalization group
�RG� equations for backscattering. The RG equation becomes dependent on the energy cutoff for finite Debye
frequency �D giving rise to finite energy effects. We compute the local density of states and show how the
renormalization group flow is affected by a finite �D.
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I. INTRODUCTION

It is well known that electron-electron interactions give
rise to Luttinger behavior in one-dimensional metallic sys-
tems. Standard studies assume the existence of an instanta-
neous interaction between electrons. Retardation effects need
to be included if the interactions involve excitations, such as
phonons, of energies much lower than the electronic band-
width. An interesting class of materials where such excita-
tions are expected to play a role are the carbon nanotubes,1

where one-dimensional features coexist with significant
electron-electron and electron-phonon interactions.

The effect of the coupling to acoustic phonons on a Lut-
tinger liquid was studied in Refs. 2 and 3. An interesting new
feature is the existence of the Wentzel-Bardeen �WB�
instability4,5 for sufficiently large couplings. The analysis of
the backscattering induced by an impurity on the transport
properties of a Luttinger liquid6 has also attracted a great
deal of interest. The extension of this problem to the case of
a static impurity interacting with a coupled electron-phonon
system is discussed in Ref. 7.

In the present work, we generalize previous work to the
case where the source of backscattering in a one-dimensional
�1D� system has internal dynamics, and retardation effects
have to be taken into account. We consider, in particular, the
effect of a local modification of the elastic properties of a
Luttinger liquid where the interaction between the electrons
and the acoustic phonons is not negligible. We think that this
study can be relevant for the carbon nanotubes. The electron-
phonon coupling in nanotubes has been estimated to be
significant,8 and it is possibly the origin of superconducting
features at low temperatures.9,10 For sufficiently small radii,
the nanotubes are expected to be close to the Wentzel-
Bardeen instability.11 The repulsive electron-electron interac-
tion is also large.12–14 Both impurities and phonons are ex-
pected to play an important role in the transport properties of
nanotubes.15–18 Note also that the Luttinger liquid character-
istics of carbon nanotubes have been studied by measuring

the changes induced by impurities and contacts on the trans-
port properties.19

The next section discusses the model of the bulk system
studied in this paper. The different types of defects consid-
ered here are described in Sec. III. The method of calculation
used, based on the renormalization group �RG� approach de-
scribed in Ref. 6 is presented in Sec. IV. A brief analysis of
the relations of our work and known features of carbon nano-
tubes is given in Sec. V. A discussion and the main conclu-
sions of the paper can be found in Sec. VI.

II. THE ELECTRON-PHONON CHAIN

Consider a 1D chain �length L� of N atoms, mass m, each
pair separated by a, and elastic constant K between each pair
�see Fig. 1�. In the absence of inhomogeneities, the action
describing the lattice is written in terms of the Fourier com-
ponents of the lattice deformation field dk,�,

Sph =
1

2
�a�

k�
��2 − �D

2 sin2� ka

2
��dk,�d−k,−�, �1�

where �D is the Debye frequency. The sound velocity is c
=a�D /2=a�K /m, and �=m /a stands for the linear mass

FIG. 1. �a� An impurity atom is inserted in the atomic chain,
resulting in a mass defect, �b� a structural deformation of the lattice
results in an elastic defect, �c� interaction of one atom with an
underlying substrate results in a pinning defect.
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density. We will in the following take the continuum ap-
proximation 4 sin2�ka /2� /a2→k2.

The charge sector of the electronic degrees of freedom is
described as a continuum Luttinger model �note that phonons
and lattice deformations do not couple to the spin sector�.
Using a standard bosonized notation, we have

Se =
1

2

a

uK�
�
k�

��2 − u2k2��k,��−k,−�. �2�

Note the analogy between Eqs. �1� and �2� in the limit of
long wavelengths. One can identify � with �uK��−1 and the
sound velocity c with the charge velocity u. Usually u is
greater than c, since it is of the order of vF in most cases, but
this need not be the case in the presence of interactions.

We describe the electron-phonon interaction by a defor-
mation potential

Se−ph = −
a

uK�

b��
k�

k2�k,�d−k,−�, �3�

where the approximate sign holds for long wavelength exci-
tations. The reduced coupling strength is defined as b
	g�uK� /� and the reduced mass density as �2	�uK�.

The complete model can be then be expressed in terms of
a diadic Green’s function

S0 =
1

2�
k�


�−k−�,d−k−��G0
−1�k,����k�

dk�
� , �4�

where the Green’s function of this action then reads after
inversion

G0�k,�� =
uK�

2c�D
�
�=±

��̃2 −
v±

2

c2 k̃2�−1

���̃2 − k̃2 bc2

� k̃2

bc2

� k̃2 1
�2��̃2 − u2

c2 k̃2� � . �5�

Here k̃= �ka� /2 is the dimensionless momentum, �̃=� /�D is
the dimensionless frequency, and

v± 	�1

2

c2 + u2 ± �4c4b2 + �c2 − u2�2� �6�

are the group velocities of the polarons �hybridized electron
and phonon modes� in the bulk. Note that the Wentzel-
Bardeen instability comes about when v− becomes imagi-
nary, i.e., for coupling strength b�u /c. This completes the
description of the homogeneous electron phonon system.

III. THE DEFECTS

A. Local change in the mass density

We assume that the defect changes locally both the mass
density and the lattice elastic constants. A change in the mass
density at position x0 is described by the action

	Sm =
1

2

 dt	m��tdx0,t�2 =

1

2�
�

	m�2dx0�dx0−�. �7�

This results in a modified Green’s function which is no
longer translational invariant. In the absence of electron-
phonon coupling, the phonon Green’s function becomes

�G�x0,���22 =
b=0 uK�

2c�D

1

�2�̃2�1 − 1/�̃2 + 	�2�̃2
�8�

with the notation 	�2=uK�	m /a, which ranges from 	�2=
−�2 �the mass at position x0 is zero� to infinity. The retarded,
advanced, and causal Green’s functions are obtained by add-
ing a small imaginary part �with the corresponding sign� to
�, and choosing the principal resolution of the square root, in
which the branch cut is in the negative real axis.

In the absence of a mass defect, we obtain a simple pho-
non band for the local density of states �LDOS�. Introducing
a finite defect modifies the phonon spectrum. We can de-
scribe the changes induced by the defect by the transmission
coefficient for phonons of energy w̃. The transmission coef-
ficient at low energies is

T�w̃� =
1

1 + iw̃ 	m
m

. �9�

Hence, limw̃→0T�w̃�=1. The defect is transparent for low en-
ergy phonons. This result is a consequence of the fact that
the defect does not break the translational invariance of the
lattice. Hence, the system supports long wavelength phonons
of low energy. The deviations from this low energy limit take
place at energies w̃�m /	m. For massive defects, 	m
m,
the transmission coefficient tends to zero at finite, but low,
energies. The lattice is effectively divided into two discon-
nected parts in this range of energies.

The general case �b�0� requires some matrix inversion,

G�x0,�� = �G0�x0,��−1 + �0 0

0 	m�2 ��−1

. �10�

Analytic expressions can be obtained for all ranges of
	m. Regardless of the presence of the defect, the electron
band and the phonon bands hybridized, as the phonon LDOS
shows a peak at frequency u�D /c, similarly the electron
spectrum shows a peak at �D. The fact that the perturbation
enters in Eq. �10� multiplied by �2 is a sign of its irrelevance
at low energies, as discussed earlier.

B. Local change in the elastic constants

In the case of an elastic defect, one modifies the spring
constant between two atoms of the chain x0 and x1. The
action associated with this type of defect then reads

	SK = − 	V = −
1

2

 dt	K�dx1,t − dx0,t�2

= −
1

2�
�

	K
dx0−�,dx1−��� 1 − 1

− 1 1
��dx0�

dx1�
� .

�11�
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Note that contrary to the case of a mass defect, here two
phonon fields �at locations x0 and x1� enter this action. In
order to obtain the local density of states, we first derive the
3�3 local Green’s function matrix G0 associated with fields
�x0,�, dx0,�, and dx1,� in the absence of the perturbation,

iG0 = ���x0,��x0,−�� ��x0,�dx0,−�� ��x0�dx1−��

�dx0,��x0,−�� �dx0,�dx0,−�� �dx0,�dx1,−��

�dx1,��x0,−�� �dx1,�dx0,−�� �dx1,�dx1,−�� � ,

�12�

which requires integration of the full Green’s function of Eq.
�5� over momentum. Next, Dyson’s equation is used to take
the defect into account,

G = G0 + G0 · �V�1 − �VG0�−1 · G0, �13�

with �V the potential matrix associated with the action �12�,

�V = 	K�0 0 0

0 1 − 1

0 − 1 1
� . �14�

In the absence of electron-phonon coupling, analytic expres-
sions for the perturbed phonon Green’s function for dx0�,
G�22 are obtained,

�G�22 =
uK�

2c�D

� K
	K + 1� − 2��̃2 + �̃2�1 − 1/�̃2�

� K
	K + 1��̃2�1 − 1/�̃2 + �̃2

. �15�

The phonon transmission coefficient at low energies can be
written as

T�w̃� =
1

1 − i 	K
K+	Kw̃2

. �16�

When the electron-phonon coupling is finite the imagi-
nary part of the local Green’s function can be negative even
if 	K is within its allowed range. This result is a local coun-
terpart of the Wentzel-Bardeen instability of the extended
version. Similar instabilities have been studied in other
strongly correlated systems.20

As in the case of a local change in the mass distribution,
a local modification of the elastic constant does not change
the value of the transmission coefficient at low energy, as
this perturbation does not alter the translational invariance of

the system. The range of energies for which the transmission
coefficient is close to one is w̃��K /	K.

C. Pinning of the lattice

We can also consider the case where the lattice is pinned
by an external perturbation. Then, the action due to this de-
fect is

	SK = − 	V = −
1

2

 dt	Kdx0,t

2 = −
1

2�
�

	Kdx0−�dx0�.

�17�

Using the methods discussed earlier, we find

G�x0,�� = �G0�x0,��−1 + �0 0

0 	K
��−1

. �18�

In this case the perturbation is relevant at low energies, and
the transmission coefficient goes to zero at low energies. The
lattice is effectively divided into two decoupled pieces.
When the electron-phonon coupling is zero, the phonon
transmission coefficient at low energies is

T�w̃� =
w̃

w̃ + i 	K
2K

. �19�

Above a crossover energy, w̃�	K /K, the defect is transpar-
ent to the phonons, and the transmission coefficient ap-
proaches one.

IV. ELECTRON BACKSCATTERING

A. Flow equations

The defects considered in the previous section modify the
phonon and electron LDOS. Now we address how each type
of defect affects electron backscattering. We consider here
the limit of weak backscattering only. Then, without loss of
generality, the action corresponding to a short range potential
reads

	Se =
1

4
�e�

rs

 d
�rsx0


+ �−rsx0
 = ¯

= �e
 d
 cos��2���x0
�cos��2���x0
� . �20�

FIG. 2. Backscattering flow
diagram for a mass defect and two
different values of the cutoff, �
=�D �left� and �=0.2�D �right�.
The lower gray zones are unphysi-
cal, since they correspond to a
negative substitute mass. Unlike
in the elastic defect case, here the
defect resonance always remains
in the unphysical region.
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Following Ref. 7, the flow of the electron backscattering
�e induced by the defect obeys the equation

2

�e

d�e

dl
= 1 − �„G�1,1�x0,�� + G�x0,− ��1,1. �21�

� is the cutoff which scales as �=e−l�0, and G�x0 ,�� is the
Matsubara Green function, which results from performing a
Wick’s rotation on the action. After the Wick’s rotation, us-
ing the path integral formalism, the weight of the paths be-
comes e−S instead of eiS, where

S = �
k�


�,d�G−1
�,d�†, �22�

instead of

S = �
k�


�,d�G−1
�,d�† �23�

�where G was chosen in the causal prescription for purposes
of convergence�. With these definitions it can be shown that
G�k ,��=−G�k , i��. This quantity is real, due to the fact that
G�k ,−��=G�k ,��.

The main difference between the flow of the backscatter-
ing term in Eq. �21� and the flow associated with elastic
scattering in Luttinger liquids6 is the nontrivial cutoff depen-
dence in the right-hand side in Eq. �21�. Retardation effects
can also been induced by elastic defects in systems of elec-
trons coupled to phonons7 due to the difference between the
Debye energy, �D, and the electronic bandwidth. If the de-
fect changes the elastic properties of the lattice, a different
crossover at energies lower than �D is also possible, as dis-
cussed in Sec. III B.

At the lowest energies or temperatures, a local change in

the elastic properties or the mass density does not affect the
phonon transmission coefficient. At these scales, the defect
plays no role, and the scaling of the backscattering term is
given by the results in Ref. 7. At higher energies or tempera-
tures, although they can be small compared to �D, the pho-
non transmission coefficient can be significantly reduced,
more so the closer the system is to the bulk Wentzel-Bardeen
instability. As the quasiparticles are made up of a combina-
tion of electron and phonon modes, this effect tends to en-
hance the electronic backscattering.

B. Mass defects

The sign of the flow of the backscattering term in Eq. �21�
allows us to divide the parameter space into regions where
the flow is renormalized towards higher values �relevant� or
towards lower values �irrelevant� at a given energy. These
regions are shown in Fig. 2 for a mass defect �see Sec. III A�.
The separatrix between the two regions tends to be a straight
line, independent of 	M at low energies, in agreement with
Ref. 7, where a case equivalent to 	M =0 was considered. At
higher energies, the region where the backscattering term
appears to be relevant is enlarged. Hence, the flow of the
backscattering term is not homogeneous in the regions where
the right-hand side of Eq. �21� changes sign as function of
energy. The flow of a given initial backscattering term is
shown in the upper part of Fig. 3. The relevant flow is mo-
notonous, although it deviates significantly from an exponen-
tial dependence on energy6 near the critical line. The irrel-
evant region of the parameter space, which is specified by
the inequality

FIG. 3. Flow diagrams from a given initial backscattering term as function of energy. Top: defect which changes locally the mass with
	m=1. Bottom: defect which pins locally the lattice, with 	K=0.1. Different curves correspond to different K� electron interaction
parameters. Velocities were chosen to be u=2c and b was set to a constant 2% below the Wentzel-Bardeen instability.
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K� � K�crit
=

v+v−�v+ + v−�
�c2 + v+v−�u

, �24�

is nonmonotonous close to the WB instability, giving an en-
hanced backscattering of electrons when we are closed to the
K�crit

boundary.

C. Elastic defects

The flow of the backscattering term is similar when the
defect changes the elastic constants of the lattice �see Sec.
III B�. The main difference is that a local Wentzel-Bardeen
instability can take place even when the modified elastic con-
stants are positive, and the bulk is stable. The boundary of
the locally unstable region is given by

	K

K
�

	Kcrit

K
= − �v+v−

uc
�2

= − 1 + � b

u/c
�2

, �25�

and is marked by a dashed boundary in Fig. 4. Near this
	Kcrit line we find a narrow sliver where the electronic back-
scattering term decreases at high energies, although it can
eventually be relevant at low energies. This nonmonotonous
behavior is the inverse of the one discussed for a mass de-
fect. The asymptotic �→0 �vanishing cutoff� boundary for
relevant-irrelevant behavior of backscattering on elastic de-
fects is correctly derived in Ref. 7, and it is exactly the same

as the K�crit
of the mass defect. However, at finite temperature

and K��K�crit
�repulsive electrons�, backscattering from

such defects can be strongly suppressed when we are close to
K�crit

from below and to the local WB instability at 	Kcrit.
The experimental relevance of this is greater than the bulk
Wentzel-Bardeen instability, since the condition 	K�	Kcrit
is much more easily achieved than the bulk instability, and
can have measurable effects on conductance at finite tem-
peratures. Typical flow diagrams of backscattering amplitude
for a given initial value as function of energy and for differ-
ent bulk parameters are given in Fig. 5. One can clearly see
how the nonmonotonous behavior discussed above is
strongly enhanced near the critical line �main figure�.

D. Pinning of the lattice

A representative phase diagram for the case when the lat-
tice is pinned by a defect which breaks translational invari-
ance is shown in Fig. 6. In this case, and at finite frequencies,
the relevant region is reduced, giving rise to a nonmonoto-
nous renormalization of the backscattering amplitude that
can be suppressed in a similar way as a mass defect could be
enhanced at finite frequencies. This effect, as in the case of a
substitute mass, is stronger the closer the system gets to the
bulk instability. The flow of a given initial backscattering
term is shown in the lower part of Fig. 3 for a system close

FIG. 4. �Color online� Back-
scattering flow diagram for an
elastic defect and three different
values of the cutoff, �=�D �left�,
�=0.2�D �right� and the case of
very small cutoff �=0.01�D

�lower plot�. The white and black
regions denote relevant and irrel-
evant flow of the backscattering
respectively. All gray regions
mean either an unstable system

above the dashed line, see discus-
sion after Eq. �16�� or an unphysi-
cal situation �	K�−K, below the
dashed line�. The two tones of
gray in those regions have only a
mathematical relevant/irrelevant
meaning. The local instability
boundary �bounded by the dashed
line� corresponds to −1�	K /K
�	Kcrit /K=−�v+v− /uc�2. In the
lower plot we have emphasized
the irrelevant backscattering sliver
responsible for the effective sup-
pression at finite energies of elas-
tic defect backscattering close to
	Kcrit.
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to the Wentzel-Bardeen instability. Note, moreover, that the
pinning defect case presents a peculiar scaling of the flow
equations, which only depend on 	K /� �see vertical axis of
Fig. 6�.

V. APPLICATION TO CARBON NANOTUBES

In carbon nanotubes, the unit cell contains a large number
of atoms and electronic orbitals. The phonon and electronic
spectra are made up of number of subbands, which have
different transverse quantum numbers. In metallic nanotubes,
the bands at the Fermi level are separated from other sub-
bands by gaps which scale as Wa /R, where W�3 eV deter-

mines the total width of the � band, a�1.4 Å is proportional
to the distance between carbon atoms, and R is the radius of
the nanotube. Thus, a low energy description using a single
subband is justified at room temperature, or lower, for nano-
tubes of radius R�10–40a. The phonon spectrum of the
nanotubes resembles closely that of a rolled graphene
layer.21,22 Due to the small mass of the carbon atom, the
optical modes of a single graphene layer are at relatively
large energies, �opt�0.2 eV. The low energy part of the
spectrum can be described as a set of subbands derived from
the acoustical modes of graphene. These subbands are
gapped at low energies, except for longitudinal and trans-
verse modes which show a linear dispersion at low energies,
and a flexural mode which disperses quadratically.23

The honeycomb structure which forms the backbone of a
graphene layers admits many types of lattice defects,24 and
the relevance of some of them, like dislocations and pairs of
heptagons and pentagons, has been studied.25,26 Within the
long wavelength description used in this work, we need only
to know how these lattice defects modify the local mass den-
sity, elastic constants, and the induced scattering by the elec-
trons. Calculations of the distortion in the electronic structure
show significant changes near the Fermi level, implying that
the backscattering can be substantial �note that, on the other
hand, the delocalized nature of the electronic states around
the circumference of the nanotube tends to suppress the
backscattering by defects27�. It is unclear by how much to-
pological lattice defects such as heptagons and pentagons
modify the mass density. An upper bound is probably given
by the presence of a vacancy or an interstitial carbon atom,
leading to a local fractional change in the mass of order a /R,
where a is the carbon-carbon distance, and R is the radius of
a nanotube. The presence of heavy impurities coupled to the
nanotube will enhance locally the mass by a larger amount.

FIG. 5. Backscattering flow diagram for a defect which elasti-
cally pins the lattice at a given site �due, e.g., to the interaction with
a substrate�.

FIG. 6. Flow diagrams from a given initial backscattering term as function of energy. The defect changes locally the elastic constant. In
the inset 	K�0 while in the main plot 	K was set to a negative value closer than 1% to the critical 	K which is 	K=−0.4375 for the
parameters used. Velocities are u=2c and b=1.5 is a constant for all curves.
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There are no estimates of how lattice defects modify the
electric constants. Vacancies or voids can be considered
small cracks, and they will reduce the rigidity of the lattice.
On the other hand, deformations which shorten the carbon-
sccarbon bond may make the lattice stiffer.

To a first approximation, the electron-phonon coupling in
the fullerenes can be derived from the effect of a distortion
of the carbon-carbon bond on the hopping integral which
describes the electronic � band.28,29 The low energy flexural
modes do not significantly modify the bonds, and should be
weakly coupled to the electrons. The subbands derived from
the graphene acoustical modes lead to different modulations
in the hoppings around the circumference of the nanotube.
We expect that the branch which gives rise to a uniform
change in the hopping will be the one most strongly coupled
to the electrons. Thus, although the nanotube structure leads
to the existence of many subbands, in a first approximation
we can consider only one of them, defined for all energies
between zero and the Debye energy, �0.1–0.2 eV.

Thus, lattice defects in carbon nanotubes can well lead to
the generic effects described in the preceding sections. A
more quantitative analysis lies beyond the scope of this pa-
per, as it requires a detailed knowledge of the way in which
specific defects modify the elastic constants and mass den-
sity in the nanotube.

VI. CONCLUSIONS

We have analyzed the role of lattice defects in Luttinger
liquids with significant interactions between electrons and
acoustical phonons. The quasiparticles of the system are then
combinations of electron-hole pairs and phonons. Previous
approaches of this problem had only considered the effect of
phonons as an effective, frequency independent, interaction
parameter for the Luttinger model. Alternatively, defects
have also been studied as scatterers without internal dynam-
ics. The present work takes into account the full dynamical
features of the impurity, which are reflected on the scattering
properties of the defect. We expect the model to be valid at
temperature or energy scales comparable to or lower than the
Debye frequency of the system, which is usually lower than
the width of the electronic conduction band. Our results are
relevant for materials made up of light elements, where the
dispersion of the acoustic modes cannot be neglected, such
as the carbon nanotubes.

A lattice defect which does not break the translational
invariance of the lattice is irrelevant at low energies, as it is

transparent to low frequency phonons. The borderline which
separates the regions where electronic backscattering is rel-
evant or irrelevant is not affected by a defect of this type, and
depends only on bulk parameters.7 We have found that there
is a range of energies, which can be much lower than the
Debye frequency, �D, where the defect scatters the phonons
strongly. In this region of energies or temperatures, the elec-
tronic backscattering can be significantly enhanced. Thus the
flow of an electronic backscattering term can be nonmonoto-
nous, unlike the case of a Luttinger liquid with elastic
scattering,6 giving rise to measurable conductance depen-
dence on temperature, for example �note that the conduc-
tance at a given temperature is determined by the value of
the effective backscattering term when the cutoff is compa-
rable to the temperature�. Even in a system with attractive
interactions, a mass defect can effectively block the transport
over a significant range of temperatures. On the other hand,
in a system with repulsive electronic interactions an elastic
defect that is close enough to the local Wentzel-Bardeen in-
stability can prove to be unexpectedly transparent to elec-
trons. This local instability can be induced by a strong
enough local softening of the elastic constant of the chain in
the presence of electron-phonon interactions.

Note that the mass defects described here correspond in
physical situations to the substution of an impurity atom in a
periodic chain; a local change of an elastic constant can be
attributed to a local deformation of the periodic lattice,
achieved, for example, by bending the system at a specific
location; a pinning defect is obtained if an atom of the lattice
is functionalized and bound strongly to a neighboring sur-
face.

Finally, the analysis presented here can be described as a
simple situation where a nonmonotonous energy or tempera-
ture dependence occurs, related to the presence of an un-
stable fixed point near the flow of the effective Hamiltonian.
As common to other renormalization group studies, we ex-
pect that the main features can apply to a variety of coarse
grained descriptions of one-dimensional systems.
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