
Structural and electronic properties of Au, Pt, and their bimetallic nanowires

Abu Md. Asaduzzaman* and Michael Springborg†

Physical and Theoretical Chemistry, University of Saarland, D-66123 Saarbrücken, Germany
�Received 26 July 2005; published 21 October 2005�

We have carried out first-principles, full-potential, density-functional calculations on different types �linear,
zig-zag, double zig-zag, and tetragonal� of infinite, periodic, atomic wires of Au and Pt as well as on mixed
chains containing both Au and Pt. In particular, structural degrees of freedom are optimized, and the band
structures of the different types of wires are reported and discussed. The bond lengths for Au and Pt are found
to be somewhere between those of the corresponding dimer and those of the corresponding crystalline phases
of Au and Pt. The bond length for all three systems is progressively increased as we move from the linear to
the tetragonal structure, as the number of nearest-neighbor atoms is increased. Moreover, the bond angles are
around 60° as in crystalline system. The bond length for Au-Pt wire is in between the values of pure Au and
Pt wires and the bond angles around 60° suggesting the possible formation of Au-Pt bimetallic materials. All
wires are found to be metallic and the bands closest to the Fermi level, responsible for conduction, are analyzed
and discussed.

DOI: 10.1103/PhysRevB.72.165422 PACS number�s�: 61.46.�w, 68.65.La, 73.22.�f

I. INTRODUCTION

Nanostructures, i.e., materials whose spatial extension in
at least one dimension is in the nm range, have received a
steadily growing interest as a result of their peculiar and
fascinating properties and applications superior to their bulk
counterparts. The ability to generate such one-dimensional
nanostructures is essential to much of modern science and
technology. It is generally accepted that quantum confine-
ment of the electrons by the potential wells of nanometer-
sized structures may provide one of the most powerful and
versatile means to control the electrical, optical, magnetic,
and thermoelectric properties of functional materials. Among
those materials, one-dimensional �1D� nanostructures such as
wires, rods, belts and tubes have become the focus of an
intensive research owing to their unique properties.

There exists different experimental ways of fabricating
nanowires. In one approach they are grown at steps on cer-
tain crystal surfaces and, therefore, the structures of the re-
sulting nanowires will most likely depend critically on the
substrate. In other approaches, nanowires are synthesized in-
side some crystalline host that has sufficiently long and wide
pores to host the nanowires inside it. Also in this case, the
structures of nanomaterials may partly depend on the host.
Yet another approach is provided by the break-junction
method. In this method, nanowires of limited length can
form at the junction just before breaking. The fact that these
wires are of limited length may affect the properties signifi-
cantly.

In the present work we shall study chains of Au and Pt.
Au has become the prototype of metallic chains1 for which,
in particular, much information on linear chains has been
obtained. Two reports on experimental studies of linear,
monatomic gold nanowires2,3 caused an intense research ef-
fort first of all devoted to characterizing their properties �e.g.,
structural, electronic, magnetic, etc.�. Originally it was found
experimentally that the bond length equals 3.5–4 Å, and
much research was carried out theoretically to understand
this exceptionally long bond length �since the bulk Au-Au

bond length is 2.88 Å�. Later it was found experimentally
that the bond length in a monatomic gold nanowire is around
2.5 Å,4 in agreement with theoretical results. Of relevance to
the present work is the result of Portal and co-workers5 who
theoretically studied the stability of a gold nanowire and
showed that the relaxed structure of this system corresponds
to a zig-zag geometry. Recently, using scanning electron mi-
croscope, Wang et al.6 identified the formation of zig-zag
chains of Au on Ge�001� surfaces. On the other hand, Kondo
et al.7 synthesized gold nanowires and found that the thinnest
nanowire is 4 atoms wide and that the structure is related to
a tetragonal structure.

Besides Au, Pt is an important element for many quasi-
one-dimensional systems. Thus, Pt has been incorporated
into the backbone of conjugated polymers8 and it has been
shown9 that these Pt-containing polyynes have properties as
those of more well-known conjugated polymers. Also many
of the quasi-one-dimensional so-called MX chain
compounds10,11 have Pt atoms as a fundamental part. In these
materials, the Pt atoms are sixfold coordinated, whereas in
certain crystalline compounds like K2PtS2 quasi-one-
dimensional wires with fourfold coordinated Pt atoms are
found.12,13 In this case, the coordination may be either planar
or tetragonal. In all these case, no Pt-Pt bonds exist, which,
on the other hand, is the case for other quasi-one-
dimensional Pt-containing materials like Magnus’ green
salt,14 where, again, the Pt atoms are sixfold coordinated.

But also pure-Pt quasi-one-dimensional systems have
been produced. Thus, Oshima et al.15 have reported evidence
for the formation of single-wall platinum nanotubes. Further-
more, using mechanically controllable break junctions Smit
et al.16 have produced monatomic platinum nanowires.
Moreover, Husain et al.17 have reported the fabrication of a
platinum nanowire of 43 nm diameter, i.e., a rather thick
nanowire, whereas Fu et al.18 have prepared platinum nano-
wires of diameter 1.5–3 nm by an electron-beam thinning
method. Finally, fairly thick �i.e., 10–100 nm� nanowires of
Pt have been synthesized by Song et al.19

PHYSICAL REVIEW B 72, 165422 �2005�

1098-0121/2005/72�16�/165422�8�/$23.00 ©2005 The American Physical Society165422-1

http://dx.doi.org/10.1103/PhysRevB.72.165422


Bimetallic nanowires that are compositionally modulated
along the axis of the nanowire can form the basis for nano-
wire based devices including diodes,20 spin valves,21 and op-
tical labels �“Nanobar codes”�.22 One convenient method for
preparing such a nanowire is using template synthesis which
involves the electrodeposition of a metal into uniform cylin-
drical or prismatic pores of a host membrane. In a template
synthesis experiment, layered nanowires are obtained by
halting the electrodeposition of one metal, changing the plat-
ing solution for one containing a different metal ion, and
resuming depositions. Walter et al.23 described such a
method for synthesis of bimetallic nanowire of Au, Pt, and
Ag. Salem et al.,24 on the other hand, synthesized end-to-end
assembly of Au/Pt/Au multisegment nanowires using organ-
ics linkages. However, to the best of our knowledge, there is
no direct theoretical studies on the structural and electronic
properties of Au-Pt bimetallic nanomaterials, although few
experimental studies on the synthesis of different types of
bimetallic nanomaterials exist. Thus, Nakanishi et al.25

synthesized an Au-Pt nanoparticle alloy using a sonochem-
istry technique. Doudna et al.26 synthesized bimetallic
Ag-Pt nanowires using a radiolytic synthesis technique.
Liang et al.27 synthesized hollow bimetallic Au-Pt tubelike
one-dimensional nanomaterials. Using an electrodeposition
technique, Birenbaum et al.28 synthesized Ni-Au nanowires,
Chu et al.29 fabricated Fe-Pt nanowires, and, finally, Mallet
et al.30 synthesized Co-Pt nanowires.

Ultimately, metals prefer high coordination and closely
packed structures, making the quasi-one-dimensional struc-
tures the less likely ones. In particular, the linear chains that
have been the focus of most interest in the context of chains
of Au or Pt, may be considered highly unstable, whereas
more compact, quasi-one-dimensional chains may be more
stable. Thus, as a natural and relevant extension of our earlier
work on linear chains of gold31 and on different types of Ag
nanowires32 we shall first study how the properties of the
linear chains of Au or Pt change when the slightly more thick
structures of Fig. 1 are considered. However, not only
through variation of the dimensionality of the material it may
be hoped to vary the materials properties in a controlled way,
but also through the variation of the composition new possi-
bilities for controlled variations of materials properties
emerge. Despite this possibility, there exists very few studies
devoted to the properties of quasi-one-dimensional chains of
metals containing more types of metal atoms. In order to
explore the potential of this degree of freedom we shall here
address, first, the properties of different types of Au and Pt
nanowires, individually and, subsequently, we will study
how the properties are changed when Au and Pt form a bi-
metallic nanowire.

Surfaces of Au-Pt alloys are known to exhibit a phase
separation, so that the surfaces are Au-rich.33 It may be
speculated that this also means that in, e.g., break-junction
experiments where a nm thin junction is formed in a roughly
macroscopically extended material, the junction may consist
of essentially only one type of metal, say Au. Despite this
speculation, we shall here assume that the bimetallic nano-
wires are regular.

The paper is organized as follows: After a description of
our computational method, we discuss our results in detail.

Finally, a brief summary of our conclusions is offered.

II. COMPUTATIONAL METHOD

For the present study, we applied a density-functional
method that has been described in detail elsewhere34,35 and,
therefore, here shall be presented only briefly. We use the
Hohenberg-Kohn density-functional formalism36 in the for-
mulation of Kohn and Sham.37 The resulting single-particle
equations

ĥeff�i�r�� = �−
�2

2m
�2 + V�r����i�r�� = �i�i�r�� �1�

are solved by expanding the eigenfunctions in a basis set of
linearized muffin-tin orbitals �LMTOs�

�i�r�� = �
R� ,L,�

�L,��r� − R� �ci;R� ,L,�. �2�

A LMTO centered at an atom at R� and having an angular
dependence as specified through L��l ,m� is defined as a
spherical Hankel function times a harmonic function, hl

�1�

����r�−R� ��YL�r−R�ˆ , in the so-called interstitial region �i.e.,
outside all muffin-tin spheres�. Inside any atom-centered,
nonoverlapping, so-called muffin-tin sphere this function is
augmented continuously and differentiably with numerical
functions that are obtained by replacing the potential V�r�� in
Eq. �1� with its spherically symmetric part and for an energy
for which the resulting function has its major support, plus
its energy derivative. This leads to a basis set that is of lim-
ited size but still provides accurate solutions to Eq. �1�. It
shall be stressed that the calculations consider the full poten-

FIG. 1. Schematic representation of the wires considered in the
present work. From above the structures are the linear wire, the
zig-zag wire, the double zig-zag wire, and the tetragonal wire, re-
spectively. For the pure Au and Pt wires, all atoms are identical,
whereas the two types of atoms are placed as indicated in the figure
for the bimetallic wires.
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tial and the muffin-tin approximation is used solely in the
construction of the basis functions.

The basis set we are using consists of two subsets of s, p,
and d functions on all sites. The two sets differ in the decay
constants � of the Hankel functions, that were chosen as 0.7i
and 1.5i for the two sets, respectively. Finally, the radii of the
muffin-tin spheres were chosen equal to 2.2 a.u.

We assume that the wires are infinite, periodic, helical,
isolated, and with a straight helical axis. The primitive sym-
metry operation is a combined translational �of h� and rota-
tion �of v�. Moreover, the position of each atom inside the
helical unit is given through three parameters �ri ,	i ,zi� so
that in a global coordinate system with the z axis along the
helical-wire axis the position of the ith atom in the nth unit
cell is given by

xni = ri cos�uni� ,

yni = ri sin�uni� ,

zni = h/v · uni + zi, �3�

with

uni = n · v + 	i. �4�

By defining LMTOs in local atom-centered coordinate sys-
tems �i.e., right-handed coordinate systems that have z axes
parallel with the wire axis� we can construct symmetry-
adapted Bloch waves from the equivalent basis functions of
different unit cells,

�L,�,p
k �r�� = lim

N→


1
�2N + 1

�
n=−N

N

�L,��r� − R� np�eik�n, �5�

where R� np is the position of the pth atom of the nth unit cell.
Then,

	�L1,�1,p1

k1 ��L2,�2,p2

k2 


= �k1,k2
lim
N→


�
n=−N

N

	�L1,�1
�r� − R� 0p1

���L2,�2
�r� − R� np2

�
eik1�n

�6�

and

	�L1,�1,p1

k1 �ĥeff��L2,�2,p2

k2 


= �k1,k2
lim
N→


�
n=−N

N

	�L1,�1
�r� − R� 0p1

��ĥeff��L2,�2
�r� − R� np2

�


�eik1�n. �7�

In the actual calculations, the n summations are carried
through so far that they can be considered converged. Fur-
thermore, the irreducible part of the first Brillouin zone cor-
responds to k� �0;1�, and the k-space sampling is performed
using 16 equidistant k points in this interval, except for the
linear wire where we used only 11 k points. Some of the
calculations were numerically difficult to bring to conver-
gence due to sharp van Hove singularities close to the Fermi
level and, therefore, the energy levels were broadened
slightly.

All but the 6s and 5d electrons were treated in a frozen-
core approximation. In all cases, we used both the local-
density approximation of von Barth and Hedin38 and the
generalized-gradient approximation of Perdew.39 Finally, we
performed both scalar-relativistic calculations and calcula-
tions where also the spin-orbit couplings were included.

III. RESULTS

A. Structures

All our optimized values of the structural degrees of free-
dom for the different types of wires of Au, Pt, and Au-Pt are
summarized in Table I. We optimized all the structures both
using the local-density and using the generalized-gradient

TABLE I. Optimized structural parameters for different types of Au, Pt, and Au-Pt wires of Fig. 1 �characterized by “system”�. “lda” and
“gga” describe whether a local-density or generalized-gradient approximation was used in the optimization. The two bond lengths given for
the double zig-zag wire are those within and between the two zig-zag wires, respectively, whereas those for tetragonal wire are those between
atoms at different and the same z, respectively. Lengths are given in a.u., and angles are in degrees.

System Method

Bond lengths Bond angles

Au Pt Au-Pt Au Pt Au-Pt

Linear lda 4.86 4.50 4.93 180 180 180

gga 4.86 4.55 4.95 180 180 180

Zig-zag lda 5.09 5.05 5.05 62 61 60

gga 5.09 5.09 5.08 63 62 60

Double zig-zag lda 5.24, 5.09 4.99, 4.95 5.08, 5.03 57 60 58

gga 5.24, 5.09 5.05, 5.00 5.15, 5.04 57 61 58

Tetragonal lda 5.27, 6.40 4.95, 5.40 5.04, 6.30 77 78 77

gga 5.27, 6.40 5.00, 5.50 5.10, 6.40 77 79 78
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approximation �GGA� and both without and with the inclu-
sion of spin-orbit couplings. With both density-functional ap-
proximations we found that the optimized structures were
essentially independent on the inclusion of spin-orbit cou-
plings.

The chemical bonding in a wire is, of course, quite differ-
ent from the bonding in a bulk material where the atoms are
highly coordinated. In the nanowires there are only few near-
est neighbors and, therefore, as a first approximation, the
bond lengths in a wire will be smaller than those of the bulk.
However, many deviations from this simple rule exist, in-
cluding, e.g., the average bond length in the double zig-zag
and tetragonal structures of Ag.32

Using the GGA approximation, the bond lengths for Pt
and Au-Pt become slightly larger whereas a similar effect is
not observed for the Au wire. Moreover, the magnitude of
the bond-length difference using the two approximations for
Au-Pt is less than that observed for Pt.

Bahn et al.40 studied theoretically the formation of metal-
lic wires. Using molecular-dynamic simulations they demon-
strated the possible formation of a monatomic Au and Pt
wire. With a generalized-gradient approximation they found
an optimized bond length of the linear Pt chain of 4.55 a.u.
which is in very good agreement with our value. Portal
et al.,5 in their density-functional study for the linear Au
wire, found bond lengths of 4.82 a.u., i.e., also in excellent
agreement with our results and also with that of our previous
study31 and slightly larger than the experimental value. On
the other hand, Delin and Tosatti41,42 in their full-potential,
density-functional, generalized-gradient study found an equi-
librium bond length for linear Au and Pt wires equal to 4.94
and 4.68 a.u., respectively, slightly larger than our values.

An unexpected result is that the bond length in the linear
Au-Pt chain is larger than those of the linear Au and Pt
chains. However, the chains are soft and, as we shall see in
the subsequent subsection, many bands cross the Fermi level,
making band-structure effects important for the optimal
structure.

Portal et al.5 and Ribeiro et al.43 showed that the relaxed
structure of the linear Au wire is the zig-zag structure and de
la Vega44 showed the same for the Pt wire. The zig-zag wire
may be considered as being not a single wire, but rather two
coupled monatomic linear wires, one displaced relative to the
other by half the bond length. Then, the coordination number
of the atoms in the zig-zag wire will be higher and, accord-
ingly, the bond length will be larger. In the zig-zag wire the
coordination number is 4 and the bond length for the Au wire
is 5.09 a.u., for the Pt wire it is 5.05 a.u., and for the Au
-Pt system it is 5.04 a.u. Ribeiro et al.43 studied the proper-
ties of zig-zag wire of Au and showed that the minimum
energy configuration of the zig-zag wire is found for bond
angles around 60°. Our calculated value for the zig-zag wires
for all three systems is indeed close to 60°. All bond lengths
for the zig-zag Au-Pt wire are very similar to those for the
pure systems.

The bond lengths of the double zig-zag and the tetragonal
structures for all three systems are slightly larger than those
of the zig-zag structures. The bond length is related to the
coordination number which in turn equals 5 for the double
zig-zag and the tetragonal structure. Our optimized bond

length for the double zig-zag and the tetragonal structure is
smaller than the corresponding bulk value �where the coor-
dination equals 12, and where the bond lengths equal 5.45
and 5.24 a.u., respectively� but longer than that of the linear
structure as may be expected. Finally, the bond angle is close
to the crystal bond angle.

In all higher coordinated wires �zig-zag, double zig-zag,
and tetragonal� for the mixed Au-Pt system the bond length
lies in between the values of the corresponding pure system,
which may not surprise when considering the fact �cf. Fig. 1�
that these systems contain both Pt-Pt, Au-Au, and Pt-Au
nearest neighbors.

In our earlier study on Ag wires32 we found that the bond
length between the atoms of the two zig-zag wires both for
the double zig-zag and for the tetragonal wire is much larger
than that within the single wire, and even longer than the
distance between nearest neighbors in the crystal. For Pt, we
find a significantly different situation, where the bond
lengths between the wires are much less different from those
within the wires. This result was also found for the double
zig-zag structures for the Au and the Au-Pt wires, whereas
the results for the tetragonal structures resemble those for
Ag.

The fact that the bond lengths decrease when reducing the
dimensionality is also found for even smaller Au- and Pt-
based systems. For instance, Wang and co-workers,45 in their
density-functional study of small gold cluster, found a bond
length of 4.81 a.u. for the dimer. On the other hand, Yang
et al.,46 in their density-functional study for small platinum
clusters, showed that the bond length is 4.53 a.u. in Pt2, com-
parable but only slightly smaller than our values for the lin-
ear wires. On the other hand, the Pt-Pt bond lengths in Mag-
nus’ green salt are around 6.15 a.u.,14 i.e., markedly different
from our calculated values.

B. Electronic properties

Figure 2 shows the band structures of Au and Pt for the
optimized linear structures. There are two bands crossing the
Fermi level for the linear Au wire, although one band ap-
pears very close to the Fermi level. On the other hand, three
bands cross the Fermi level for the linear Pt wire. Some few
DFT studies5,43,46 have predicted that only one band crosses
the Fermi level for the linear Au wire, whereas most others
have found two bands crossing the Fermi level as in the
present study. Our band structures for the Pt wire is in close
agreement with those of Delin and Tosatti41 as well as with
those of de la Vega et al.44 Our result for the linear Pt wire
shows that for the optimized structure, a complicated sym-
metry reduction is required in order to open up a gap at the
Fermi level, whereas a simple bond-length alternation is suf-
ficient to open up a band gap at the fermi level for the linear
Au chain.

Assuming that the z axis is parallel to the wire axis, we
can split the bands into  bands from the s, pz, and dz2

functions, � bands due to py and dyz as well as px and dxz,
and, finally, � bands due to dxy and dx2−y2 functions. Of those,
only the  bands are singly degenerate, whereas the others
are doubly degenerate.
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From the band structures, it can be seen that all the bands
of the Au wire are narrower than those of the Pt wire. More-
over, in a break-junction experiment where the conduction
through the nanojunction is measured, this will first of all
depend on the number of conducting channels which in term
is determined from the number of bands crossing the Fermi
level. Therefore, the conductance of an Au wire is expected
to be lower than that of a Pt wire.

The band widths for the linear Pt wire �7.35, 6.55, 4.86,
and 1.08 eV for the bands of , , �, and � symmetry, re-
spectively� are in excellent agreement with the results of de
la Vega et al.44 �7.5, 6.90, 5.20, and 1.12 eV, respectively�.
When stretching the wire, the overlaps of the � orbitals will
most fast decay, whereas those of the  orbitals will be re-
duced most slowly. Thus, when stretching the wire only the
 and � bands will cross the Fermi level.

Smit and co-workers47,48 studied in their experimental
work the effect on the conductivity from the number of at-
oms forming an atomic wire. They have shown that for Au
wire, the conductivity hardly changes with the number of
atoms. In the case of Au atomic wire, the band crossing the
Fermi level was found to be due to  functions which was
not changing upon increasing the number of atoms. For the
Pt atomic wire, partly filled d orbitals along with half-filled s
orbitals are responsible for three bands crossing the Fermi
level. Smit and co-workers showed that for the Pt wire the
conductivity decreases as the number of wire-forming atoms
increases and, therefore, they predicted that for long wires
only one or two conducting channels would survive, which is
only partly in agreement with our results. We suggest, there-
fore, that of the three conducting channels for Pt atomic wire
that we have found in our calculations, of which two are
almost fully occupied, only one partially filled band may be
available for conduction under the experimental conditions
that, after all, are somewhat different from the idealized sys-

tems we have considered. Although the band structures are
slightly altered upon inclusion of spin-orbit couplings, our
conclusion remains valid.

Figure 3 shows the band structures of the linear Au, Pt,
and Au-Pt atomic wire. For comparison we have doubled the
unit cell for Au and Pt wire. Moreover, as the only case, we
show here also the band structures as obtained from calcula-
tions with the inclusion of spin-orbit couplings. These reduce
the symmetry and double the number of bands. Accordingly,
including the spin-orbit couplings leads to more complicated
band structures although most features are recovered already
without their inclusion. Therefore, we shall concentrate be-
low on the results that we obtained without spin-orbit cou-
plings.

There is only one band crossing the Fermi level for the
Au-Pt wire. From the band structures of the Au-Pt wire, it is
found that occupied  and � bands are very close to the
Fermi level. It is interesting to notice that the band structures
of the Au-Pt wire do not resemble an average of those of the
pure systems, but that the bands in general are narrower. The
reason for this behavior may be the increase in the bond
length �cf. Table I� when passing from Au or Pt to Au-Pt.

The spin-orbit couplings are around 1 eV for all three
systems. This value is, however, not large enough to change
any of the systems from a metal to a semiconductor as we
have found earlier for Pb.49 Finally, we mention that the
bands that are obtained from the generalized-gradient ap-
proximation in general are shifted slightly less than 1 eV
upwards compared to those from the local-density calcula-
tions.

FIG. 2. Band structures for linear monatomic wires of �a� Au
and �b� Pt. k=0 and k=1 is the center and the edge of the first
Brillouin zone, respectively, and the dashed lines mark the Fermi
energy. Spin-orbit couplings were not included, and the LDA ap-
proximation was used.

FIG. 3. Band structures of �a, d� Au, �b, e� Pt, and �c, f� Au-Pt
linear wire, with two atoms per unit cell. Spin-orbit couplings have
been included in �d–f�, and not in �a–c�. The representation is as
Fig. 2.
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The band structures �Fig. 4� for the zig-zag wires for all
three systems are more complex than those of the linear
structures. For the pure system one unit cell contains one
atom, whereas it contains two atoms for the Au-Pt system.
This explains the larger number of bands for the Au-Pt chain.
Moreover, in this case, where the structural parameters of the
Au-Pt chain are similar to those of the Au and the Pt chains,
the band structures of the Au-Pt wire as a first approximation
can be considered an average of the other two sets. But we
emphasize that there are distinct differences, e.g., in the band
structures closest to the Fermi level, that could very well be
significant, for instance for the conductance.

For the Pt system, the distance between the two individual
zig-zag wires forming the double zig-zag wire is similar to
the distance between the atoms of each zig-zag wire, the
interaction between the two wires is strong so that the band
structures �Fig. 5� for the double zig-zag structures are not
just the doubling of the number of bands of the zig-zag struc-
ture. Though for Au the distance between the individual zig-
zag wires forming the double zig-zag wire is larger than the
distance between the atoms of each zig-zag wire, the inter-
actions between the individual chains are still sufficiently
strong to make the double zig-zag wire markedly different
from the zig-zag wire. Finally, the double zig-zag structure
of the Au-Pt system that we have considered is indeed two
zig-zag Au-Pt chains, but also here the properties of the
double zig-zag chain differ from those of the individual zig-
zag chains. Moreover, the band structures of the Au-Pt chain
are only to a first approximation a superposition of those of
the Au and the Pt chains.

From the band structures for the tetragonal Pt wire we see
that two bands cross the Fermi level close to k=0.5. This
suggests that doubling the unit cell would reduce the density
of states close to the Fermi level and, accordingly, stabilize
this structure. A similar effect is not observed for the tetrag-
onal Au or Au-Pt wires.

Finally, by looking at the number of valence electrons
inside the muffin-tin spheres some information on the elec-
tron distribution is obtained. When comparing the pure Au
and Pt systems, all but 2.5 electrons per atom are inside the
Au spheres, whereas all but 2.6 electrons per atom are inside

the Pt spheres. Thus, despite the fact that Au has more va-
lence electrons per atom, they are more localized to the at-
oms. For the bimetallic Au-Pt chains with the double zig-zag
or the tetragonal structure the valence electrons become even
more localized, so that each muffin-tin sphere contains
roughly 0.2 electrons more. A similar effect is not observed
for the other two structures. Thus, a small tendency towards
electron localization can be identified for some of the bime-
tallic nanowires.

FIG. 4. Band structures of the zig-zag wires
of �a� Au, �b� Pt, and �c� Au-Pt. Spin-orbit cou-
plings were not included. The representation is as
Fig. 2.

FIG. 5. Band structures of �a–c� the double zig-zag and �d–e�
the tetragonal wire of �a, d� Au, �b, e� Pt and �c, f� Au-Pt. Spin-orbit
couplings were not included. The representation is as Fig. 2.
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IV. CONCLUSIONS

In this paper we have studied how the electronic and
structural properties of metal nanowires are modified when
either changing the structure of the system or changing the
composition of the system. We have focused on two of the
most intensively studied elements, i.e., Au and Pt, for which
first of all linear chains have been at the center of a consid-
erable research interest.

Not unexpected we found that the optimized bond lengths
of the nanowires, independent of the precise structure, were
lying somewhere between those of the diatomic molecules
and those of the infinite crystals. In most cases, the structures
of the bimetallic nanowires could be considered as interme-
diates between those of the pure nanowires, with the linear
chain being a clear exception. This finding is interesting be-
cause it opens up the possibility of choosing materials with a
predefined lattice constant that can be, e.g., produced inside
channels of some host material or on the surface of a crys-
talline host.

Another interesting result of our study is that the band
structure for the bimetallic nanowires to a good approxima-
tion can be considered averages of those of the pure nano-

wires, at least as long as no strong structural changes take
place. It can be interpreted as a consequence of the electrons
being quite delocalized along the chain and moving in some
kind of average potential from the two metals. Following this
line of thought further, it also suggests that by choosing other
stoichiometries it may be possible to fine-tune the details of
the band structures.

In this context we, finally, add that we also found that the
details of the band structures, most notably those around the
Fermi level that are responsible for conduction properties,
depend critically on structure and composition, making it
difficult to predict aforehand the properties of these details
for a given nanowire.

In total, we hope to have presented interesting results for
highly relevant nanowires and to have shown that upon
changing the structure and, in particular, considering nano-
wires of more metals, new possibilities for controlling the
properties open up.
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