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Using a lattice-gas version of the extended Blume-Emery-Griffiths spin-1 model and Monte Carlo simula-
tion methods, the ordering of heteronuclear diatomic molecules �AB� adsorbed on a corrugated crystal surface
with adsorption sites forming a square lattice is studied. The applied lattice model assumes that the adsorbed
molecules are all vertically oriented with respect to the surface and takes into account the interaction between
the first- as well as between the second-nearest neighbors. First, assuming that all interactions in the system are
nonrepulsive, the order-disorder transitions for different possible phases are discussed. In particular, it is
demonstrated that the critical exponents of the order-disorder transitions for the two ordered phases �SAF and
A3B� are nonuniversal and change with the model parameters. Then, assuming that the first-nearest neighbor
interactions are nonattractive, the evolution of the phase diagram topology with the change of the model
parameters is evaluated. The critical exponents associated with the continuous phase transitions have been
estimated using the finite size scaling analysis. It is demonstrated that the nature of the order-disorder phase
transitions depends on the structure of the ordered states and that they belong to different classes of univer-
sality. It is also found that the phase diagrams exhibit the presence of critical, tricritical, and critical end points,
depending on the magnitudes of coupling constants.
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I. INTRODUCTION

The adsorbed layers formed by linear molecules on well-
defined crystalline surfaces are known to form a variety of
ordered phases with a structure depending on the orientation
of the adsorbed molecules with respect to the surface and to
each other.1–6 One of the simplest possible situations in-
volves monolayer adsorption of asymmetric diatomic mol-
ecules �AB� on a square lattice of sites. Well-known ex-
amples of such systems are the monolayers of CO on
NaCl�100� or MgO�100� surfaces.7–9 Among the characteris-
tic features of the above-mentioned systems is a strong de-
pendence of the surface binding energy on the orientation of
an adsorbate molecule. This leads to the formation of films in
which, unlike in the case of adsorption of homonuclear
diatomics,1,2,4,5 the adsorbed molecules are predominantly
bound to the surface by one end �A or B atom�, and the
monolayer is tilted with respect to the surface. For example,
Monte Carlo simulations for a CO monolayer on NaCl�100�
surface7 demonstrated the formation of the p�2�1� structure
with a glide plane and with the carbon atoms down, and
pointing towards Na+ ions, and the tilt angle of about 24° at
low temperatures. The results of Monte Carlo calculations
were found to be consistent with experimental data10,11 and
with theoretical calculations.12,13

A simple theoretical model that involves the effects due to
orientation-dependent admolecule-admolecule as well as
admolecule-surface interactions is the spin-1 lattice
model,14–16 in which the adsorbate molecules are oriented
vertically to the surface in one of the two possible orienta-
tions, with the A end down or with the B end down. In
general, these two possible orientations have different bind-

ing energies to the surface. Moreover, the interaction energy
between a pair of the adsorbed molecules is also orientation
dependent and, in the simplest version, depend only on the
relative orientation of the molecules adsorbed at adjacent
sites. Thus, one neglects any effects due to surface-mediated
interactions.17

Several versions of the spin-1 lattice model have been
considered and applied to a large number of problems in the
condensed-matter physics, including the description of
simple and multicomponent fluids,14,16,18 dipolar and quadru-
polar orderings in magnets,19,20 ordering in semiconducting
alloys,21 microemulsions,22 and adsorbed layers.4,5,23–25

Spin-1 lattice models have been studied by a variety of the-
oretical methods: mean-field,16,18,25–27 cluster variation
method,28–30 transfer matrix finite size scaling,31,32 high-
temperature series expansion,33 renormalization group
method,34,35 and Monte Carlo simulations.36–39 The interest
in spin-1 models is highly stimulated by the richness of their
phase diagrams, arising from the competing interactions. In
the most general case, one needs to take into account the
bilinear, biquadratic, as well as quadrilinear interactions be-
tween nearest neighbors as well as linear and quadratic
single spin terms, which represent the contributions coming
from the single spin anisotropy and the external field, respec-
tively. Although the hitherto studied versions of spin-1 mod-
els have usually involved only the first-nearest neighbor in-
teractions, several different phase diagram topologies have
been found.16,18,30,40 A rather simple Blume-Capel �BC�
model has been found to possess the tricritical point in the
phase diagram.22,33,41–46 The transfer matrix finite size scal-
ing calculations of Badehdah et al.33 suggested that the in-
clusion of the longer-range �second-nearest neighbor� inter-
actions to the BC model may violate the ordinary
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universality hypothesis, when the interaction parameters are
suitably chosen. The Blume-Emery-Griffiths �BEG� model
with negative biquadratic interaction47,48 was found to ex-
hibit a very rich phase behavior, which involves ferrimag-
netic and antiquadrupolar phases and multicritical points of
higher order.

In this paper we present a lattice gas version of the model,
which involves the interaction between the first- as well as
between the second-nearest neighbors. Using Monte Carlo
methods we investigate the structure and properties of differ-
ent possible ordered phases. The order-disorder phase transi-
tions and phase diagrams for a series of systems character-
ized by different interaction parameters are discussed.

The paper is organized as follows. In Section II we
present the model and discuss its ground state properties.
Then, Sec. III summarizes the description of Monte Carlo
methods used here and the methodology applied. The results
of our calculations are presented and discussed in Secs. IV
and V. Section IV is primarily devoted to the discussion of
the order-disorder phase transitions in a series of systems
with nonrepulsive first- as well as the second-nearest neigh-
bor interactions. Then, in Sec. V we discuss the phase behav-
ior of the systems with the nonattractive first-nearest neigh-
bor interactions. In particular, we shall elucidate the changes
in the phase diagram topology resulting from the variation of
the model parameters, which define the interaction energies
between the pairs of the first- and the second-nearest neigh-
bors of the same and opposite orientation. The paper is con-
cluded by Sec. VI, where we summarize our findings.

II. THE MODEL

As it has been already mentioned in the Introduction, we
consider a monolayer adsorption of diatomic heteronuclear
molecules AB on a square lattice of sites. Each adsorbed
molecule is assumed to take on the vertical orientation with
respect to the surface plane and can be bound to the surface
via either atom A or B, so that the energy of adsorption
depends on the orientation of the adsorbed molecule. To the
molecule adsorbed at the site i we assign a variable si, which
is equal to 1 �−1� when the molecule is bound to the surface
via atom A�B�. Thus, the surface potential is a function of the
variable si and can be represented as

V�si� = �VA, si = 1,

VB, si = − 1.
� �1�

Then, we assume that a pair of molecules interacts one
with another, whenever they occupy the first- or the second-
nearest neighboring sites. The energy of interaction between
such a pair also depends on the relative orientation of inter-
acting molecules and can be written as uk�si ,sj�, where k
=1 or 2 for the first- and the second-nearest neighbor inter-
action, respectively, while si and sj are the above-defined
spin variables, which represent the orientation of each mol-
ecule. Here we assume that the interaction energy depends
only on the relative orientation of both molecules, so that we
can define uk�si ,sj� as

uk�si,sj� = �uk,a, si = sj ,

uk,b, si � sj ,
�k = 1,2 �2�

With the above assumptions, the Hamiltonian of the
model reads

H =
1

2 �
�ij�1

ninju1�si,sj� +
1

2 �
�ij�2

ninju2�si,sj�

+ �
i

V�si�ni − ��
i

ni, �3�

where ni is the occupation variable, equal to 0 �1� when the
site i is empty �occupied�, the first �second� sum runs over all
pairs of the first- �second� nearest neighbors, � is the chemi-
cal potential, and the sums in the third and fourth terms run
over all sites. Here we assume that all energies �uk�si ,sj� and
V�si�	 are negative �positive� for attractive �repulsive� inter-
actions.

By assigning to each lattice site the spin variable Si
= ±1,0, and replacing the occupation variable ni by Si

2, the
above lattice-gas model Hamiltonian can be mapped onto the
appropriate spin-1 lattice model Hamiltonian

H� =
1

2
ū1�

�ij�1

Si
2Sj

2 +
1

2
�û1�

�ij�1

SiSj +
1

2
ū2�

�ij�2

Si
2Sj

2

+
1

2
�û2�

�ij�2

SiSj + V̄�
i

Si
2 − �V̂�

i

Si − H�
i

Si
2 �4�

where

ūk = 1
2 �uk,a + uk,b�, �ûk = 1

2 �uk,a − uk,b� , �5�

V̄ = 1
2 �VA + VB�, �V̂ = 1

2 �VB − VA� , �6�

and H is the external field, which can be related to the chemi-
cal potential �.

Without losing generality we can assume that VA�VB,
i.e., a single molecule is preferentially adsorbed via the atom
A. Then, it is convenient to define the parameters �V=VB

−VA=2�V̂, �u1=u1,a−u1,b=2�û1, and �u2=u2,a−u2,b
=2�û2, since the structure of different possible ordered
phases discussed below depends only on the above-specified
differences between interaction energies.

In the ground state, i.e., at the temperature T=0, one can
readily calculate the grand potential density for any ordered
phase �, ��, directly from the Hamiltonian, since each or-
dered phase � is characterized by specific symmetry proper-
ties which determine the arrangement of differently oriented
molecules over the surface, i.e., a set of variables 
ni ,si�
�i=1,2 , . . . �.

Then we define the densities of differently oriented mol-
ecules in the phase �

��,l = L−2�
i

ni	sil
, where l = 1 or − 1, �7�

where L2 is the number of sites, and the total density of the
adsorbed layer ��=��,1+��,−1.
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Here, we assume that the first-nearest neighbor interac-
tions u1,k�k=a ,b� can be either attractive or repulsive while
the second-nearest neighbor interactions u2,k , �k=a ,b� are
nonrepulsive. Under such conditions, the model predicts that
when the first-nearest neighbor interactions are nonrepulsive
all the possible ordered states have the total density ��=1,
i.e., all sites are occupied, and the following ordered phases
can appear: F, AF, SAF and A3B, which are schematically
shown in the upper part of Fig. 1. On the other hand, when
the first-nearest neighbor interactions �u1,a and/or u1,b� be-
come repulsive, the two additional ordered states of the
lower density ���=0.5�, labelled as c�2�2�F and c�2
�2�AF, can also be formed �see Fig. 1�. Of course, one has
also to take into account the gas phase �g�, which at the
ground state has the density equal to zero. Table I summa-
rizes the densities ��,l and the grand canonical potential den-
sities ���� for all the phases mentioned above.

Throughout this paper we assume that VA=−2.0 and VB
=−1.0, so that �V=1.0. We also take �VB� as the unit of
energy, so that the interaction energies, uk,l �k=1, 2 and l
=a ,b�, the differences �uk�k=1,2� and �V, as well as all
other energy-like quantities, such as temperature and the
chemical potential, are expressed in units of �VB�.

When the first-nearest neighbor interactions are nonrepul-
sive only the ordered states F, AF, SAF, and A3B can appear,
and the ground state phase diagram for such systems is de-
picted in Fig. 2. The locations of the three triple points t1, t2,
and t3 are entirely determined by the values of �u1, �u2, and
�V:

t1:�u1 = 0.25�V, �u2 = 0.0,

t2:�u1 = 0.5�V, �u2 = 0.25�V ,

t3:�u1 = 0.0, �u2 = 0.25�V . �8�

Moreover, using the data from Table I it can be readily
shown that the necessary condition for the appearance of the
low density phases c�2�2�F and c�2�2�AF is that u1,a
0.
Which of these two phases does exist depends on the values
of the parameters �u2 and �V. The phase c�2�2�F is stable
when �u2�0.25�V, while the phase c�2�2�AF is stable
when �u2
0.25�V. The phase boundary between these two
ordered phases is marked by a thick horizontal dashed line in
Fig. 2, located at �u2=0.25�V.

III. MONTE CARLO METHOD AND METHODOLOGY

The model presented above has been studied by Monte
Carlo methods in the grand canonical as well as in the ca-
nonical ensembles,49,50 using the simulation cell of the size
�L�L�, with L ranging between 12 and 160, and periodic
boundary conditions.

In order to gain information about the structure of differ-
ent ordered states a set of suitably defined order parameters
have been used. The total density as well as the densities of
differently oriented particles allow us to distinguish between
the phases F, AF, and A3B as well as between both the c�2
�2�F and c�2�2�AF phases of lower density, but do not
provide information sufficient to tell which of the phases AF
or SAF is present �see Table I�. Therefore, it is more conve-
nient to define the order parameters in terms of sublattice
magnetizations using the spin-1 model Hamiltonian �4�
rather than the lattice-gas model Hamiltonian �3�.

If one decomposes the entire lattice into four interpen-
etrating and fully equivalent sublattices, as shown in Fig. 1,
the average magnetization of each sublattice k �a, b, c, and d�
is given by

FIG. 1. Schematic representation of different possible ordered
states �↑ and ↓ denotes molecules adsorbed via the atom A and B,
respectively� and the decomposition of a square lattice into four
equivalent sublattices a, b, c, and d.

TABLE I. The fractional densities ��,l and the grand canonical
potential densities �� for the different phases � at T=0.

� ��,1 ��,−1 ��

g 0.0 0.0 0.0

F 1.0 0.0 2u1,1+2u2,1+VA−�

AF 0.5 0.5 2u1,2+2u2,1+0.5�VA+VB�−�

SAF 0.5 0.5 u1,1+u1,2+2u2,2+0.5�VA+VB�−�

A3B 0.75 0.25 u1,1+u1,2+u2,1+u2,2+0.75VA+0.25VB−�

c�2�2�F 0.5 0.0 u2,1+0.5VA−0.5�

c�2�2�AF 0.25 0.25 u2,2+0.25�VA+VB�−0.5�

FIG. 2. Ground state phase diagram for the model. The thin
solid lines delimit the regions of stability of the ordered structures
of the density �=1.0, while the horizontal thick dashed line delimits
the regions of stability of the phases c�2�2�F and c�2�2�AF. The
vertical dotted lines mark the paths along which the calculations
have been performed.
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mk =
1

L2 �
i�k

Si. �9�

Using the above-defined magnetizations we define the fol-
lowing four order parameters:

�1 = ma − mb − mc + md, �10�

�2 = ma + mb − mc − md, �11�

�3 = ma − mb + mc − md, �12�

�4 = ma + mb + mc + md. �13�

The order parameters �1 and �2 represent two components
of the order parameter suitable to detect the presence of the
phases SAF and c�2�2�AF. In the case of a square lattice
considered here, the two components of the above order pa-
rameter are equivalent and the order parameter is invariant
under global rotation. Then it is the magnitude of the order
parameter which matters, and we define the order parameter
�SAF as

�SAF = 
�1
2 + �2

2. �14�

In the case of a perfect SAF phase �SAF=1.0, while in the
case of c�2�2�AF, �SAF=0.5. The order parameter �3 as-
sumes nonzero values for the structures c�2�2�F, in which it
equals to ±0.5, and AF��3= ±1.0�, while the order parameter
�4 assumes the value of 1.0, when the system orders into the
phase F and 0.5 when the low density phase c�2�2�F oc-
curs.

In practice the order parameters defined above, �SAF, �3,
and �4, suffice to distinguish all ordered phases predicted by
the model �see Table II�. In the case of a fully occupied
lattice, it is also convenient to define two other order param-
eters, which are useful for detecting the phases SAF and A3B.
Namely, by dividing the lattice into cells, each containing
four sites belonging to different sublattices, the order param-
eter suitable for detecting the phase SAF can be defined as51

�5 = �
n

�Sn,a − Sn,c��Sn,b − Sn,d� , �15�

where the sum runs over all cells and Sn,k represent the spin
variable of the site belonging to the cell n and the sublattice
k �k=a ,b ,c, or d�. The order parameter �5 is equal to zero in
all phases but SAF, for which it is equal to unity. In the case
of the ordered phase A3B one can define the order parameter
which has two mutually orthogonal components

�6,1 = �
n

�Sn,a − Sn,c��Sn,b + Sn,d� and

�6,2 = �
n

�Sn,a + Sn,c��Sn,b − Sn,d� �16�

of the length

�6 = 
�6,1
2 + �6,2

2 , �17�

which is nonzero, and equal to unity, only when the system
orders into a perfect A3B phase.

The above-defined order parameters are complemented by
the corresponding susceptibilities

��,L =
1

kT
���2� − �����2	 �18�

and the fourth-order cumulants50,52

U�,L = 1 −
��4�

3��2�2 . �19�

In the above, � denotes any of the above-defined order pa-
rameters.

Apart from the above-defined structural parameters we
have also calculated the average density,

� =
1

L2�� ni� , �20�

its susceptibility ��,L, the fourth-order cumulant U�,L, as well
as the energy �per lattice site�, �e� and the heat capacity, CV,
obtained from the fluctuation theorem:

CV =
1

kT2 ��H2� − �H�2	 �21�

From the point of view of symmetry classification, there
is no essential difference between the c�2�2�F and AF
phases, because both of them are described by the same type
of order parameter component ��3�, only in the perfectly
ordered structures the magnitude of this order parameter
component is different. Thus we expect that between these
structures lines of first-order transitions ending at the critical
point are possible in the phase diagram, similar to the liquid-
gas transition of a �lattice� gas, where also both phases have
the same symmetry properties, while a line of critical points
of second-order transitions evidently is not possible. This
consideration is born out by the phase diagrams found below
�Fig. 26�. In contrast, lines of critical points are possible for
the transition from the c�2�2�F phase to the disordered
phase �Figs. 25 and 26�, from the SAF to the disordered
phase �Fig. 25� and from the c�2�2�AF to the c�2�2�F

phase, since all these phases differ in their symmetry prop-
erties.

Since we have assumed that �VB� is the unit of energy, the
reduced temperature is defined as T*=kT / �VB�, and the re-
duced chemical potential is given by �*=� / �VB�.

In order to study the nature of different phase transitions
predicted to occur when the temperature and/or the chemical
potential are varied, we have applied the histogram reweight-

TABLE II. The values of the order parameters in the ordered
phases predicted by the present model.

F AF SAF A3B c�2�2�F c�2�2�AF

��SAF� 0.0 0.0 1.0 0.5 0.0 0.5

��3� 0.0 1.0 0.0 0.5 0.5 0.0

��4� 1.0 0.0 0.0 0.5 0.5 0.0
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ing method53,54 as well as the hyper-parallel tempering
technique,55,56 supplemented by the finite size scaling
analysis.50 These methods are known to be very well suited
to determine the properties close to the phase transition
points. In particular, the hyper-parallel tempering allows us
to investigate several thermodynamic states in a single run.
Due to much faster convergence and lower fluctuations, this
method is much less time demanding than independently per-
formed simulations at each state point.55 The length of the
MC runs ranged between 106 and 107 Monte Carlo steps,
where 1 Monte Carlo step corresponds to one sweep over the
entire lattice.

From the finite size scaling theory it follows50,57 that in a
finite system of the size L�L any second-order phase tran-
sition is rounded and shifted, so that the heat capacity and
the order parameter susceptibility peaks reach their maxi-
mum values �CV,max�L� and �max�L�, respectively	 at the tem-
peratures TC

* �L� and T�
*�L� which scale with the system size

as

Tj
*�L� − Tc

* 
 L−1/�, j = C,� , �22�

where Tc
* is the transition temperature in a macroscopic sys-

tem and � is the critical exponent of the correlation length.
Moreover, the maximum values of the heat capacity and of
the susceptibility are expected to scale with L as

Cmax�L� 
 L�/� �23�

and

�max�L� 
 L�/�, �24�

where � and � are the critical exponents of the heat capacity
and susceptibility, respectively.

In order to use the relation �22� to estimate � one needs
very accurate estimations of Tj

*�L�, for a series of systems of
different L, as well as an a priori knowledge of the true
transition temperature Tc

*. Usually, the differences Tj
*�L�

−Tc
* are two or more orders of magnitude smaller than both

Tj
*�L� and Tc

*, so that even small errors in the estimations of
Tj

*�L� and Tc
* may produce large errors of �.

However, the true transition temperature, Tc
*, can be de-

termined independently from the plots of U�,L�T� vs. T, ob-
tained for various values of L, since all such curves have a
common intersection point, the fixed point value of U*, at Tc

*.
Once the fourth-order cumulants for the systems of various L
are known, one can also determine the critical exponent �,
using the relation at Tc

*,

�U�L�
��1/T�


 L1/�, �25�

if the corrections to scaling can be neglected.

IV. SYSTEMS WITH NONREPULSIVE FIRST-NEAREST
NEIGHBOR INTERACTION

We begin the discussion with the presentation of results
obtained for the systems in which �u2 is lower than, or equal
to, zero. This assumption leads to a particularly simple situ-

ation. The only ordered states that can appear are the F and
AF phases, which both should belong to the universality
class of the two-dimensional Ising model.58 At the ground
state, the transition from the regime in which the F ordered
structure is stable to the regime corresponding to the stable
AF ordered structure is entirely determined by the values of
�V and �u1 �cf. Fig. 2� and is located at the point �u1 /�V
=0.25. Thus, the formation of the AF structure requires the
interaction between differently oriented molecules to be con-
siderably stronger than the interaction between a pair of
nearest neighbor molecules which have the same orientation.

Figure 3 shows the examples of phase diagrams obtained
for the systems in which only the interactions between the
first-nearest neighbors are taken into account. Thus, we have
assumed that u2,a=u2,b=0, u1,a=−1.0 while u1,b assumed dif-
ferent values equal to −1.0��u1=0.0� �part �a�	, −1.2��u1

=0.2� �part �b�	, −1.3��u1=0.3� �part �c�	, and −1.5��u1

=0.5� �part �d�	. For our choice of the parameters, the parts
�a� and �b� of Fig. 3 present the phase diagrams for the sys-
tems which order into the phase F, while parts �c� and �d�
correspond to the systems ordering into the phase AF. The
depicted phase diagrams show that upon the increase of tem-
perature, the ordered phases �F as well as AF� lose a perfect
order at rather low temperatures, well below the respective
critical points. Figure 4 presents the examples of the heat
capacity curves for the systems which order into the structure
F �Fig. 4�a�	 and AF �Fig. 4�b�	, obtained for a series of

FIG. 3. Phase diagrams, in the density-temperature plane, ob-
tained for the systems characterized by u1,a=−1.0, u2,a=u2,b=0.0
and different values of u1,b=−1.0 �a�, −1.2 �b�, −1.3 �c�, and −1.5
�d�. Open and filled circles mark the coexistence points for the
molecules with si=1 and −1, respectively, while squares give total
densities at the coexistence points. The phase diagrams have been
evaluated using the simulation cell of the size 60�60. The verical
dotted lines in �c� and �d� mark the temperatures of the transition
between the AF and the disordered �DIS� phases. The region la-
belled by SCF corresponds to the supercritical fluid phase. Error
bars have been omitted since the usual errors are not larger than the
symbol size.
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systems of different sizes of the simulation cell �see legend
in Fig. 4�b�	, and calculated at the fixed chemical potential
value, well above the transition from the gas to the con-
densed phase transition. It should be noted that the calcula-
tions performed at other values of the chemical potential, but
also above the gas-condensed phase transition point, lead to
quite similar results, and, in particular, to almost the same
locations and heights of the heat capacity maxima. When
�u1�0.25 we observe rather broad heat capacity peaks
without any finite size effects. Quite similar results have
been obtained for the order parameter, �4, and the corre-
sponding susceptibility, while the fourth-order cumulant of
the order parameter exhibits gradually decreasing deviations
from the trivial fixed point value of 2

3 when the simulation
cell size increases. Therefore, one concludes that the struc-
ture F disorders gradually. This gradual disordering in no
surprise, since the system corresponds to a ferromagnet in an
external field �due to the interaction with the substrate�. For
the antiferromagnetic structure, there is no linear coupling of
the field to the order parameter, and hence a transition is still
possible. Consistent with this argument, the results obtained
for the system with �u1
0.25 �Fig. 4�b�	 suggest that a
continuous order-disorder phase transition occurs. Indeed,
we have found that the heat capacity value at the maximum
�CV,max� diverges logarithmically with L �see Fig. 5�a�	, and
the scaling of susceptibility of the order parameter �3 �see
Fig. 5�b�	, according to the finite size scaling relation

��,L�T� = L�/��o��t�L1/�� , �26�

where t= �T−Tc� /Tc gives the values of the critical exponents
�=1.0 and �=1.75, as expected for the two-dimensional
Ising model. Also, the behavior of the fourth-order cumulant
of the order parameter ��3� confirms that the order-disorder
transition belongs to the universality class of the two-
dimensional Ising model. Namely, the cumulant fixed point
at the transition temperature is known and equal to U*

�0.610,59 while our results �see Fig. 5�c�	 give U*

=0.613±0.004. Of course, the temperature of the order-
disorder transition as well as the location of the critical point
of the gas-condensed phase transition �Tc

*� both depend on
the magnitude of �u1. The lower panel of Fig. 6 shows the
temperature, To

*, at which the heat capacity peaks of the or-
dered phase F reaches maximum �open circles� and the tem-

FIG. 4. The heat capacity versus temperature obtained for dif-
ferent sizes of the simulation cell �shown in �b� of the figure	 and
the systems characterized by u1,a=−1.0, u2,a=u2,b=0.0 and the val-
ues of u1,b equal to −1.15 �a� and −1.4 �b�. The results depicted here
have been obtained at �*=−3.0. In �a� errors are not larger than the
symbol size. In �b� the error bars have been omitted for clarity. The
largest error of CV, close to the position of the peak maximum, does
not exceed 0.08.

FIG. 5. The plot of CV,max vs. log L �a�, the scaling plot of the
order parameter susceptibility for the simulation cell sizes shown in
the figure �b�, and the temperature changes of the fourth-order cu-
mulant for different sizes of the simulation cell �shown in �b�	 �c�
obtained for the system characterized by u1,a=−1.0, u2,a=u2,b=0,
and u1,b=−1.4, obtained at �*=−3.0.

FIG. 6. The changes of the critical temperature, Tc
* �upper

panel�, and of the temperature at which the heat capacity reaches
maximum, To

* �lower panel�, vs. �u1 for the systems characterized
by u1,a=−1.0 and u2,a=u2,b=0.0.
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perature of the order-disorder transition of the condensed
phase AF �filled circles� plotted against u1,b, while the upper
panel of Fig. 6 presents the changes of the critical tempera-
ture of the gas-condensed phase transition �Tc

*�, also plotted
as a function of u1,b. One finds that To

* converges to zero
when u1,b approaches −1.25��u1=0.25� from below. Also,
the location of the heat capacity maximum, for the systems
which order into the phase F, goes to zero when u1,b ap-
proaches −1.25 from above. Of course, only for �u1
0.25
we have a true order-disorder phase transition. On the other
hand, the critical temperature of the gas to condensed phase
transition linearly increases with u1,b, since it is expected to
be proportional to the total energy of the admolecule-
admolecule interaction. The only effect of the crossover be-
tween the regimes in which the ordered phase has a different
structure is a slight change of the slope of Tc

* versus u1,b line.
The critical behavior of the two-dimensional gas-

condensed phase transition has been found to be also consis-
tent with the predictions for the two-dimensional Ising model
universality, when the condensed phase is either F or AF at
the ground state. The cumulant fixed point has been found to
be located at U*�0.613. The above conclusion has also been
confirmed by the phenomenological renormalization, based
on the following relation,60

�/� =
ln���4,bL�Tc�/��4,L�Tc�	

ln b
, �27�

and the results obtained for the system characterized by
�u1=0.20 are given in Table III. One readily notes that the
ratio � /� takes on the values very close to the exact result for
the two-dimensional Ising model, i.e., � /�=1.75, with �
=1.75 and �=1.0. Quite similar results have been obtained
for other systems characterized by different values of �u1,
lower as well as higher than 0.25.

When the interactions between the second-nearest neigh-
bors are added and assumed to be such that the system still
orders into either F or AF phase, the qualitative picture does
not change. Again, we find that the phase F gradually disor-
ders at low temperatures and that the phase AF undergoes an
Ising-like order-disorder transition. Also, the behavior in the

vicinity of the critical point remains unchanged and the gas-
condensed phase belongs to the universality class of the two-
dimensional Ising model.

The situation changes when the values of �u1 and �u2 are
chosen in such a way that the model predicts the formation
of one of the ordered structures A3B or SAF �cf. Fig. 2� at the
ground state. Here, we consider a series of systems charac-
terized by the values of �u1 and �u2, leading to the forma-
tion of the above-mentioned ordered phases A3B or SAF, and
assume that the interaction energies between the first-nearest
neighbors �u1,a and u1,b� are both nonrepulsive. At first, we
consider the systems which order into the state A3B. Figure 7
presents two examples of phase diagrams obtained for the
systems characterized by the same values of �u1=0.2 and
�u2=0.2, but with different values of the interaction energies
u2,a and u2,b. The first-nearest neighbor interaction energies
have been equal to u1,a=−1.0 and u1,b=−1.2 in both cases,
while the magnitudes of the second-neighbor interaction en-
ergies have been equal to u2,a=−0.1 and u2,b=−0.3 or u2,a
=−0.3 and u2,b=−0.5. One readily notes that these two sys-
tems have different critical temperatures, while the low-
temperature parts of the phase diagrams are quite the same in
both cases. Qualitatively the same phase diagrams have been
obtained for other systems, which order into the phase A3B at
low temperatures. In all such cases we have found that the
ordered structure is stable only at very low temperatures and
undergoes a disordering transition well below the critical
point of the phase transition between the gas and the con-
densed phase. The nature of this order-disorder transition has
been studied using a standard Monte Carlo simulation
method in the grand canonical ensemble as well as with the
help of the hyper-parallel tempering method in the grand
canonical ensemble. It should be noted that independent ca-

TABLE III. The results of phenomenological renormalization
for the system characterized by u1,a=−1.0 and u1,b=−1.2 ��u1

=0.2� and u2,a=u2,b=0.0.

L1 L2 � /�

12.0 16.0 1.745

12.0 20.0 1.750

12.0 30.0 1.746

12.0 40.0 1.747

16.0 20.0 1.757

16.0 30.0 1.747

16.0 40.0 1.747

20.0 30.0 1.741

20.0 40.0 1.744

30.0 40.0 1.748
FIG. 7. The phase diagrams for the system characterized by

u1,a=−1.0, u1,b=−1.2 ��u1=0.2� and the fixed value of �u2=0.2,
but the different values of u2,a=−0.1 and u2,b=−0.3 �filled symbols�
and u2,a=−0.3 and u2,b=−0.5 �open symbols�. Circles and squares
mark the coexistence points for the molecules with si=1 and −1,
respectively, while diamonds give total densities at the coexistence
points. The verical dotted line marks the temperature at which the
A3B phase undergoes a transition to the disordered phase �DIS�. The
region labelled by SCF corresponds to the supercritical fluid phase.
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nonical ensemble Monte Carlo simulations, performed under
the condition of a completely filled lattice, give quite the
same results. We have studied the behavior of the order pa-
rameter �6, the conjugated susceptibility, as well as the
fourth-order cumulant for a series of systems, characterized
by different values of �u2, while keeping �u1 fixed and
equal to 0.25.

From the examples of the temperature changes of the or-
der parameter �6, given in Fig. 8, one readily notes that �6
does not converge to unity when the temperature is de-
creased, but rather approaches the values close to 1/
2 �in
particular for large systems�. This finding results from the
fact that the structure A3B is degenerate and each row con-
taining up and down spins can be shifted by one lattice site
without any energy penalty. Besides, the rows of up spins
can be differently oriented, along x as well as y axis. There-
fore, the simulations do not give a perfect A3B structure, but
rather a fluctuating domain structure, in which the Si=
−1 molecules occupy different sublattices. Since, the average
contributions due to differently oriented domains are roughly
the same, the components of the order parameter �6,1 and
�6,2 both converge to about 0.5 �or −0.5�, rather than to
unity and hence �6 converges to 1/
2�0.7071 as is illus-
trated by the results presented in Fig. 8. Figure 9 shows two
examples of the histograms of the order parameters �6,1 and
�6,2 obtained at the temperatures below and above the order-
disorder transition for the system ordering into the structure
A3B. One readily notes that below the transition temperature,
the two components of the order parameter �6 exhibit sharp
peaks around −0.5. It should be emphasized that the histo-
gram of the order parameter, recorded at the temperature
below the order-disorder transition �at T*=0.025�, is not
smooth, despite that a very long run of 109 Monte Carlo
steps has been performed. A particularly poor convergence of
the order parameter has been observed for the systems with
small values of �u2, lower than about 0.1, and small simu-

lation cells of L�60. Therefore, we have not been able to
obtain reliable estimations of the critical exponents for small
values of �u2, despite very large computational efforts. Nev-
ertheless, the results of the finite size scaling analysis pro-
vide a rather strong evidence that the order-disorder transi-
tion changes the universality class when �u2 increases. In
the case of �u2=0.1 and 0.15 the cumulant fixed point and
the critical exponents � and � assume the values consistent
with the universality class of the Ising model. When, how-
ever, the parameter �u2 increases to 0.2 we find a quite dif-
ferent behavior. The fixed point of the order parameter cu-
mulant assumes the value of 0.658±0.001 �see Fig. 10� and
the critical exponents � and � are equal to �=3.38±0.08 and
�=1.87±0.04, i.e., are considerably higher than in the case
of the Ising universality class. When the value of �u2 in-
creases further towards the threshold value of 0.25, which
delimits the regions of stability of the ordered phases A3B
and SAF, the transition temperature gradually decreases.
Thus, one can expect that it goes to zero when �u2 ap-
proaches 0.25.

As soon as the value of �u2 becomes higher than 0.25 the
system orders into the structure SAF at the ground state. The
symmetry of that ordered state is the same as the symmetry
of the �2�1� phase, and it is known that the order-disorder
transition of the �2�1� phase belongs to the universality
class of the XY model with cubic anisotropy.61 Therefore,
one expects the critical exponents to be nonuniversal.58 Be-
low, we present the results which demonstrate that the criti-
cal exponents are in fact nonuniversal and depend on the
magnitude of �u2.

The recorded temperature changes of the order parameter
�SAF and of the corresponding fourth-order cumulant, ob-
tained for different sizes of the simulation cell and the sys-
tems characterized by the fixed value of �u1=0.2 and differ-
ent values of �u2, provide a strong evidence that all systems
undergo a sharp order-disorder transition and that the fixed
point values of cumulant UL

* are considerably higher than

FIG. 8. Temperature changes of the order parameter �6 for
different sizes of the simulation cell �shown in the figure� calculated
for the systems characterized by u1,a=−1.0, u1,b=−1.25, �u1

=0.25, u2,a=0.0, and different values of u2,b equal to −0.1��u2

=0.1� �a� and −0.2��u2=0.2� �b�.

FIG. 9. Distributions of the order parameter components �6,1

and �6,2 for the system characterized by u1,a=−1.0, u1,b=−1.25,
u2,a=0.0, and u2,b=−0.05 and L=100 at �*=−2.5 and at two tem-
peratures �shown in the figure�.
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predicted for the two-dimensional Ising model.
Figure 11 presents the results of the finite size scaling

analysis, based on the relation �26�, obtained for the system
characterized by �u1=0.2 and �u2=0.3 �u2,a=0.0, u2,b=
−0.3�, which clearly demonstrate that the critical exponents
�=1.12±0.01 and �=2.034±0.005 are considerably higher
than the values corresponding to the two-dimensional Ising
model ��=1, �=1.75�. It is quite obvious that the scaling
relation �26� is much better satisfied when nonuniversal val-
ues of the critical exponents are used.

Quite similar finite size scaling analysis has been per-
formed for a number of systems characterized by different
values of �u1 and �u2 and the results are summarized in Fig.
12, which shows the changes of the order-disorder transition

temperature �part �a�	, of the critical exponents � �part �b�	
and � �part �c�	, and of the cumulant fixed point value, U*

�part �d�	, plotted versus �u2.
The above-presented results demonstrate that when the

magnitude of �u2 exceeds about 0.4 the finite size scaling
analysis leads to the critical exponents characteristic of the
two-dimensional Ising model, though the fixed point value of
the cumulant U* does not converge to the value predicted for
the two-dimensional Ising model, but to a considerably
higher value of about 0.64. This may be related to particu-
larly large corrections to scaling, so that still much larger
simulation cells would be needed to reconcile the discrep-
ancy. Such calculations would demand a prohibitively large
amount of time. One should note, however, that the scaling
analysis of the order parameter susceptibility, as well as of
the heat capacity, confirm that for sufficiently large values of

FIG. 10. Temperature changes of the fourth-
order cumulant of the order parameter �a�, log-log
plot of the susceptibility maximum value
���6,max�L�	 versus L �b�, and the log-log plot of
Tc

*�L�−Tc
* vs. L �c�, for �u2=0.20, obtained from

the hyper parallel tempering grand canonical
Monte Carlo simulations, for �u1=0.25 at �*=
−3.0. Dashed lines in �a� mark the location of the
transition point and the fixed point value of the
cumulant.

FIG. 11. The scaling plots of �L�T�L−�/� vs. �t�L1/� for the system
characterized by u1,a=−1.0, u1,b=−1.2, u2,a=0.0, and u2,b=−0.3 for
different values of the exponents �=1.12 and �=2.034 �a� and �
=1.0 and �=1.75 �b�. Different symbols denote the results obtained
for different sizes of the simulation cell, L=16 �open circles�, 20
�filled circles�, 30 �open squares�, 40 �filled squares�, 60 �open dia-
monds�, and 100 �filled diamonds�.

FIG. 12. The changes of the order-disorder transition tempera-
ture �a�, of the critical exponents � �b� and � �c�, and of the fixed
point values of the fourth-order cumulant U* against �u2, obtained
for the systems characterized by u1,a=−1.0, u1,b=−1.2 ��u1=0.2�,
and u2,a=0.0.
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�u2 the critical exponents correspond to the Ising universal-
ity class. Taking into account a rather limited accuracy of the
critical exponents estimations and the fact that the cumulant
fixed point at the transition temperature seems to be defi-
nitely larger than the value predicted for the Ising universal-
ity class, we can tentatively conclude that the critical expo-
nents asymptotically approach Ising values when �u2
increases and the transition remains nonuniversal. This state-
ment is supported by the results of the scaling analysis of the
susceptibility. Namely, from the scaling relation �26� it fol-
lows that when x= �t�L1/�→�, the scaling function �̃�x� can
be written as

�̃�x� = �̂̃x−� �28�

so that we arrive at

��,L�T� = �±�t�−�, �29�

where �± is the amplitude of � at low, �−, and high, �+,
temperatures, respectively. We have estimated the magni-
tudes of �± for several systems ordering into the phase SAF
and found that �+ is about an order of magnitude higher than
�− and both strongly depend on �u2. In particular, we have
found that �+ is likely to diverge when �u2−0.25 approaches
zero �see Fig. 13�a�	.

The results presented in of Fig. 12�a� and the data given in
Table IV show that the order-disorder transition tempera-
tures, of the phases SAF and A3B, both decrease when �u2
approaches the threshold value of 0.25/�V, i.e., equal to
0.25 for our choice of �V=1.0.

A careful analysis of the region in which the values of
�u2 are slightly lower than 0.25 indicates that the model
predicts the presence of two order-disorder phase transitions.
The first is due to the transition between the A3B phase,
stable at very low temperatures, and the �stable at higher
temperatures� SAF phase, while the second is associated with
the disordering of the SAF phase. It is demonstrated by the
results presented in Fig. 14, which show the temperature
changes of the susceptibilities of the order parameters �6
and �SAF obtained for the system with �u2=0.24 and �u1
=0.25. One finds that there are two maxima present, which
corespond to the above-mentioned two phase transitions.

The data presented in Fig. 15, obtained for the system
with �u2=0.24 and �u1=0.25, show that in the case of the

FIG. 13. �a� shows the log-log plot of the susceptibility ampli-
tude �+ vs. �u2−0.25, while �b� the plot of �+ against �u2, for the
systems with �u1=0.25.

TABLE IV. The locations of the order-disorder transition for the
A3B phase obtained for the systems characterized by the values of
�u1=0.25 and different values of �u2.

�u2 To
*

0.05 0.0275±0.0005

0.10 0.0551±0.0005

0.15 0.0772±0.0006

0.20 0.075±0.003

0.22 0.067±0.004

0.24 0.04±0.004

0.245 0.01±0.003

FIG. 14. Temperature dependences of the sus-
ceptibilities ��6,L �a� and ��SAF,L �b� for the sys-
tem with �u2=0.24 and �u1=0.25, obtained
from the hyper-parallel tempering Monte Carlo
simulation in the grand canonical ensemble at
�*=−3.0.
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SAF order-disorder phase transition only the cumulants of
the order parameter �SAF exhibit a nontrivial fixed point,
U*�0.655 when �u2=0.248, while the cumulants of the or-
der parameter �6 cross only for small systems, and do not
when the size of the simulation cell becomes sufficiently
large.

It should be also noted that the amplitude, �+, of the sus-
ceptibility ��SAF

�T�, obtained for the system with �u2

=0.248 is lower than in the case of �u2 slightly exceeding
0.25 �see Fig. 13�b�	. Also, the scaling analysis of the sus-
ceptibility, using the relation �26�, and of the cumulants, ac-
cording to the equation

U�L,T� 
 �t�L1/�, �30�

performed for the system with �u2=0.248 �see Fig. 16�,
show that the critical exponents �=3.8±0.2 and �=2.1±0.1
are smaller than in the case of �u2=0.255, for which we
have obtained �=3.94±0.15 and �=2.15±0.1. These data
suggest that the amplitude �+ does not diverge, as suggested
by the results given in of Fig. 13�a�, but rather exhibit maxi-
mum value at �u2 close to 0.25.

From the above-presented results we have constructed the
phase diagram, given in Fig. 17. This phase diagram has
been calculated for a particular choice of �u1=0.25 and in-
cludes only the data obtained for positive values of �u2.
Note that with the computer resources available to us it still

was not possible to make a reliable statement where the line
of the transition from the disordered phase to the SAF phase
ends when one approaches the A3B phase! When �u2 is
negative the phase diagram should also involve the line of
the order-disorder transition of the phase AF �when �u1

0.25�, which begins at the value of �u2 depending on �u1
and equal to �ũ2=�u1−0.25/�V, where �u1� �0.25,0.50	.
In such cases, the stability region of the phase A3B also ter-
minates at �ũ2 and the temperature of the order-disorder
transition of the phase A3B converges to zero at �ũ2. When
�u1 is smaller than 0.25 the phase F sets in. This phase does
not undergo any order-disorder transition and hence the
phase diagram, shown in Fig. 17, terminates at the point
�ũ2=−�u1−0.25/�V, where �u1� �0.0,0.25	.

Although we have not performed any systematic studies,
the behavior of the model appears to be also dependent on
the magnitude of �u1. For example, when u1,a=−1.0, u1,b=
−1.6 ��u1=0.6� and u2,a=0.0, u2,b=−0.4 ��u2=0.4�, the sys-
tem orders into the SAF phase, but the nature of the order-
transition changes, with respect to that corresponding to
�u1=0.25 and �u2=0.4. In particular, the system with �u1
=0.6 gives the order parameter cumulant fixed point equal to
about U*=0.612±0.03 �cf. Fig. 18�, i.e., corresponding to the
Ising universality class, while the system earlier discussed,
with �u2=0.25, gives U*�0.64. Preliminary results ob-
tained for larger and smaller values of �u2 equal to 0.45 and
0.37 suggest, however, that the transition is nonuniversal. In

FIG. 15. Temperature dependences of the cu-
mulants U�6,L �a� and U�SAF,L �b� for the system
with �u2=0.248 and �u1=0.25, obtained from
the hyper-parallel tempering Monte Carlo simula-
tion in the grand canonical ensemble at �*=
−3.0.

FIG. 16. Scaling plots of the fourth-order cu-
mulant �U�SAF,L� and of the susceptibility
���SAF,L� for the system with �u1=0.25 and
�u2=0.248.
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particular, the fixed point of the order parameter cumulant
changes with both �u1 and �u2. The problem of the cross-
over between these different regimes is left for future study.

V. SYSTEMS WITH NONATTRACTIVE FIRST-NEAREST
NEIGHBOR INTERACTION

In this section we assume again that VA=−2.0 and VB=
−1.0, so that �V=1.0, and consider two series of systems
with u1,a=u1,b=0.25 ��u1=0.0� and with u1,a=0.5, u1,b=0.0
��u1=0.5�, i.e., the first-nearest neighbor interactions are as-
sumed to be nonattractive. Moreover, we fix the parameter
u2,a as equal to −1.0, assuming that the interaction energy
between a pair of the next-nearest neighbors having the same
orientation is attractive. Allowing the parameter u2,b, and
hence �u2, to vary, we consider two paths, marked by dots in
Fig. 2. Thus, we exclude from the discussion the systems
which can order into the A3B structure in the ground state.

With our choice of the parameters uk,l �k=1,2 and l
=a ,b� the model predicts that at sufficiently low tempera-

tures, the formation of a fully occupied monolayer should
occur via a sequence of two first-order phase transitions. The
first transition leads to the condensation of a dilute �gas-like�
phase into one of the ordered states of the density �=0.5,
c�2�2�F or c�2�2�AF, depending on the magnitude of �u2.
Then, upon a further increase of the chemical potential, the
second transition to one of the ordered states �F, AF, or SAF�
of the density �=1.0 takes place. Our first aim has been to
locate the critical points of the above-mentioned transitions
and to determine their universality classes. For this purpose
we have applied the histogram reweighting method53,54 to-
gether with a finite size scaling analysis.15 The results are
summarized in Figs. 19 and 20, which show how the critical
parameters �Tc, �c, �c, and U�

*� change with �u2, when �u1

is equal 0.0 as well as 0.5. Figure 19 shows the critical pa-
rameters for the transition leading to the formation of the low
density ��=0.5� phases, while Fig. 20 corresponds to the
transitions between the low and high density phases. Parts
�d� of both figures present the corresponding plots of the
fixed point values of the fourth-order cumulant of the den-
sity, U�

*, at the critical temperature.
The results given in Figs. 19 and 20 demonstrate that

there are two regimes of �u2 in which both transitions ex-
hibit a different behavior. For negative values of �u2 the
critical temperature remains nearly constant, while for higher
values of �u2 it increases. The fixed point value of the
fourth-order cumulants U�

*, at the critical points of the gas-
c�2�2�F as well as of the gas-c�2�2�AF transitions �given
in Fig. 19�d�	, is independent of both �u1 and �u2 and takes
on the values very close to about 0.57, suggesting that the
transition belongs to the universality class of the tricritical
point of the Blume-Capel �BC� model, for which the cumu-
lant fixed point is equal to 0.574.54 The fact that we have
obtained slightly lower values of U�

* can be attributed to
finite size effects and neglected corrections to scaling. In
order to confirm the prediction that the transition belongs to
the tricritical universality class of the BC model, we have
estimated the critical exponents �, �, and � using the finite
size scaling analysis. The results obtained agree quite well
with the exponents found in the study54,62,63 of the BC
model. Thus this finding implies that the phase coexistence
ends at the tricritical point rather than at a critical point.

In the case of the second transition, between one of the
low density ordered state �c�2�2�F or c�2�2�AF	 and the
high density phase �F, AF, or SAF� we have also found two
different regimes with respect to the variation of �u2 �cf. Fig.
20�. In this case, however, we also find that for �u2 lower
than zero the nature of the transition changes and depends
not only on the magnitude of �u2, but also on �u1. When
�u1=0 the ground state calculations predict that whenever
�u2 /�V is lower than 0.25 the transition occurs between the
c�2�2�F and F phase, while for higher values of the ratio
�u2 /�V, the transition takes place between the phases c�2
�2�AF and SAF. The results given in Fig. 20, and in particu-
lar those presented in part �d�, clearly demonstrate that there
is a crossover between different regimes when �u2 is close to

FIG. 17. The phase diagram obtained for the systems with
�u1=0.25.

FIG. 18. Temperature dependences of U�SAF,L for the system
with �u2=0.4 and �u1=0.6, obtained from the hyper-parallel tem-
pering Monte Carlo simulation in the grand canonical ensemble at
�*=−3.0.
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zero rather than about 0.25. In particular, the cumulant fixed
point exhibits a jump from the BC tricritical universality
class to the universality class of the two-dimensional Ising
model,64 when �u2 decreases from positive to negative val-
ues. On the other hand, no such crossover is observed when
�u1=0.5, i.e., when the low-density ordered phase �either
c�2�2�F or c�2�2�AF	 undergoes a transition to the high-
density phase �either AF or SAF�. In these two cases we

again find that the transition belongs to the tricritical univer-
sality class of the BC model.

The results reported above have been based on the calcu-
lations of the fourth-order cumulant of the density rather than
the order parameters, defined in Sec. III, suitable to detect
different ordered structures.

In order to clarify the observed behavior we have per-
formed the grand canonical Monte Carlo simulations and

FIG. 19. The changes of the
critical paremeters Tc �a�, �c �b�,
�c �c�, and the fixed point of
fourth-order density cumulant, U�

*

�d� vs. �u2, corresponding to the
transition between the gas-like
and the low density ordered struc-
ture �c�2�2�F or c�2�2�AF	.
Squares �triangles� correspond to
the path with �u1=0.0�0.5�. Full
and broken lines are guides to the
eye only. In �a�–�c� the errors are
not larger than the symbols size,
while in �d� the largest error is
equal to ±0.002, i.e., it is only
slightly larger than the symbols
size.

FIG. 20. The changes of the
critical parameters Tc �a�, �c �b�,
�c �c�, and the fixed point of
fourth-order density cumulant, U�

*

�d� vs. �u2, corresponding to the
transition between the low density
�c�2�2�F or c�2�2�AF	 and high
density �F, AF or SAF� ordered
structure. Squares �triangles� cor-
respond to the path with �u1

=0.0�0.5�. In �a�–�c� the errors are
not larger than the symbols size,
while in �d� the largest error is
equal to ±0.002, i.e., it is only
slightly larger than the symbols
size.
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recorded the order parameters �3 and �SAF as well as their
distributions under different conditions.

Figure 21 presents the variation of several quantities with
chemical potential, �: the order parameter �3, the corre-
sponding susceptibility, the fourth-order cumulant, and the
heat capacity, using cells of different size and the system
characterized by �u1=0 and �u2=−1. The results presented
have been obtained from simulations performed at the tem-
perature T=0.75, being considerably higher than the critical
temperatures of both the dilute gas-like to c�2�2�F and the
c�2�2�F to F transitions, which is equal to about 0.59 for
the first transition and to about 0.57 for the second transition,
respectively. It is quite transparent that there are two continu-
ous phase transitions present. The first transition occurs be-
tween a dilute disordered �DIS� phase and the ordered c�2
�2�F phase, while the second occurs between the ordered
c�2�2�F phase and the high-density DIS phase, in which �3

vanishes again. The fixed point values of the order parameter
cumulant, U�3

* , are again equal to about 0.57 for both tran-
sitions. The appearance of the two continuous transitions at
such high temperatures confirms that for the assumed values
of the parameters we observe tricritical rather than critical
points.

The situation is expected to be quite different when �u2
becomes larger than 0.25. The ground state considerations
predict that in such cases the following transitions take place:
the first transition is due to the condensation of a dilute gas-
like phase into the ordered c�2�2�AF phase, while the sec-
ond transition occurs between the ordered structure c�2

�2�AF and the high-density SAF phase. The results given in
Fig. 22�a� demonstrate, however, that at the temperature used
�T=0.95� the order parameter �SAF goes to zero over the
entire range of � when the system size increases. Also the
corresponding susceptibility �see Fig. 22�b�	 does not exhibit
finite size effects expected for a continuous phase transition.
On the other hand, the order parameter �3 as well as the
corresponding susceptibility, given in parts �c� and �d� of Fig.
22, both exhibit the behavior indicating the presence of two
continuous transitions, and the fixed point value of the order
parameter cumulant is again located at about 0.57. One
should note, however, that the order parameter �3 is quite
low in the ordered phase and reaches the maximum value of
only about 0.065! The results are still more surprising since
the value of �u2 �equal to 0.7� is considerably higher than
the value predicted by the ground state calculations �equal to
0.25� above which the low density ordered structure should
be c�2�2�AF rather than c�2�2�F. Therefore, it seems that
the boundary between the above two low-density ordered
states drifts toward higher values of �u2 as the temperature
increases. Note that the results given in Fig. 22 have been
obtained at T*=0.95, i.e., above the tricritical point, which is
located at the temperature of about 0.84 �cf. Fig. 20�. The
results presented in Fig. 22 are also supported by the calcu-
lations of the order parameter distributions �shown in Fig.
23�, obtained for three different values of u2,b equal to −1.0,
−1.4, and −1.7, at the temperatures close to the tricritical
points of these systems. Part �a� of Fig. 23 shows the distri-
butions of �3, part �b� shows the distributions of the com-
ponent �2 and of the order parameter �SAF �the distribution

FIG. 21. The changes of the
order parameter �3,L �a�, its sus-
ceptibility �b�, and the fourth-
order cumulant �c� as well as of
the heat capacity �d� with the
chemical potential at T=0.75 for
different sizes of the simulation
cell �L=30—solid lines, 40—
dotted lines, 60—dashed lines,
and 100—dashed-dotted lines� for
the system with �u1=0.0 and
�u2=−1.0.
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of the second component is the same� in the region of the
transition between the low- and high-density ordered phases,
at the average density close to about 0.75, while the lower
panels �parts �c� and �d�	 present the distributions of �3 and
�2 in the region of the transition between a dilute �gas-like�
and the low-density ordered phase, at the average density
equal to about 0.25. In both cases, the distributions of �3
possess three maxima, one at �3=0 that comes from the
disordered phases, and two maxima at ±�3,o�T� associated
with the phase c�2�2�F. Of course, at the temperatures
above the tricritical points, the distributions of the order pa-
rameter �3 exhibit two maxima, due to the presence of c�2
�2�F ordered structure. On the other hand, the distributions
of �2 are, in all cases, simple Gaussians centered at �2=0,
indicating a lack of the orderings characteristic to the phases
c�2�2�AF as well as SAF. One should note that at the ground
state the systems with u2,b lower than −1.25 are expected to
order into the above-mentioned ordered states c�2�2�AF and
SAF. This again suggests that the increase of temperature
may cause a large shift of the threshold value of u2,b, which
delimits the regimes of different orderings. The canonical
ensemble Monte Carlo calculations, performed at the density
�=0.5 for a series of systems with �u1=0.0, and character-
ized by different values of �u2, equal to 0.3, 0.4 and 0.7,
have shown, however, that there is a continuous phase tran-
sition between the c�2�2�AF structure, which is stable at low
temperatures, and the structure c�2�2�F, which is stable at
higher temperatures. When the temperature increases further,
the phase c�2�2�F undergoes a transition to a disordered

phase. The temperature of the transition between the c�2
�2�AF and c�2�2�F phases gradually approaches zero when
�u2 /�V decreases toward 0.25 �see Fig. 24� and the transi-
tion belongs to the universality class of the two-dimensional
Ising model. On the other hand, the temperature of the order-
disorder transition of the c�2�2�F phase depends on the den-
sity and reaches its maximum value at �=0.5. Quite similar
canonical ensemble simulations have been performed at the
density �=1.0 and demonstrated that the phase SAF is stable
only at low temperatures and undergoes an order-disorder
transition at the temperature well below the tricritical point.
This transition is nonuniversal, as it was demonstrated in
Sec. IV. In particular, the critical exponents � and � depend
on the magnitude of �u2 and seem to asymptotically ap-
proach Ising values upon the increase of �u2. It should be
noted that the transition temperature, equal to about 0.73
when �u2=0.7, agrees very well with the value obtained for
the system with �u1=1.2 and �u2=0.7, but with completely
different magnitudes of the interaction energies uk,l , �k
=1,2� and l=a ,b, equal to u1,a=−1.0, u1,b=−1.2, u2,a=0.0,
and u2,b=−0.7 �see Sec. IV�.

Using the results of the canonical ensemble simulations,
as well as the results obtained from hyper-parallel tempering
Monte Carlo simulations in the grand canonical ensemble,
we have determined the phase diagram for the system char-
acterized by �u1=0.0 and �u2=0.7, which is shown in Fig.
25. Parts �a� and �b� show the density-temperature and the
temperature-chemical potential projections of the phase dia-
gram, respectively. Solid lines mark the first-order transi-
tions, while dotted and dashed lines mark the continuous

FIG. 22. The changes of the
order parameter �SAF,L �a� and
�3,L �c�, and the corresponding
susceptibilities ��b� and �d�	
against the chemical potential at
T=0.95 for the system with �u1

=0.0 and �u2=0.7, obtained for
different sizes of the simulation
box �L=30—solid lines, 40—
dotted lines, 60—dashed lines,
and 100—dashed-dotted lines�.

PHASE TRANSITIONS IN A TWO-DIMENSIONAL… PHYSICAL REVIEW B 72, 165416 �2005�

165416-15



transitions. The dotted lines correspond to the transitions be-
tween the c�2�2�AF and c�2�2�F as well as between the
SAF and disordered high density phases. These two lines

join the first-order transition boundaries at the respective
critical end points �CEP’s�, Te,1, Te,2, and Te,3.

Qualitatively the same phase diagrams occur when the
parameter �u2 is varied, but stays above 0.25. The only ef-
fects of the variation of �u2 are the shifts of the phase
boundaries. Thus, the critical end points, Te,1, Te,2, and Te,3,
both the tricritical points, Ttrc,1 and Ttrc,2, as well as the maxi-
mal critical point, Tc,max, all are shifted to lower values when
�u2 decreases towards 0.25. One should note that the lines of
the critical points, presented in Fig. 25, associated with the
transitions c�2�2�AF-c�2�2�F and SAF-disordered phase
�dotted lines�, both exhibit a very strong temperature depen-
dence. The line of the transition c�2�2�AF-c�2�2�F termi-
nates at the coexistence curve of the first-order transition
leading to the high-density disordered phase, at Te,3. Also the
line of the phase transition from the SAF to the disordered
phase terminates at a finite temperature, at which the density
reaches unity.

As soon as �u2 becomes lower than 0.25 the topology of
the phase diagram changes, since the ordered structures c�2
�2�AF and SAF are not present, as it also follows from the
ground state considerations. Thus, the phase diagram exhib-
its only the first-order transitions; the first between a gas and
c�2�2�F phases, and the second between the c�2�2�F and
the ferromagnetic-like phases. We do not call it the F ordered
structure, since it has rather special properties. Namely, the
magnetization ��4� approaches the same value as the density
and it does not exhibit an order-disorder phase transition, as
it was demonstrated in Sec. IV. This special behavior results
from the assumed external �surface� field which causes a

FIG. 23. Distributions of the
order parameter �3 ��a� and �c�	
and one of the components, �2, of
�SAF ��b� and �d�	, at the tempera-
tures slightly lower that the tric-
ritical point temperature and the
chemical potential at the coexist-
ence line for the systems with
�u1=0.0 and different �u2 equal
to 0.0 �dashed lines�, 0.4 �dotted
lines�, and 0.7 �solid lines�. Parts
�a� and �b� refer to the transition
from the c�2�2�AF phase to the
high density SAF phase, while �c�
and �d� refer to the transition from
the gas-like phase to the ordered
c�2�2� structure.

FIG. 24. The changes of the order-disorder transition tempera-
tures for the phases c�2�2�F �circles� and c�2�2�AF �squares�, and
SAF �triangles� plotted against �u2, for the systems with �u1=0.0.
Error bars have been omitted since the errors do no exceed the size
of the symbols.
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preferential orientation of the molecules with the spins Si=
+1, even at elevated temperatures.

The next series of calculations have been performed for
the systems with �u1=0.5 and different values of �u2 rang-
ing from −1.0 to 0.7. As long as �u2 stays below zero the
only possible ordered phases are the c�2�2�F and AF. The
first-order transition between a dilute gas-like phase and the
ordered c�2�2�F phase terminates at the tricritical point, so
that at higher temperatures there exists a line of a continuous
transition between the disordered and the ordered �c�2
�2�F	 phases. On the other hand, the subsequent transition
between the c�2�2�F and the AF ordered structures is of
first order and terminates at the critical point, which belongs
to the universality class of the two-dimensional Ising model.
In parts �a� and �b� of Fig. 26 we present two phase dia-
grams, obtained for different values of �u2=−0.5 and −0.1,
respectively. The topology of these two phase diagrams is the
same. The only effects of the increase of �u2 is a gradual
lowering of the temperature at which the ordered AF struc-

ture of density close to, and equal to, unity undergoes an
order-disorder phase transition. The temperature at which
this transition takes place decreases when �u2 approaches
the value which delimits the regions of stability of different
ordered phases at T=0. In the present case, with �u1=0.5,
the stability of the phase AF terminates at �u2=0.25. The
order-disorder transition of the phase AF is known to belong
to the universality class of the 2D Ising model.64 Also the
order-disorder transition of the low density c�2�2�F phase
belongs to the same universality class. On the other hand, the
tricritical point, at which the line of the order-disorder phase
transition begins, belongs to the tricritical universality class,
of course. Therefore, there is a sudden change of the critical
exponents and other universal properties at the tricritical
point. This is demonstrated in Fig. 27, which shows the mag-
nitudes of the order parameter cumulant intersection point at
the order-disorder phase transition as a function of tempera-
ture for the system with �u2=−0.5. One readily notes that
the cumulant intersection point at the tricritical point has the
value very close to 0.574, while at the temperatures well
above this point it assumes the values corresponding to the
2D Ising universality. We must call readers’ attention to the
fact that there are severe difficulties with the accurate deter-
mination of the universality class at the temperatures ap-
proaching the tricritical point, due to particularly large cor-
rections to scaling associated with the crossover from one
universality class to another. The inset to Fig. 27, which
shows the cumulants versus chemical potential at T=0.8
�i.e., well above Ttrc� obtained for different sizes of the simu-
lation cell, illustrates this problem. Namely, it is quite well
seen that the cumulants obtained for L=40, 60, and 80 seem
to intersect at the point of U* equal to about 0.597. When,
however, a still larger system of L=100 is used the intersec-
tion point moves up to the value of about 0.612, i.e., very
close to the expected value characteristic to the 2D Ising
universality class. At still lower temperature equal to 0.75,
we have not reached the scaling regime even with L=100, as
Fig. 27 shows. Of course, we would finally obtain the proper
�Ising� value of U* if still larger simulation cells were used.
We have not performed such calculations, which would re-
quire an unreasonably large investment of computer re-
sources, since it is rather obvious to what result would we
arrive at. The critical exponents � and � along the critical
line have been estimated from the finite size scaling analysis,
and the results obtained at the temperatures above 0.8 are
consistent with the Ising universality class. On the other
hand, the critical exponents at the tricritical point are ex-
pected to be different, and equal to �=5/9 and
�=1/24.62,63,65,66

When �u2 increases to zero and then further to positive
values the topology of the phase diagram changes again. It is
caused by the decrease of the temperature of the order-
disorder transition of the AF phase. Table V gives the loca-
tions of this transition �To

*� at the density equal to unity.
Thus, when �u2 becomes sufficiently large the temperature
To

* is lower than the critical temperature of the c�2�2�F to
the high-density phase transition. In such situation the order-
disorder transition of the AF phase starts at the critical end-
point �CEP� located at the high-density branch of the coex-
istence curve of the transition from low- to high-density

FIG. 25. The density-temperature �a� and the temperature-
chemical potential �b� projections of the phase diagram for the sys-
tem with �u1=0.0 and �u2=0.7. The critical endpoints are high-
lighted as open squares in �b�.
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FIG. 26. The density-
temperature phase diagrams for
the systems with �u1=0.5 and
�u2=−0.5 �a� and −0.1 �b�.

FIG. 27. The changes of the
order parameter cumulant fixed-
point value at the line of continu-
ous order-disorder transition for
the phase c�2�2�F �filled circles�
and at the tricritical point �filled
triangle�, for the system with
�u1=0.5 and �u2=−0.5. The larg-
est error is equal to ±0.002. The
inset shows the changes of the cu-
mulants with � at the temperature
T=0.8, obtained for different sizes
of the simulation cell �shown in
the figure�.
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phase. Of course, when �u2 approaches the threshold value
equal to 0.25, the temperature of that order-disorder transi-
tion ultimately reaches zero. As a consequence of that down-
ward shift of the order-disorder transition temperature, the
line of critical points, starting at the tricritical point, which
terminates the gas-c�2�2�F transition �at the density 0.25�,
does not extend to the density equal to unity, but ends at
lower density, equal to about 0.75, at the second tricritical
point, which replaces the critical point of the transition from
the c�2�2�F structure to a dense phase. The above state-
ments are supported by the density and the order parameter
distributions calculated in a close vicinity of the tricritical
point and the critical points of the transition between the
c�2�2�F and AF phases, for the systems characterized by
�u1=0.5 and two different values of �u2 equal to 0.0 �Fig.
28�a�	 and −0.1 �Fig. 28�b�	. In both cases the density distri-
butions demonstrate that we are still in the two-phase region,
while the respective order parameter distributions are quite
different. When �u2=0.0 we observe three maxima. The
maximum located at �1=0 is due to the disordered phase,
while two other maxima, at about ±0.32 are due to differ-
ently oriented AF phases. On the other hand, the order pa-
rameter distribution obtained for the system with �u2=−0.1
possesses two maxima only. The maximum at �3�−0.5 is
associated with the c�2�2�F structure, frozen in one of the
two possible degenerated states, while the second maximum,
at �3�−0.75, is due to the AF phase, also frozen in one of

the two possible degenerated states. Of course, when the two
ordered states are locked in other orientations, one obtains
the order parameter distributions with only positive values of
the order parameter, with the maxima located at �3 equal to
about 0.5 and 0.75, respectively.

VI. CONCLUSIONS

In this work we have presented the results of an extensive
Monte Carlo study of the extended BEG spin-1 model with
the first- and the second-nearest neighbor interactions. The
results presented in this work demonstrate that the lattice gas
model discussed exhibits a rich variety of ordered structures
of different symmetry and has a quite complex phase behav-
ior. In particular, the phases AF, SAF, and A3B have been
found to undergo continuous order-disorder phase transitions
at the temperatures well below the critical point. It has been
shown that the phase transitions associated with the disorder-
ing of the phases A3B and SAF are nonuniversal and the
critical exponents strongly depend on the model parameters.
In the case of nonrepulsive first-nearest neighbor interactions
we have not discussed in detail the properties of the model
near the critical points of the transition from the gas to the
condensed phase. In particular, we have neglected the ques-
tion to what universality class this transition belongs when
the low-temperature ordered structure corresponds to either
the SAF or A3B phase.

Then, assuming that the first-nearest neighbor interactions
are nonattractive, we have investigated the changes of the
phase diagram topology with the magnitudes of the coupling
constants. In particular, we have assumed that the surface
field leads to a preferential orientation of the molecules with
the spin variable Si=1. Under such conditions the ground
state analysis predicts the formation of two different ordered
states of the density �=0.5, which correspond to the c�2
�2� ferro- and antiferromagnetic structures, and four differ-
ent ordered structures �ferro, antiferro, A3B, and superanti-
ferro� of the density �=1. With the assumed values of the
coupling constants we have excluded from the discussion the
phase A3B.

The results obtained have demonstrated that the topology
of the phase diagram changes when different types of order-

TABLE V. The temperatures of the order-disorder transition, To,
for the phase AF at the density �=1.

�u2 To

0.25 0.000

0.23 0.044

0.20 0.110

0.10 0.304

0.00 0.470

−0.10 0.630

−0.50 1.197

FIG. 28. Distributions of the
order parameter �3 �dashed lines�
and of the density �solid lines� for
the systems with �u1=0.5 and
two different vales of �u2 equal to
0.0 at T=0.604 and �=−3.096 �a�
and �u2=−0.1 at T=0.559 and �
=−3.011.
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ing occur in the system. In the case when �u1=0.0 we have
found two different topologies of the phase diagram, de-
picted in the left panels of Fig. 29, depending on the magni-

tude of �u2. On the other hand, when �u1=0.5 four different
topologies appear �see the right panels of Fig. 29� depending,
again, on the magnitude of �u2. The lower panel on the
right-hand side of Fig. 29 shows three different phase dia-
grams predicted to occur for �u2�0. One should note that
only two of them have been found in this work �cf. Fig. 26�.
The appearance of the third phase diagram, which exhibits
the presence of multicritical point at the density �=0.75, can
be anticipated from the fact that the onset of the order-
disorder transition of the AF phase, located at the coexist-
ence curve between the c�2�2�F and the AF phases at the
critical end point Te,2, moves towards higher temperatures
when �u2 decreases. Thus, for a certain value of �u2 it has
to reach the temperature of the tricritical point. Upon further
decrease of �u2, the multicritical point disappears and is re-
placed by a critical point. When it happens, there exists a
certain temperature range over which the low-density phase
c�2�2� transforms into the dense AF phase gradually, and
not via a phase transition of any type. The phase diagrams
exhibiting the presence of such a multicritical point is ex-
pected to be found whenever the values of the parameters
�u1 and �u2 are chosen in such a way that the critical end
point Te,2 coincides with the tricritical point temperature.

One of rather unexpected results has been the finding of
the transitions between the c�2�2�AF and c�2�2�F ordered
structures, as well as between the SAF and AF ordered struc-
tures at finite temperatures, when the ground state analysis
predicts that the c�2�2�AF and SAF phases are stable at zero
temperature.

It has been shown that the simple model presented in this
paper exhibits a remarkable richness of critical behavior, and
it is hoped that our work will stimulate the search for experi-
mental realizations of such systems.
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