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A systematic study of the ground state geometries, electronic structure, and stability of the metal �M�
encapsulated MSi12 �M =Sc, Ti, V, Cr, Mn, Fe, Co, Ni� clusters has been carried out within a gradient-
corrected density functional formalism. It is shown that the ground state of most MSi12 clusters has the lowest
spin multiplicity as opposed to the high spin multiplicity in free transition metal atoms. Consequently, a proper
inclusion of the spin conservation rules is needed to understand the variation of the binding energy of M to Si12

clusters. Using such rules, CrSi12 and FeSi12 are found to exhibit the highest binding energy across the neutral
while VSi12

− has the highest binding energy across the anionic MSi12
− series. It is shown that the variations in

binding energy, electron affinity, and ionization potential can be rationalized within an 18-electron sum rule
commonly used to understand the stability of chemical complexes and shell filling in a confined free-electron
gas.
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I. INTRODUCTION

One of the most exciting objectives of the research on
clusters is to identify motifs that could serve as the building
blocks for extended units or bulk materials. Since the prop-
erties of clusters can be tailored by changing the size and
composition, this can lead to the formation of materials with
desirable collective traits. The realization of this interesting
and promising concept, however, relies on our ability to
identify the stable building blocks that would retain their
identity upon growth. Finding electronic and geometrical
principles that can help identify the suitable units is therefore
an important goal of the research on clusters.1 For simple
metal clusters, it has been shown that a model based on a
confined free-electron gas can provide a useful guide to their
stability.2 For example, the magic numbers in Lin, Nan, or Kn
clusters have been understood within a simple Jellium model
where valence electrons respond to a uniform positive back-
ground formed by the ionic cores. The more stable clusters
correspond to sizes containing enough electrons to fill the
electronic shells.2 Such a model has been used to understand
the stability and electronic properties of numerous metal
clusters and was recently3,4 used to demonstrate the super-
halogen behavior of Al13

− . Another class of stable clusters are
the fullerenes,5 e.g., C60 and bigger cages. Here, it is the sp2

bonding and the special geometry �number of hexagons and
pentagons and their arrangement� that provide the guiding
principle. Some time ago, it was proposed that endohedral
metal atoms could stabilize the silicon cages.6 This raises the
question whether electronic or geometric rules that can help
guide the search of stable metal-silicon clusters could be for-
mulated.

A few years ago, Hiura et al.7 reported generating metal
�M�-containing hydrogenated silicon clusters �MSinHm

+ � by
reacting transition metal ions M+ with SiH4 that acts as the
source of Si. By comparing the abundance of MSin

+ amongst
MSinHx

+ clusters, they identified WSi12 to be an exceptionally
stable cluster. They further suggested that its stability could
be reconciled within an octet �18 electrons� rule,8 assuming

that each Si contributes one electron to the valence manifold.
Since a W atom has six valence electrons, the total of 18
valence electrons would result in a closed electronic shell as
in the case of rare gas atoms. Further, the shape of the cluster
was a regular hexagonal prism of 12 Si atoms with a W at the
center and thus had a compact geometrical shape in addition
to the electronic shell closure. Apart from octet rule used for
rare gas atoms, a shell filling at 18 electrons also occurs in a
Jellium model. This initial proposition, therefore, started a
flurry of activities and Khanna et al.9 examined the 18-
electron rule in CrSin �n=11–14� clusters since Cr also has
six valence electrons. They showed that the gain in binding
energy in adding a Si atom to the CrSin−1 was indeed large
for CrSi11. This along with vertical detachment energy
�VDE� and the adiabatic electron affinity �AEA� supported
the proposition. While the above studies provided some evi-
dence for the octet rule, a more critical investigation would
be to examine the binding of transition metal atoms in MSi12
across the entire transition metal series. If the octet rule were
to hold, one would expect CrSi12 to have the highest binding
energy of all the 3d elements.

Recently, Sen and Mitas10 carried out total energy calcu-
lations on MSi12 clusters for all M belonging to the 3d, and
part of the 4d and 5d series. They found that the cage geom-
etries were more stable than other arrangements, irrespective
of the type of doping. Further, the MSi12 clusters had the
lowest spin multiplicity �except for TiSi12�, indicating that
the magnetic moment on the free-transition metal atoms is
quenched by the silicon cage. To examine the stability across
the various series, they calculated the dissociation energy
�D.E.� for the process MSi12→M +Si12 via the equation

D.E. = E�Si12� + E�M� − E�MSi12� , �1�

where E�Si12�, E�M�, and E�MSi12� are the total ground state
energies of a Si12 cluster, isolated metal atom, and the MSi12
cluster respectively. Using their calculated total energy for
the ground state of the free MSi12, M, and Si12 clusters, they
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found that amongst the 3d series, VSi12 had the highest dis-
sociation energy, thus negating the octet rule. Their findings
were also supported by the later work by Kumar who
reached similar conclusions.11

The calculation of D.E. in Eq. �1� using the ground state
energy for free M atoms, however, violates the Wigner-
Witmer spin conservation rule12 since the spin moments of
the free M atoms are quenched in the formation of MSi12.
Consider the case of a Cr atom that has the highest spin
multiplicity in the 3d series. As already noted by Khanna et
al., the ground state of CrSi12 is a spin singlet.9 For the
dissociation process, CrSi12→Cr+Si12, according to the
Wigner-Witmer rule, both the reactant and product in the
reaction should have the same spin multiplicity. One should
therefore deduce the dissociation energies for the most favor-
able process using the reaction 1CrSi12→ 1Cr+ 1Si12. Since
the excitation energies to the lowest multiplicity vary consid-
erably across the 3d series, the D.E. incorporating the spin
conservation rules could exhibit different trends. It is inter-
esting to note that similar violations have previously been
known to lead to erroneous conclusions in the binding of Cr
to benzene clusters.13

The purpose of this paper is to reexamine the validity of

the electron counting rules enforcing the spin conservation.
We show that while the numerical computations by Sen and
Mitas10 are correct, the enforcing of spin conservation leads
to different conclusions. We show that when analyzed with
spin conservation, the binding energy of CrSi12 and FeSi12
are indeed the highest amongst the 3d series. The enhanced
stability of FeSi12 provides some evidence to extend the octet
rule to include shell closure at 20 found in a confined free-
electron gas. To further substantiate the role of the number of
electrons in stability, the studies were extended to anionic
clusters. Interestingly, the presence of an extra electron
shifted the shell closing and the stability patterns by one
electron, making VSi12

− as most stable. In Sec. II, we present
the details of the calculations, while in Sec. III we present
our results and their discussion. Section IV outlines our main
conclusions.

II. DETAILS OF CALCULATIONS

The theoretical calculations are carried out within a den-
sity functional formalism14 that incorporates exchange and
correlation effects within the generalized gradient approxi-
mation �GGA� of Perdew, Burke, and Ernzerhof.15 In par-

FIG. 1. �Color online� The ground state geometries of neutral
MSi12 clusters. The bond lengths are in Å.

FIG. 2. �Color online� The ground state geometries of anionic
MSi12

− clusters. The bond lengths are in Å.
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ticular, the Gaussian basis sets are employed to construct
atomic wave function while the cluster wave function is
formed from a linear combination of atomic orbitals. All cal-
culations were performed using the deMon software.16 Here,
an auxiliary basis set is used for the variational fitting of the
Coulomb and exchange-correlation potential.17 The numeri-
cal integration of the exchange-correlation energy and poten-
tial were performed on an adaptive grid.18 The minimum
structures were fully optimized in delocalized internal coor-
dinates without constraints using the rational function opti-
mization �RFO� method and the Broyden, Fletcher, Goldfarb
and Shanno �BFGS� update.19 The double zeta valence po-
larized �DZVP� basis set was employed.20 We also repeated
our calculations using the Naval Research Laboratory Mo-
lecular Orbital Library �NRLMOL� set of codes developed
by Pederson and co-workers21–23 in order to eliminate any
uncertainty from the basis set or the numerical procedure.
For the NRLMOL set of calculations, we used a 6s, 5p, and
3d basis set for Si and 7s, 5p, and 4d basis for transition
metal atoms.23 In each case, the basis set was supplemented
by a diffuse Gaussian. For details, the reader is referred to
original papers.21–23

III. RESULTS AND DISCUSSION OF RESULTS

The previous studies on MSi12 clusters indicate that the
ground state has an hexagonal prism structure with an en-
dohedral M atom. For Si12Ni, Kumar11 also proposes a struc-
ture that could be regarded a fragment of the Frank-Casper
phases as an isomer to the hexagonal prism. In this work, we
optimized the structures for all the MSi12 �M =Sc, Ti, V, Cr,
Mn, Fe, Co, Ni� clusters by starting from the previous sug-
gested structures and optimizing the geometry without any
symmetry constraint. In addition, we tried various spin mul-
tiplicities to obtain the lowest spin state. The studies were
extended to anionic clusters to examine the extensibility of
the electronic and geometric rules. As in case of neutrals, the

anionic ground states were obtained by optimizing the geom-
etry and the spin states.

In Figs. 1 and 2 we show the ground state geometries of
neutral and anionic MSi12 �M =Sc, Ti, V, Cr, Mn, Fe, Co,
Ni� clusters. Also marked are the bond lengths in angstroms.
In Table I, we give the relative stability of the various spin
states. For NiSi12, the pentagon based structure11 and the
distorted hexagonal prism are almost degenerate in energy.
In Fig. 3 we also show the relative stability of these two
isomers for both the neutral and anion clusters. We first focus
on the progression in geometry and spin states of neutral
clusters. The previous work on simple metal clusters indi-
cates that clusters with filled electronic and geometric shells
generally have compact symmetric structures. These
studies24 also indicate that clusters with unfilled electronic
shells can lower their energy either through geometrical dis-
tortions leading to Jahn-Teller distortions or through spin

FIG. 3. �Color online� �a� The isomers for neutral and �b� an-
ionic NiSi12 cluster. �E is the relative energy in eV.

FIG. 4. �Color online� �a� Variation of the D.E. calculated using
Eq. �1� across the transition metal series. All energies are in eV. �b�
Variation of the D.E.W-W calculated using Eq. �2� across the tran-
sition metal series. All energies are in eV.
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unpairing resulting in Hund’s coupling. In an earlier work,
we had demonstrated such an interplay for the case of Na4
clusters.24 It was shown that the ground state is a Jahn-Teller
distorted singlet rhombus structure. However, the ground
state for a spin triplet is a symmetric square structure. This
competition between the Jahn-Teller and the Hund’s cou-
pling is also seen in the free-electron gas in the silicon cage,
examined in this work. To illustrate this, consider the pro-
gressions in geometry. The hexagonal cage in case of Sc is
really distorted but the ground state is a spin quartet. The
distortion increases as one goes to Ti and then decreases as
one approaches the middle of the 3d series. Further, the
ground state of CrSi12 is an undistorted hexagonal cage. The
distortions again increase as one approach the end of the
series, and the ground state of NiSi12 is a pentagon based
structure or the severely distorted hexagonal cage. In addi-
tion to the geometrical structure, we examined various spin
multiplicities. In Table I we report the ground state spin mul-
tiplicities and the relative energies for the next spin state.
Note that the doublet multiplicity in case of Sc is only
0.06 eV higher in energy. We found that the geometrical
structure for the doublet �not shown in Fig. 1� is more dis-
torted than that for the quartet shown in Fig. 1. For Ni and
Ti, the triplet states are only 0.01 and 0.06 eV above the
corresponding ground states. We will come to a discussion of
these results later. The geometrical structures for the anions
shown in Fig. 2 also exhibit distortions as a function of the
transition metal atom. Note, however, that unlike the case of
neutral clusters, it is VSi12

− that now has the most symmetric
structure. In Table II we report the ground state spin multi-
plicities and the relative energies for the next spin state for
the anionic clusters. In this case, for Sc and Mn the triplet
states are only 0.08 eV above the corresponding singlet
ground states.

The central objective of the current work is to examine if
the stability of the MSi12 units can be linked to the number of
valence electrons. To this end, we first calculated D.E. de-
fined in Eq. �1� ignoring the Wigner-Witmer rules, as carried
out by Sen and Mitas10 and Kumar.11 For Si12, we used the
ground state geometry obtained by Jackson et al.25 which
was further optimized within our density functional theory
�DFT� method. The calculated values are given in Table III
while Fig. 4�a� shows the variation of D.E. as a function of

the total number of electrons. Note that D.E. varies non-
monotonically with the number of valence electrons. It is
highest for VSi12 and FeSi12 as opposed to CrSi12. Assuming
that each Si contributes one valence electron, VSi12 and
FeSi12 would contain 17 and 20 electrons respectively. The
CrSi12, which satisfies the 18 electron rule, in fact appears as
the least magic cluster. These trends do not suggest any elec-
tronic counting rule. Table IV and Fig. 4�a� show the similar
calculation for the case of anions. Here, VSi12

− does exhibit
special stability. Is the octet rule invalid in neutrals?

It is proposed that the key to the puzzle lies in the fact that
except for Sc, the ground states of all the MSi12 clusters have
the lowest spin multiplicity. On the other hand, the ground
states of isolated transition metal atoms are marked by high
spin multiplicity arising due to Hund’s coupling of the elec-
trons in the open d shell. Further, the exchange energies can
be fairly high so that the energy required to promote an atom
from a high spin multiplicity to the lowest spin multiplicity
can be large and varies with the atom. As mentioned above,
the Wigner-Witmer �W-W� rule11 requires that the reaction

TABLE II. Relative energies for different spin multiplicities Ms

�2s+1� for the anionic MSi12 clusters

Transition
Metal Ms

Ms

�eV�

Sc 3 1 �0.08�
Ti 2 4 �1.41�
V 1 3 �1.43�
Cr 2 4 �1.49�
Mn 3 1 �0.08�
Fe 2 4 �0.11�
Co 1 3 �0.22�
Ni 2 4 �0.75�

FIG. 5. �Color online� Adiabatic electron affinity �AEA� and
vertical ionization potential �VIP� for the MSi12 clusters. All ener-
gies are in eV.

TABLE I. Relative energies for different spin multiplicities Ms

�2s+1� for the MSi12 clusters

Transition
Metal Ms

Ms

�eV�

Sc 4 2 �0.06�
Ti 1 3 �0.06�
V 2 4 �1.09�
Cr 1 3 �0.75�
Mn 2 4 �1.57�
Fe 1 3 �0.51�
Co 2 4 �0.85�
Ni 1 3 �0.01�
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products have the same spin multiplicity as the reactants.
One should therefore calculate D.E.W-W defined by

D.E.W-W = E�Si12� + Es
M�M� − Es

M�MSi12� �2�

by using, for the energy of the transition metal atom, the
same spin multiplicity Ms as for the MSi12 cluster. In Fig.
4�b� we also show D.E.W-W as a function of the transition
element. Note that, as opposed to D.E., D.E.W-W does ex-
hibit a maximum at Cr. In addition, there is a second peak at
Fe reminiscent of the shell filling at 20 electrons in a Jellium
model.2 To further examine the validity of such a picture we
examined the one-electron energy levels. The energy level
structure for a confined electron gas presents2 the sequence
1s2 1p6 1d10 2s2. For FeSi12, the electron energy levels con-
sisted of a set of degenerate states followed by a separate
single highest occupied molecular orbital �HOMO� occupied
by two electrons, reminiscent of a s-like HOMO. For CrSi12,
while the HOMO had several almost degenerate states ex-
pected in case of d-like states, they also contained states
emerging out of bonding between Si atoms �and conse-
quently with no Cr content�. It was therefore difficult to
uniquely identify a d-like HOMO. The single well separated
HOMO in FeSi12 and degenerate HOMO in CrSi12 do, how-
ever, provide some validity to the electronic counting rules.
As pointed out earlier, the Si12 cage undergoes distortion in
the beginning and end of the series, again reminiscent of the
geometrical distortions seen in simple metal clusters with
unfilled electronic shells again supporting shell closures.

Additional justification for the electronic rules and geo-
metrical features obtained above comes from our studies on
the anionic clusters. The electron counting rule would now
predict that VSi12

− should have the maximum binding. Again,
we used the atomic reference energy for the correct multi-
plicity of the anion for each M determined by the multiplic-
ity of the MSi12

− cluster. In Fig. 4�b�, we show the variation in
D.E.W-W for the anionic clusters calculated using Eq. �2� for
the anions and in Table IV we provide the actual values.
Note that the maximum occurs at VSi12

− . Also, the small
structural distortion in the neutral cluster now disappears for
the anion. The maximum at 20 electrons �MnSi12

− � is not as
marked. This could be due to the fact that the extra electron
does not reside completely inside the cage. One, however,

again notices the geometrical distortions in the beginning
and end of the series.

To even further examine the applicability of the electronic
counting rules, we calculated the adiabatic electron affinity
�AEA� of the anions and the vertical ionization potential
�VIP� of the neutral clusters. The former �AEA� corresponds
to the energy difference between the ground state of the an-
ion and neutral cluster while the latter �VIP� corresponds to
the energy required to remove an electron from the neutral
cluster without relaxing the geometry. These are shown in
Fig. 5. Note that the VIP is maximum for CrSi12 as it repre-
sents a transition from 18 to a less stable 17 electron system
while it is minimum for CoSi12 as it represents a transition
from a 21 electron system to a more stable 20 electron sys-
tem. The trends in AEA are similar. AEA is highest for VSi12

−

as it corresponds to going from a very stable 18 electron
system to a less stable 17 electron system.

Since the original experiments by Hiura et al.7 identified
Si12W to be a stable motif, we extended our studies to 5d
transition metals to examine the behavior of D.E. and
D.E.W-W. For the neutral clusters, both D.E. and D.E.W-W

exhibit maxima for W and Os in agreement with experiment
and previous calculations.10 For the anionic species, the
maxima changed to Si12Ta−, again indicative of the shell
closing at 18. These results along with the investigations on
the 4d series will be published in a later publication.

The above calculations were carried out using the deMon
set of codes. To further ensure any uncertainties due to use of
basis sets or numerical procedure, we repeated the above
studies using the NRLMOL set of codes. While the numerical
binding energies were slightly different the main results
about the stability of CrSi12 and FeSi12 in neutral clusters and
VSi12

− in anions were the same.

IV. CONCLUSIONS

The present studies support the earlier proposition7 that
the stability of MSi12 cages can be understood within an
electron counting rule where clusters with 18 valence elec-
trons exhibit enhanced stability. For neutral clusters, the
present work also shows stability for 20 valence electrons.
Realizing that the Si atoms in these cage clusters have four-

TABLE III. The dissociation energy for various MSi12 clusters obtained by using Eqs. �1� and �2�. All energies are in eV

ScSi12 TiSi12 VSi12 CrSi12 MnSi12 FeSi12 CoSi12 NiSi12

D.E. 3.96 6.95 7.48 5.44 6.27 7.57 7.21 6.60

D.E.w-w 4.57 8.01 8.30 10.81 9.10 9.95 7.59 7.82

TABLE IV. The dissociation energy for various anionic MSi12 clusters obtained by using the Eqs. �1� and �2�. All energies are in eV

ScSi12
− TiSi12

− VSi12
− CrSi12

− MnSi12
− FeSi12

− CoSi12
− NiSi12

−

D.E. 7.35 9.36 10.45 7.73 8.29 8.97 8.95 7.92

D.E.w-w 7.35 9.96 12.37 12.08 10.23 9.85 10.89 7.92
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fold coordination, it would seem that the fourfold coordina-
tion of Si and the electron shell filling around metal both
govern the stability. It will be interesting to examine if these
rules can be extended to clusters containing different number
of metal and Si atoms. Such calculations are in progress and
will be reported in a coming paper.
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