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In this paper, we study the elastic and plastic properties of single-walled carbon nanotubes �SWCNTs� under
axial compression and tension. The present work employs molecular dynamics �MD� as well as a multiscale
technique where a handshaking region between MD and tight-binding �TB� is described and implemented. The
interaction forces between the carbon atoms are calculated based on the second-generation reactive empirical
bond-order potential, TB derived forces, as well as long-range Lennard-Jones potential. A smooth cutoff
Lennard-Jones with switch function is also explored. The detection of sideway buckling due to the asymmetri-
cal axial compression is reported and discussed. This sideway buckling phenomenon is observed when using
both pure MD and MD/TB multiscale models. The viability of the presently developed handshaking region
between MD and TB in CNTs under axial compression and tension is thus validated.
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I. INTRODUCTION

The discovery of multi-walled carbon nanotubes in 1991
by Iijima1 has stimulated very broad and intense research
into the syntheses and theoretical analyses of carbon nano-
tubes �CNTs� and their applications. This is due to their ex-
cellent mechanical properties such as small size, low density,
high stiffness, high strength, and excellent electronic proper-
ties. Yakobson et al.2 studied CNT behavior under axial com-
pression using the Tersoff-Brenner potential. Their simula-
tions showed that at large deformations, an abrupt release of
energy is accompanied by a reversible switch into a different
morphological pattern. Yakobson et al.3 also studied CNT
behavior under high rate tension using Tersoff-Brenner’s re-
active empirical bond-order �REBO� potential �see Ref. 4�.
Their research revealed the ability of CNTs to undergo large
elastic deformation when subjected to axial tension. Liew et
al.5–7 examined the buckling behavior of single-walled and
multi-walled CNTs under axial compression. Their thermal
stability analysis showed that single-walled CNTs are ther-
mally more stable than multi-walled CNTs. In addition, they
found that critical buckling loads of CNT bundles are much
higher than individual single-walled CNT.

The above-mentioned works are based upon empirical
molecular dynamics. However, as pointed out by Abraham et
al.,8–10 a more refined description is necessary, especially in
the bond-breaking area. In other words, potentials due to
electron-electron, electron-ion, as well as ion-ion interactions
should be considered. In this respect, the tight-binding �TB�
method has the advantage of being quantum mechanical
where it takes into account the kinetic energies of both the
ions and electrons, as well as the electron-electron, electron-
ion, and ion-ion interactions.

In the present study, a multiscale model is developed by
introducing near and far regions in order to achieve a seam-
less coupling between MD and TB.

II. COMPUTATIONAL MODEL

In this work, the short-range interaction force between
atoms is modeled using the second-generation reactive em-
pirical bond-order �REBO� potential of Brenner et al.4 In
addition, the van der Waals potential11,12 is applied. The po-
tential sum is thus

E = �
i

�
j�i

�Eij
REBO + Eij

vdw� , �1�

Eij
REBO = �VR�rij� + bijVA�rij�� , �2�

where VR and VA are pair-additive interactions that represent
all interatomic repulsion and attraction from the valence
electrons, and bij is the reactive empirical bond order be-
tween atoms.

For SWCNTs, the Lennard-Jones 12-6 potential13 is used

Eij
vdw = 4��� �

rij
�12

− � �

rij
�6	 . �3�

As pointed out by Mao et al.,11 it is advisable to incorporate
the van der Waals potential only if the short-distance poten-
tial becomes zero. This is to prevent an artificial reaction
barrier from forming due to the steep repulsive wall of the
Lennard-Jones 12-6 potential in the short range. If Evdw were
activated in the short range as well, the sum effect of
�EREBO+Evdw� will be erroneously high due to the additional
accounting, thus forming the artificial force barrier that re-
stricts unbonded atoms from undergoing chemical reaction.

Theoretically, the above barrier will produce nonsmooth
potential energy profiles and interatomic forces, leading to a
nonsmooth optimization problem during relaxation. Since
the nonsmooth optimization algorithm is very time consum-
ing, it is proposed here to modify the above van der Waals
potential such that it behaves smoothly around the cutoff
distance, Dmax. The current work employs the conjugate-
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gradient method and truncated-Newton via Lanczos minimi-
zation. Both methods are based on smooth objective minimi-
zation using the gradient of the objective function.

The original equation will be modified by including a
switch function S�r� as shown below,

Evdw
s = Eij

vdw · S�r� , �4�

which must satisfy the following conditions:

Evdw
s �Dmax� = 0,

Evdw
s �Dmax + d� = Eij

vdw�Dmax + d� ,


 �

�r
Evdw

s 

Dmax

= 0,


 �

�r
Evdw

s 

Dmax+d

= 
 �

�r
Eij

vdw

Dmax+d

, �5�

where Dmax is the distance at which the REBO potential
becomes zero, and d is the neighbor distance that causes the
switch function to vary from zero to one. The switch func-
tion is cubic polynomial and can be calculated by solving Eq.
�5� simultaneously. Finally, we derive a smooth cutoff van
der Waals potential as

Evdw = �0, r � Dmax,

Eij
vdw · S�r� , Dmax � r � Dmax + d ,

Eij
vdw, r � Dmax + d .

� �6�

For the quantum mechanical approach, semi-empirical
tight-binding �TB� is employed.14,15 The electronic structure
of the simulated CNTs is calculated by a TB Hamiltonian so
that the quantum mechanical many-body nature of the inter-
atomic forces is naturally taken into account.

The Hamiltonian of a system of ion cores and valence
electrons can be written in the adiabatic approximation as

Htot = Ti + Te + Uee + Uei + Uii, �7�

where Ti, Te, Uee, Uei, and Uii are respectively the kinetic
energies of the ions and electrons, and the potential energies
due to electron-electron, electron-ion, and ion-ion interac-
tions. Within the adiabatic one-electron assumption, the
many-body electron Hamiltonian can be reduced to that of
one electron moving in the average field due to the other
valence electrons and ions. The reduced one-electron Hamil-
tonian H and its nth eigenfunction �n� can therefore be
written as

H�n� = �n�n� , �8�

where �n is the energy of the nth single-particle state. The
wave functions �n� can be approximated by linear combi-
nation

FIG. 1. �Color online� Terminology for regions used in the pres-
ently developed multiscale model.

FIG. 2. Nearest distances a and b.

FIG. 3. Comparison of strain energy curve of SWCNT �8,0�
under axial compression.

FIG. 4. Comparison of stress-strain curve of a SWCNT �12,12�
under axial tension.

YEAK, NG, AND LIEW PHYSICAL REVIEW B 72, 165401 �2005�

165401-2



�n� = �
l�

cl�
n 	l�� , �9�

where l is the quantum number index and � labels the ions.
The computational load will increase significantly if the ba-
sis set, 	l��, is not orthogonal. However, it is possible to
obtain a new orthogonal basis set �
l�� through the Löwdin
transform

�n� = �
l�

bl�
n 
l�� , �10�

Hbn = �nbn, �11�

where bn= �bl�
n �.

Finally, the Schrödinger equation for the single-particle
states becomes

�
l��

��
l��H
l�� − �n�ll�����cl��
n = 0. �12�

In the general approach, the matrix elements in Eq. �12�
are calculated after fitting a suitable database obtained either
from experiments or by first-principles calculation. Once the
single-particle energies are known by solving Eq. �12�, the
total energy of ion cores and valence electrons can be written
as

Etot = �
n

�nf��n,T� + Uii − Uee = Ebs + Urep, �13�

where f��n ,T� or the band structure energy, Ebs, are the
Fermi-Dirac distribution functions. The Uee term corrects the

double counting of the electron-electron interactions in the
first term. The last two terms constitute the effective repul-
sive potential, Urep=Uii−Uee. This repulsive potential can be
expressed as a sum of two-body potentials as

Urep = Uii − Uee = �
�,���

�r��� , �14�

where r�� is the distance between atoms located at � and �.
This pairwise potential �r��� between atoms at � and � can
be solved using the transferable TB potential introduced by
Xu et al.16

The forces f���=1,2 , . . . ,Nat� that are required in the
simulation can be calculated from the Hamiltonian HTBMD as

HTBMD = �
�

p�
2

2m�

+ �
n

�nf��n,T� + Urep �15�

and the forces are given as

f� = − �
n
��n
 �H

�r̄�

�n� f��n,T� −

�Urep

�r̄�

. �16�

It is found that the second term in Eq. �16� is short ranged
and can be solved analytically. The first term, however, is
solved using the Hellmann-Feynman theorem

FIG. 5. Strain energy using original Lennard-Jones for SWCNT
�8,0� in axial compression.

FIG. 6. Strain energy using Lennard-Jones with switch function
for SWCNT �8,0� in axial compression.

FIG. 7. Nearest distance of SWCNT �8,0� in axial compression
using original Lennard-Jones potential.

FIG. 8. Nearest distance of SWCNT �8,0� in axial compression
using Lennard-Jones with switch function.
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�
n
��n
 �H

�r̄�

�n� f��n,T�

= − 2�
n

f��n,T��
l�

�
l��

cl��
n �Hl��,l��r���

�r̄�

cl�
n , �17�

where

Hl��,l��r��� = g�r����
l��H
l��r��=r0
�18�

and g�r��� is a scaling function. It is important to point out
that the Hellmann-Feynman forces require the full set of
eigensystem solutions and are therefore very compute inten-
sive.

For the subsequent optimization process, the truncated-
Newton method will be effective if only a small number of
inner iterations is sufficient to produce a converged step. The
implementation of preconditioning will accelerate the con-
vergence of the inner iterations.

The present truncated-Newton method will minimize a
twice continuously differentiable function, f�x�. The first-
order optimality condition leads to

�f�x� = 0, �19�

�2f�xx�px = − �f�xx� , �20�

xk+1 = xk + pk. �21�

The truncated-Newton method is embedded with the fol-
lowing techniques:
conjugate-gradient method to solve large system, Eqs. �20�

and �21�, iteration is truncated before the exact solution is
attained.
line-search method:

for k=0,1 , . . .
stop if stopping rule satisfied
compute a search directionpk
determine an improved estimate, xk+1=xk+�kpk.

Trust-region method:
for k=0,1 , . . .

stop if stopping rule satisfied
choose pk so as to minimize yk�p�� f�xk+ p�,
subject to �p���k,
compute xk+1 and �k+1 using pk.
Lanczos shift is used when Hessian matrix, �2f�x�, is in-

definite.

III. MULTISCALE MODEL

Sherwood17 demonstrated a successful multiscale ap-
proach in the form of a hybrid quantum mechanics/molecular
mechanics �QM/MM� model. They introduce outer, bound-
ary, and inner regions in order to achieve seamless coupling.
Their subtractive schemes have the advantage of relative
simplicity of implementation, with no requirement for vali-
dating the QM/MM interactions.

Rafii-Taber et al.18 introduced a multiscale model for
simulating brittle-crack propagation. Their model seamlessly
couples the crack dynamics at the macroscales and nanos-
cales via an intermediate mesoscale continuum using a com-
bination of finite elements �FE� and MD. Abraham et al.8,9

studied the rapid brittle fracture of a silicon slab, flawed by a

FIG. 9. Strain energy per atom using MD for SWCNT �7,7�
under axial tension.

FIG. 10. Stress-strain curve of SWCNT �7,7� under axial tension
using MD.

FIG. 11. Nearest distance of SWCNT �7,7� under axial tension
using MD.

FIG. 12. Strain energy per atom using multiscale method for
SWCNT �7,7� under axial tension.
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central microcrack and subject to uniaxial tension. They la-
beled the atomic length scale as the mesoscopic regime, but
pointed out that treating bond breaking with an empirical
MD potential may be questionable, and a quantum-
mechanical treatment is highly desirable.

A multiscale method which successfully couples FE or
meshfree methodology with MD was introduced by Dong et
al.19 A multiple-scale decomposition of the atomic displace-
ments in terms of FE nodal displacements and MD displace-
ments is first carried out. The total scale is then calculated
based on the usual FE interpolation, MD displacements, and
the projection of the MD displacements onto the FE basis.
Dong et al.20 also introduced a virtual atom cluster �VAC� in
the coarse scale treatment, where the number of quadrature
points used in the VAC is far less than the actual number of
atoms. An “isoparametric-like” meshfree approximation was
also formulated and this approximation was found to be valid
for interpolating a general class of low-dimensional nano-
structured materials such as 2D graphite.

In the presently developed multiscale approach, interpola-
tion scaling is not required. Both the MD and TB methods
utilize the information available at the atomic locations.
However, unlike the TB method, the MD method does not
consider the contributions of valence electrons.

As shown in Fig. 1, the TB domain comprises the near
and far regions. The far region constitutes a relatively small
subdomain and is used to achieve a seamless coupling be-
tween the TB �near region� and MD potentials.

The MD method is applied to both the pure MD and TB
far regions. The resultant forces and motions of the atoms in
these two regions are therefore determined by the MD
method. The TB method is applied to both the TB near and

far regions but only the motions of the atoms in the near
region are determined by the TB method. The model is there-
fore not affected by the periodic boundary conditions of the
TB analysis as the motions of the atoms in the TB far region
are based on MD calculations. For the TB analysis of the TB
near and far regions, the forces acting on the atoms at the
boundary of the TB far region are derived from the MD
analysis. The average width of the far region is 2.6 Å since it
is the standard cutoff radius of carbon. With the introduction
of this far region, the concept of a “silogen atom” is not
required in the present model. Silogen is a terminology used
by Abraham et al.8,9 to describe TB terminating silicon atoms
which bond like silicon but are monovalent like hydrogen.

IV. NEAREST DISTANCE AND DENSITY OF POINT

The nearest mutual distance between two carbon atoms
will determine whether their bond is single, double, or if it is
broken. Thus, it is useful to calculate the nearest distance
among carbon atoms. The nearest distance is indicated as
ndist�i , j�. The ndist�i , j� table is derived based on the double
partial sorting of the entire CNT subject to the constraint of
the order i� j, where i and j are the indexes of the atoms.
The constraint is required to avoid the double counting of
each pair of atoms.

Initially in its undeformed state, each atom in the CNT
will have three nearest mutual distances, and two for those
atoms at the boundary. However, during the simulation, as
the CNT deforms, each atom will have at least one nearest
mutual distance. From the standard graphene pentagon struc-
ture �see Fig. 2�, we have

FIG. 13. Stress-strain curve of SWCNT �7,7� under axial tension
using multiscale method.

FIG. 14. Nearest distance of SWCNT �7,7� under axial tension
using multiscale method.

FIG. 15. Multiscale model showing the pure MD, handshaking
TB far, and TB near regions in SWCNT: �a� before collapse and �b�
after collapse.

FIG. 16. Strain energy per atom using MD for SWCNT �7,7�
under axial compression.
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b = 2a · sin�60 ° � � 1.732a . �22�

All the distances larger or equal to the designated nearest
distance cutoff value of 1.732a will be excluded.

The density of point �DOP� is defined here and is calcu-
lated so as to detect the buckling, kink shape occurrences as
well as bond breaking. All the distances larger than or equal
to a designated cutoff distance should be excluded. For in-
stance, if we set the cutoff radius as 2.6 Å, each carbon atom
will initially have a DOP value of 9, indicating that it has
nine neighboring carbons within the cutoff radius. However,
when the SWCNTs start to buckle sideways, it is expected
that at the regions of relative larger deformations, some car-
bon atoms will have DOP values higher than 9. This region
will be automatically detected and designated as the near
region.

V. SIMULATION RESULTS

In our validation, we apply a velocity of 20 m/s �see Ref.
21� at both ends in order to obtain the stress-strain relation-
ship. The atoms located at the ends of the CNT are moved
according to this velocity at very small time steps of 1 fem-
tosecond �fs�. In this MD simulation, the locations of the
atoms are calculated according to Gear’s fifth-order
predictor-corrector algorithm. The whole tube was relaxed
by truncated-Newton with Lanczos algorithm or by the
conjugate-gradient method in order to minimize the energy
of CNTs but without affecting the atoms at the two ends.

To validate the presently developed multiscale model, we
carry out several comparisons with published data of existing

methodologies. Of interest in these comparisons are the
Young’s modulus and strain energy.

In the microcanonical ensemble molecular dynamics
�MD� simulations of CNTs, strain is derived as

� = �L − L0�/L0, �23�

where L0 and L are the undeformed and deformed lengths of
the CNT. The stress is calculated as

� = F/S , �24�

where F is axial force and the cross-sectional area is given
by S=�dh, with d being the CNT diameter and h the thick-
ness, which is usually taken to be 0.34 nm.

For the validation, we compare the strain energy of
SWCNT �8,0� undergoing axial compression. This compari-
son is made against results obtained via the quantum GT-
BMD method, as well as MD results computed with Tersoff-
Brenner potential reported by Srivastava22 in Fig. 3. The
reported results show that collapse occurs at the respective
strains of 0.12 and 0.8–0.9 for GTBMD and MD �using
Tersoff-Brenner potential�, whereas the present MD �using
second-generation REBO potential� yields a collapse strain
of 0.1. The present results are thus in reasonable agreement
and are actually more refined than those obtained using the
Tersoff-Brenner potential.

Validation of the present MD algorithm is also made for
SWCNTs under axial tension. We examine the stress-strain
relations of SWCNT �12,12� with length-to-diameter ratio,
L /D=9.1. The comparison is made with the MD �using

FIG. 17. Stress-strain curve of SWCNT �7,7� under axial com-
pression using MD.

FIG. 18. Nearest distance of SWCNT �7,7� under axial compres-
sion using MD.

FIG. 19. Strain energy per atom using multiscale method for
SWCNT �7,7� under axial compression.

FIG. 20. Stress-strain curve of SWCNT �7,7� under axial com-
pression using multiscale method.
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modified Morse potential� results of Belytschko et al.,23 as
shown in Fig. 4. The present results yield a slightly higher
collapse strain at a lower stress value.

The third comparison carried out is for the Young’s modu-
lus and is made against the ab initio results of Kudin et al.24

These results are tabulated in Table I, and it can be observed
that the two sets of results are comparable with an average
discrepancy of about 5%.

Next we investigate the effects of implementing the
switch function into the Lennard-Jones potential. Obviously,
the existence of this switch function will not affect the results
for a SWCNT under axial tension, where all the atoms are
moving away from each other. However, we would expect
some differences for the case of axial compression. From
Figs. 5–8, we observe that this is indeed the case.

According to Figs. 5–8, we find that both sets of results
have the same collapse strain of 0.1. However, we also find
that after the initial collapse, results via the smooth cutoff
Lennard-Jones show lower strain energy as well as less fluc-
tuation. It is also the same case for maximum distance
ndist�i , j� where results using the smooth cutoff Lennard-
Jones show less fluctuation in maximum distance. Obviously,
this switch function plays important role immediately after
the initial collapse.

In order to compare the two presently developed MD and
TB/MD schemes, we shall simulate the case of a SWCNT
�7,7� with length-to-diameter ratio L /D=7.1, and under axial
tension.

In this problem, the total number of atoms is 784, with
616 atoms located in the MD region when multiscaling first

occurs. First we perform the pure MD simulation and exam-
ine the elastic and plastic behaviors of the SWCNT.

Upon observation of Figs. 9–11, it is found that after the
ultimate load point S, the ndist�i , j� tends to converge to two
values, namely a minimum value of 1.3 Å and a maximum
value of 1.75 Å. The collapse of the SWCNT occurs at the
point where a sudden drop in strain energy is observed and at
strain �=0.235. It is interesting to note that the variations of
the maximum and minimum ndist�i , j� distances are linear
for strain values lower than the ultimate load strain occurring
at the point S in the stress-strain curve.

The straight line from the origin to the point P represents
the linear elastic region. The points P and S are calculated
using the least squares fitting of stress-strain data points. The
fitting curves are based on �=Ap� and �=As�

2+Bs�, respec-
tively, where Ap, As, and Bs are the fitting coefficients.

Using the same SWCNT under similar axial tension, we
perform the corresponding multiscale model simulation. This
multiscale model involves handshaking between MD and TB
where 56 atoms are located in the far region and 112 atoms
in the near region. Thus, the TB method is used to solve for
168 atoms and this requires the solution of an eigensystem of
dimension 672�168�4�.

For the multiscale modeling of the axial tension case, the
TB near and far regions are implemented, after detecting
from initial MD simulations the maximum ndist�i , j� distance
exceeding 1.71 Å. From the current comparison of Figs. 9,
10, 12, and 13 it is observed that for both pure MD and
multiscale simulations, the SWCNT collapses at strain
�=0.235.

FIG. 21. Nearest distance of SWCNT �7,7� under axial compres-
sion using multiscale method.

FIG. 22. MD results for sideway buckling at strain values of �a�
�=0.0569, �b� �=0.0683, and �c� �=0.078.

FIG. 23. Multiscale results for sideway buckling at strain values
of �a� �=0.0569, �b� �=0.0683, and �c� �=0.078.

FIG. 24. Smoothness of stress-strain curve when using
truncated-Newton minimization.
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From Fig. 14, it is observed that after the ultimate load
point S, the minimum and maximum ndist�i , j� distances
converge to 1.31 and 1.78 Å, respectively. The above results
also show that for the multiscale method, the SWCNT col-
lapses at higher strain energy per atom �0.935 eV/atom�
compared with the pure MD case �0.918 eV/atom�. Figure
15 depicts the collapse mode of this case study when imple-
menting the multiscale model. As can be observed, the near
and handshaking regions are applied only to the critical re-
gions so as to significantly reduce the computational time.

We now move on to compare the numerical results of a
SWCNT under axial compression using MD and multiscale
TB/MD. In this case study, a SWCNT �7,7� with the length-
to-diameter ratio L /D=7.4 is used. The total number of car-
bon atoms is 812, with 644 atoms located in the MD region
when multiscaling first occurs. For the first 800 fs of this
simulation, we apply a constant velocity of 20 m s−1 to the
left boundary while the other boundary is applied with a
constant velocity of 20 m s−1 plus a slight linear velocity
increase along the diameter. After 800 fs, all velocities are
set to the constant value of 20 m s−1. In the corresponding
multiscale simulation, again we initially perform a full MD
analysis. The full MD model will shift to at multiscale model
after detecting a DOP higher than nine. The present setting
acts as the necessary trigger to induce the sideway buckling
and avoid the symmetrical modes.

Basically, in the present work, the near and handshak-
ing far TB regions are implemented after detecting a DOP
exceeding 9. In this case study, this shift occurs at strain
�=0.0518. Figures 16–18 show the MD results for the varia-
tion of the strain energy per atom with strain, the stress-strain
curve, and the maximum/minimum ndist�i , j� distances, re-
spectively. The corresponding multiscale results are pre-
sented in Figs. 19–21. We observe that the maximum

ndist�i , j� distance behaves in a more stable manner for the
multiscale model.

Figures 22 and 23 depict the sideway buckling modes
when respectively implementing the MD and multiscale
models. Comparing these two figures, we observe that both
deformations are very similar at strain values below
�=0.072. However, at strain values higher than �=0.072, the
results from the multiscale model shows more severe defor-
mations.

VI. OPTIMIZATION RESULTS

At present, we employ two minimization schemes,
namely, the conjugate-gradient method and the truncated-
Newton via the Lanczos algorithm �see Ref. 25�. Both
schemes are applicable only to smooth solution fields. Theo-
retically, the truncated-Newton scheme shows superior con-
vergence properties if the starting coordinates are in the vi-
cinity of the solution.

From the simulation results, we observe that both
schemes produce quite similar results. However, in terms of
computational time, we find that the truncated-Newton
method is significantly more efficient.

As can be observed from Table II, the truncated-Newton
scheme is relatively more efficient over the entire simulation
range. The conjugate-gradient method, on the other hand, is
very computationally intensive especially in the bond break-
ing regime. It is also interesting to note that prior to reaching
the yield strain, the conjugate-gradient method is somewhat
faster. Finally, we present the smoothness of stress-strain
curves when using both the minimization schemes.

From Figs. 24 and 25, we note that the conjugate-gradient
method produces results which are somewhat oscillatory �see
Fig. 25�. Results from the truncated-Newton scheme are sig-
nificantly smoother.

VII. CONCLUSIONS

In this paper, we have performed a microcanonical en-
semble MD as well as developed a novel multiscale model
for the study of elastic and plastic deformations of SWCNT
under axial compression and tension. Our simulations show
that the smoothness of the van der Waals potential is not
essential for tensile cases but is important when buckling
occurs in axial compression. It was also observed that the
nearest distance ndist�i , j� converges to two values for all
cases studied, when using both MD and multiscale models.

FIG. 25. Smoothness of stress-strain curve when using
conjugate-gradient minimization.

TABLE I. Comparison of Young’s modulus.

CNT geometry

Young’s modulus ��d2E /d�2�

Present ab initio �Ref. 24�

�4,4� 53.1 56.4

�7,0� 54.6 56.3

�7,7� 52.7 56.5

�12,0� 53.0 55.2

TABLE II. Comparison of computational time.

Strain

Time consumption �s-clock time�

Conjugate gradient Truncated Newton �Ref. 25�

0–0.118 398 463

0.118–0.236 5952 852

0.236–0.32 25716 682
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For relatively low strain values, both MD and multiscale
results show high level of correspondence. However, for
higher strain values, the results are observed to be fairly
distinctive, with the multiscale model exhibiting a relatively
lower stiffness. Also, in our simulations, we found that the
truncated-Newton via Lanczos minimization performs sig-
nificantly better than the conjugate gradient method in terms

of both the smoothness of the results as well as computa-
tional time.
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