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We derive self-consistent expressions of current and noise for single-electron transistors driven by time-
dependent perturbations. We take into account effects of the electrical environment, higher-order co-tunneling,
and time-dependent perturbations under the two-charged state approximation using the Schwinger-Kedysh
approach combined with the generating functional technique. For a given generating functional, we derive
exact expressions for tunneling currents and noises and present the forms in terms of transport coefficients. It
is also shown that in the adiabatic limit our results encompass previous formulas. In order to reveal effects
missing in static cases, we apply the derived results to simulate realized radio-frequency single-electron
transistor. It is found that photon-assisted tunneling affects largely the performance of the single-electron
transistor by enhancing both responses to gate charges and current noises. On various tunneling resistances and
frequencies of microwaves, the dependence of the charge sensitivity is also discussed.
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I. INTRODUCTION

For a metallic island small enough to give large charging
energy exceeding the temperature, quantum transport
through it shows remarkable features due to strongly corre-
lated electrons. In studying such transport, one usually con-
siders geometry of a single-electron transistor �SET� in
which the island is coupled to two large reservoirs �source
and drain� via tunneling junctions and to another reservoir
capacitively �gate�.1–5 The most important principle of oper-
ating SET is the Coulomb-blockade effects in the island. In
an usual situation particles cannot tunnel into the island due
to the Coulomb energy. However, when the Coulomb energy
is reduced by a gate bias, transport through the island is
possible even with a small bias between the source and drain.
Consequently, tunneling currents show a series of peaks,
called the Coulomb-blockade peaks, as a function of gate
voltage.

From fundamental and applied point of views, the shape
of Coulomb-blockade peaks has attracted much attention and
has been widely studied in static bias conditions.6 The ap-
pearance of the Coulomb-blockade peaks depends on two
conditions. The first is much larger charging energy than the
temperature to blockade thermal excitation. The second is
thick tunneling barriers guaranteeing a large dwelling time
for electrons to resolve the charging energy in the island.
Then, from the energy uncertainty principle, the latter is ap-
proximately fulfilled under the condition that parallel resis-
tance RT of the barriers is much larger than the resistance
quantum RK=h /e2, i.e., �0=RK / �4�2RT��1. It is now well
known that for large tunneling resistance RT, transport in a
SET is achieved by the sequences of uncorrelated tunneling
processes and the smearing of peaks is dominated by the
temperature. However, for relatively small tunneling resis-
tance ��0�1� or very low temperature, additional quantum
processes such as higher-order co-tunneling contribute the
peaks and renormalizes even its positions as well as associ-
ated quantum fluctuation is responsible for the broadening of

the peaks.5,7 It is also found that these higher-order co-
tunneling effects are manifested to noises of the system.8–10

On the other hand, a slope of a Coulomb-blockade peak with
respect to gate voltages is an important factor for the appli-
cation of SETs to an electrometer. Since the distance between
peaks is equal to the change of an elementary charge on the
gate, a large slope of the peaks means high sensitivity to a
fraction of the charges. So, it is widely believed that a SET is
a prime candidate for reading out the final state of a qubit in
a solid-state quantum computer.11–14

New theoretical interests in transport properties through
the strongly correlated systems are emerging together with
the experimental success in driving them by microwaves
�radio-frequency waves�, which are called radio-frequency
single-electron transistors �rf SETs�.15 In such a system, mi-
crowaves are delivered via a LC resonant circuit to excite
particles to overcome the Coulomb energy. As a conse-
quence, SETs can operate in a high-frequency domain and
practically provides advantage of a large bandwidth as an
electrometer, which allows to measure the rapid variation of
gate charges.13,15–18 Theoretically, the interplay of electronic
transport and excitations by microwaves is a particular inter-
est because high-frequency perturbations are expected to
yield a new nonequilibrium situation resulted from additional
phase variation in energy states.19 Such a time-dependent
situation is usually divided into classical and quantum re-
gimes. In the classical regime �or adiabatic regime� energies
excited by time-dependent perturbation appear to be continu-
ous while in the quantum regime �we will also refer to this as
non-adiabatic regime� discrete photon energies become ob-
servable and particles can emit or absorb photons when they
tunnel from an initial state on one side of the barrier to a final
state on the opposite side, called as photon-assisted
tunneling.20–23

So, in order to understand transport properties of rf SETs,
one may need generic theoretical considerations including
higher-order co-tunneling processes as well as sequential
tunneling, even in the quantum regime of time-dependent
perturbations. Actually, according to the recent experiments
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of rf SETs,13,15–18 tunneling resistances range from �0
=10−5 to 3�10−2, implying feasible co-tunneling processes
for large values of �0. Frequencies of microwaves were used
from 0.3 to 1.7 GHz, which correspond to several �eV of
photon energies, comparable or larger than thermal energy in
the experiments. For these values of frequencies, it has not
been known for the system to be driven in the classical or
quantum regimes of time-dependent perturbations. So, in
general it is necessary to solve problems in the quantum
regime for more rigorous understanding of transport in rf
SETs.

Additionally, tunneling in a rf SET may be dissipative due
to a LC resonant circuit. Since a microwave is delivered via
a coaxial cable with 50� impedance much smaller than the
resistance quantum, effects of the electrical environment is
usually ignored. This is the case for a LC resonant circuit
with a low quality factor, however, with a high-quality factor,
energy states of the electrical environment become long-
lived because it becomes similar to a simple-harmonic
oscillator.3,5,24–26 Then, during tunneling, particles may emit
or absorb energy quanta equal to resonant energy of the har-
monic oscillator to the environment.

In this work, we develop the formalism that is capable of
treating all above theoretical considerations; the effects of
higher-order co-tunneling, non-adiabatic time-dependent per-
turbations, and the electrical environments on operations of
rf SETs. Our work is a generalization of several earlier works
which address the effects partially, neglecting time-
dependent perturbation,10 higher-order co-tunneling,21,23 and
electron-electron interaction.27,28 However, since we use a
two-charged-state model in a metallic island assuming large
charging energy, along this aspect, our work is more re-
stricted than Refs. 7,21,23. In solving the problem, we use
the Schwinger-Keldysh approach combined with a generat-
ing functional10,29–31 where pseudo-spins of two-charged
states are treated with the drone-fermion mapping. Since this
approach includes any higher order moment of diagrams sys-
tematically, it is one of the well-suited methods for transport
through strongly correlated system as indicated in Ref. 10.
From a generating functional summed diagrammatically, ob-
servables of the system are obtained by functional deriva-
tives with respect to external perturbations. This is another
advantageous point of this approach because higher-order
moments such as noise are easily calculated and expressions
for observables are consistent with each other in a sense that
they are derived from the same order of diagrams. We ex-
press the electrical environment in terms of infinite number
of driven harmonic oscillator following Caldeira and
Legget32 where external alternating voltages are treated with
classical fields. Based on the unitary transformation which
leaves the electrical environment in a stationary situation, we
incorporate equilibrium fluctuation of the environment into
the generating functional and derive environment- and time-
dependent self-energies by counting dominated diagrams.
Results for currents and noises are expressed in terms of
transport coefficients. In cases of time-dependent perturba-
tions, due to the displacement component currents are found
to depend on an additional transport coefficient, leading to a
generalization of the Landauer formula33 and noises also has
its contributions.

The paper is organized as follows. We first describe the
model of calculations in Sec. II. By expressing the dissipa-
tive environment in terms of driven harmonic oscillators, we
give the Hamiltonian depending on tunneling currents. In
Sec. III, we calculate an approximated generating functional
based on the Schwinger-Keldysh approach and discuss sev-
eral approximations in deriving it. For a given generating
functional we show exact expressions for currents and noises
in Sec. IV and rewrite them in terms of transport coefficients.
In Sec. V, we use our formalism to simulate a rf SET numeri-
cally and emphasize different points from static calculations.
Finally, we summarize our results in Sec. VI.

II. MODEL OF CALCULATIONS

A. Hamiltonian

To formulate the problem of a rf SET, we begin with
general circuital geometry of Fig. 1 where time-dependent
external sources, VD�t� and VG�t�, are supplied via dissipative
elements of impedances ZD��� and ZG���. In this section we
do not specify detailed forms for ZD��� and ZG��� bearing in
mind the application of our formalism to other systems con-
cerning effects of dissipative environments.34–36 As a typical
model of a SET, a small island is coupled via tunneling bar-
riers to two leads, source and drain, and also capacitively to
source, drain, and gates with capacitances of CS, CD, and CG,
respectively. We assume that the small island is a metallic
one, i.e., there are many energy levels with negligibly small
level spacing and also many particles occupied to them. In
such a metallic island, one can treat a excess charge of Q
confined in it as a independent variable from those of quasi-
particles in a good approximation, and usually expresses its
Hamiltonian as,15,21,23,37

HI = �
nk

	kIankI
† ankI +

Q2

2C


�1�

where ankI�ankI
† � are the annihilation �creation� operators for

quasiparticles with energy 	kI in the island and the index n
describes the transverse channels including spin. The second
term is a Coulomb-blockade model of the electron-electron
interaction with C�=CD+CS+CG. Further simplification of
the Coulomb interaction term can be made if one uses a
two-state model for excess charges. Assuming the small is-
land is enough for charging energy Q2 /2C� to be the largest

FIG. 1. A typical drawing of the single-electron transistor is
shown where time-dependent voltages are applied to a quantum dot
via possible dissipative elements connected to drain and gate elec-
trodes, respectively.
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energy scale in the problem, it is sufficient to consider two
number of charged states, say, �0� and �1�. Then, the charge
operator Q becomes Q=e�1��1� and satisfies Q2=eQ
�throughout the work e is the proton charge�. If we adopt
spinor notation, then the Hamiltonian is further written as,

HI = �
nk

	kIankI
† ankI + �0

�z + 1

2
�2�

where �z is the effective spin-1
2 operator and �0

=EC�1−2q0 /e� is the energy difference between the two
charge states together with the charging energy EC=e2 /2C�.
Here, we anticipate �0 which depends on a static component
of a gate voltage VG

0 through a charge of q0=CGVG
0 .

As for the remaining parts of the system, the Hamiltonian
can be found by separating it into terms depending on mac-
roscopic and microscopic variables in a similar manner to
Ref. 23. Then, the total Hamiltonian may be written as the
sum of the unperturbed part and the tunneling part HT�;

H = HI + Hlead + HRLC�VD,VG� + HT� . �3�

Here, HI, Hlead, and HRLC�VD ,VG� represent the unperturbed
part of our system, which are shown in Fig. 2. The Hamil-
tonian Hlead=�nk,�=S,D	k�ank�

† ank� describes non-interacting
electrons in the source and drain with their annihilation
�ank�� and creation �ank�

† � operators while the Hamiltonian
HRLC�VD ,VG� governs the electrical environment which cor-
responds to a lumped circuit of Fig. 2. Actually, the lumped
circuit is designed to exhibit the same dynamical behavior as
that of Fig. 1 if it were not for tunneling and thus tunneling
barriers work as just capacitances. For this, dynamical vari-
ables in the two circuit are related to each other as,

�Q1

Q2

Q
� = �

C1

CD
−

C1

CS
0

−
C2

CD
−

C2

CD

CD

C�

− 1 − 1 − 1
��QD

QS

QG
� , �4�

	
D


S

 = m	
1


2

 = 	 C1

CD
−

C2

CD

−
C1

CS
−

C2

CD


	
1


2

 �5�

where Q���=D ,S ,G� are excess charges on the capacitors in
Fig. 1 and 
� corresponding phases which are related to the
potential difference v��t� via the relation of 
̇��t�=ev��t� /�.
Here, the capacitance C1 and C2 are defined by
C1=CDCS / �CD+CS� and C2=CD

2 CG /C��CD+CS�. Following
Caldeira and Leggett,32 one can express the circuit of Fig. 2
in terms of many coupled harmonic oscillators each of which
is quantized under the commutation relation of �
 j ,Qj�= ie.
So, considering classical fields of voltage sources applied to
the lumped circuit, the electrical environment is described by
a set of driven and coupled harmonic oscillators.

The tunneling part of the Hamiltonian may be given as,7

HT��t� = �
�=S,D

�
nk,k�

�Tkk�
n� ankIank��

†
�+e−i
� + H . c . � �6�

where Tkk�
n� denotes an element of tunneling matrix between a

state �nk� in the lead � and a single particle state �nk�� in the
island, and usually approximated as Tkk�

n� 
T� independently
of energy levels. Here, the operators of �+ and ei
� are in-
serted for the increase of excess charges in the island and the
lead �, respectively. From the commutation relation the op-
erator ei
� can be shown to increase excess charges by the
elementary charge e in the lead � for every tunneling event.

B. Current and self-consistent calculations

The current I��t� flowing in each lead of Fig. 1 is defined
to be positive if it flows into the island, so that some of
charges carrying the current are used to increase charges on
the capacitor connected to the lead while the others tunnel
into the metallic island. The former represents the displace-
ment current I�

d�t� which is equal to a time-derivative of the
averaged charge as,

I�
d�t� =

d

dt
�Q��t��0 �7�

where Q��t� is the Heisenberg representation of the charge
operator Q� and �¯�0 stands for the ensemble average.
Whereas, the latter is the tunneling current I�

t �t� which is
equal to a time-derivative of the averaged particle number as,

I�
t �t� = e

d

dt
�N��t��0 �8�

where N��t� is the Heisenberg representation of the number
operator N�=�nkank�

† ank� at the lead � �we assume particles
as electrons�. In other words, the current I��t� can be re-
garded as the sum of the displacement current and the par-
ticle current which are contributed from the macroscopic and
microscopic system, respectively,

FIG. 2. Microscopic and macroscopic parts of the single-
electron transistor in Fig. 1 are shown. Here, we define
ZG� ���=ZG����CD+CS�2 /CD

2 and VG� �t�=VG�t��CD+CS� /CD.
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I��t� = I�
d�t� + I�

t �t� �� = D,S,G� , �9�

with IG
t =0. These currents automatically satisfy the current

conservation relation of ID�t�+ IS�t�+ IG�t�=0 despite time-
dependent perturbations, as emphasized in Ref. 41. This is
another consequence of the charge conservation that a
Gaussian surface enclosing three capacitors defining the is-
land always contains zero total charges as inferred from Eq.
�4�. Then, from the continuity equation for charges, the sum
of the currents should be zero, alternatively, d�Q�t��dt
= ID

t �t�+ IS
t �t� implying the fact that the increase of charges in

the island is enabled only by tunneling processes. From the
Heisenberg equation of motion for Q�t�, one can show that
this is the case for our system.

As for the displacement currents, it is possible to obtain
further analytic forms because the macroscopic system of
HRLC consists of linear elements. By viewing the tunneling
currents as another external sources as well as voltages of
VD�t� and VG�t�, from the Heisenberg equations of motion
for Q��t� it is straightforward to show that,

	 1
i�CD

+ ZD − 1
i�CS

− 1
i�CG

− ZG −
CS+CG

i�CSCG
− ZG


	 ĨD
d ���

ĨS
d���


 = 	ṼD��� − ṼD
t ���

ṼG��� − ṼG
t ���



�10�

where each current is expressed in its Fourier component

defined by I�t�=�ei�tĨ���d�. Here, the voltages VD
t and VG

t

are given by

	ṼD
t ���

ṼG
t ���


 = 	 ZD 0

− 1
i�CG

− ZG − 1
i�CG

− ZG

	 ĨD

t ���

ĨS
t ���



�11�

describing effective voltage lowering by tunneling currents.
With the above expressions for the displacement currents,

the problem is now reduced to obtaining the tunneling cur-
rents of Eq. �8�. For this, it is convenient to transform the
system in such a way that the electrical environment of HRLC
leaves in a stationary condition. Then, under such a situation,
harmonic oscillators in HRLC are expected to vibrate about
their stationary positions. This in turn is helpful to them in
assuming equilibrium independently of tunneling events
even though noises from tunneling may modify their fluctua-
tion slightly. According to Ref. 23, it is possible to find the
unitary transformation which rotates the system by voltages
of �VD and �VG. By these voltages we mean that the system
is rotated to have the lowered voltages in the macroscopic
system by the amounts while correspond phases in the tun-
neling Hamiltonian appear additionally. Namely, the rotated
Hamiltonian becomes,

HR = H0 + HT,

H0 = Hlead + HI + HRLC�VD − �VD,VG − �VG� ,

HT = �
�=D,S

�
nk,k�

�T�ankIank��
†

�+e−i
�−ip��t� + H . c . � . �12�

Here, additional terms of p��t���=D ,S� in the tunneling
Hamiltonian actually describe the external phase difference
forced by the voltages �VD and �VG in the absence of tun-
neling. In other words, it is related to the corresponding po-
tential difference v�

b�t� across the tunneling barrier from the
island to the lead �, via p��t�=e /��0

t d�v�
b���. The potential

difference v�
b�t� is given by,

	 CS+CG

C�
−

CD

C�

−
CG�
C�

−
CG

C�


Z−1	ṽD
b ���

ṽS
b���


 =	 �ṼD

ZD

�ṼG

ZG


 �13�

where the impedance matrix is defined as,

Z��� = m	i�C1 + ZD
−1 + ZG�

−1 ZG�
−1

ZG�
−1 i�C2 + ZG�

−1 
−1

mT �14�

with ZG� =ZG�1+CS /CD�2. Since the number operator N� is
found to be invariant under the rotation, the transformation
by ��VD ,�VG�= �VD−VD

t ,VG−VG
t � may give rise to the sim-

plest situation in calculating the tunneling currents. In this
case, the electrical environment is in stationary conditions as
implied from Eq. �11�, so that the first moment of its dynam-
ics does not influence the tunneling currents, but the second
moment, at least, starts to work.

Instead of this benefit, the rotated Hamiltonian now de-
pends on the tunneling currents. This implies that observ-
ables from the Hamiltonian also depend on the tunneling
currents unless both VD

t and VG
t in Eq. �13� are zero. Espe-

cially, in cases of the tunneling currents this requires self-
consistent calculations to obtain it. Detailed forms in the ro-
tated frame become, from the Heisenberg equation of motion
for N�,

I�
t �t� = �I��t��0,

I��t� = U†�t,− ��J��t�U�t,− �� ,

J��t� = �
nkk�

� e

i�
T�ankIank��

†
�+e−i
�−ip��t� + H . c.� �15�

showing self-consistent behavior. Here, the time-evolution
operator U�t , t0� is defined in the rotated frame as,

U�t,t0� = T exp	 1

i�
�

t0

t

d�HR���
 , �16�

where T is the time-order operator. Once the tunneling cur-
rents are calculated self-consistently, other observables de-
pend on them explicitly. For example, current noises are cal-
culated as,

S����t,t0� = ���I��t�,�I���t0���0 �17�

which is defined by the auto-correlation function of the cur-
rent fluctuation operator, �I��t�=I��t�− �I��t��0.
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C. Equilibrium properties of reservoirs

As shown in the unperturbed Hamiltonian, our system
consists of three fermionic �H� ,�=D ,S , I� and one bosonic
�HRLC� systems. We assume these systems as in equilibrium
independently of tunneling because, due to large degrees of
freedom, effects of tunneling on their fluctuation are ex-
pected to be negligible. Then, for the non-interacting fermi-
onic systems, their dynamics are characterized by single-
particle Green’s functions. For a �n� state with its energy 	n
their explicit forms are as follows;

gn�
K �t,t�� �

1

i�
��an��t�,an�

† �t����0 =
1

i�
tanh

�	n�

2
e	n��t−t��/i�,

gn
R�t,t�� �

1

i�
��t − t����an�t�,an

†�t����0 =
1

i�
��t − t��e	n��t−t��/i�,

gn
A�t,t�� � gn

R*�t�,t� �18�

where �=1/kBT is inverse thermal energy and 	n�=	n−��
0

with ��
0 an equilibrium chemical potential at a lead �.10,29,30

As for the bosonic system of HRLC�VD
t ,VG

t �, it is now
under a stationary condition; �
i�t��0= �Qi�t��0=0. Then, its
dynamical behavior is characterized by time-correlation
functions between variables such as �
��0�
���t��0. In ther-
mal equilibrium, the time-correlation functions are easily
evaluated by exploiting the fluctuation-dissipation theorem,
and results are,3,23

�
��0�
���t��0 = 2�
−�

� d�

�

RZ������

RK

ei�t

1 − e−��� �19�

where Z������ is related to each component of the impedance
matrix Z��� in such a way of ZDD=Z11, ZDS=Z12, etc.

III. STATISTICAL AVERAGES OF OPERATORS

A. Generating functional

To evaluate the ensemble averages for the tunneling cur-
rents and noise of Eqs. �15� and �17�, we use the Schwinger-
Keldysh approach combined with the generating functional
technique.10,30,31 We are interested in calculating the expec-
tation value of O defined by,

�O�t��0 = Tr��0U†�t,− ��O U�t,− ��� �20�

where �0 is the grand canonical density operator describing
the system in equilibrium at t=−� as,

�0 = exp�− ��H0 − �
�=D,S,I

��
0N���/Z0, �21�

and Z0 is the equilibrium partition function. In order to
evaluate the expectation value of Eq. �20�, we introduce a
generating functional W=−i� ln Z as an extension of the
Gibbs free energy. Here, Z is the generalized partition func-
tion defined as,

Z = Tr��0U−
†�− �,��U+��,− ��� �22�

where, by different subscripts in the forward U+�� ,−�� and
backward U−

†�−� ,�� evolution operators, we mean different

external fields applied along each time-branch, respectively.
Such different fields are usually coupled to the conjugate
variable of O in the Hamiltonian and, at the final stage of
calculations, are set to be identical. A more compact form of
the partition function is obtained if we view the inverse tem-
perature as an imaginary time like,

�0 = exp� 1

i�
�

−�

−�−i��

d�	H0 − �
�=D,S,I

��N�
�
� U��− � − i��,− �� . �23�

Here, in accordance with Eq. �16�, we define this density
operator with the evolution operator U�. Then, the partition
function becomes,

Z = Tr�U��− � − i��,− ��U−
†�− �,��U+��,− ��� � Tr�UC� ,

�24�

and can be interpreted as describing successive evolutions of
states along C+-, C−-, and C�-time branches as shown in Fig.
3. We designate these time branches simply a closed-time
path C bearing in mind that, along each time branch, differ-
ent Hamiltonians govern the evolution of states; that is,
H0+HT along the C±-time branches with different fields and
H0−����N� along the C�-time branch.

Once the generating functional W is given, the ensemble
average of Eq. �20� is obtained through functional deriva-
tives of W with respect to external fields. In cases of the
tunneling currents and their noises, the phases p��t� are as-
sumed to be different along each time branch such as,

p�
+�t� = p��t� +

�p��t�
2

for forward �25�

p�
−�t� = p��t� −

�p��t�
2

for backward

where �p��t� is fictitious and will be zero at the final stage.
Then, the functional derivatives of the evolution operators
with respect to the fictitious field give,

� �U+��,− ��
��p��t�

�
�p�=0

=
i

2e
U��,t�J��t�U�t,− �� �26�

� �U−
†��,− ��

��p��t�
�

�p�=0
=

i

2e
U�− �,t�J��t�U�t,��

and, using these relations, it is straightforward to show the
tunneling current of Eq. �15� to be,

FIG. 3. Time contour to evaluate the partition function.
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I�
t �t� =

e

�
� �W

��p��t�
�

�p�=0
. �27�

In a similar way, the current noises are obtained by the sec-
ond derivatives,

S����t,t0� = −
e2

i�� �2W

�p�
−�t��p��

+ �t0�
+

�2W

�p�
+�t��p��

− �t0��
=

2e2

i� � �2W

��p��t���p���t0�
−

1

4

�2W

�p��t��p���t0��
�28�

accompanied with �p��t�=�p��t0�=0 finally. Due to the nor-
malization of the partition function Z��p�=0�=1, the second
term in the last line of the above equation is equal to zero.
Nevertheless, we keep this term to circumvent the uncer-
tainty related to the order of operators.10

In order to get the averaged charge in the island and its
fluctuation, we add a fictitious field to the excitation energy
in such a way of �0±�h�t� /2. Then, using similar procedure
for the tunneling currents, one gets the ensemble average of
a charge operator Q as,

�Q�t��0 = −� e�W

��h�t�
�

�h=0
�29�

while its fluctuation is given by,

SQ�t,t0� = ���Q�t�,�Q�t0���0

= 2e2	1

4

i��2W

��0�t���0�t0�
−

i��2W

��h�t���h�t0�



�h=0
.

�30�

Here, we define the charge fluctuation operators as �Q�t�
=Q�t�− �Q�t��0.

B. Evaluation of generating functional

We evaluate the generating functional W with the
coherent-state functional integral method defined on the
closed time-path of Fig. 3. As an usual path integral, the
evolution operator UC�t� is divided into a number of infini-
tesimal steps on the time-path C, and then a resolution of the
identity is inserted at every time step. In the coherent state
functional integral differently from usual ones, the identity
operator is given in terms of eigenfunctions of annihilation
operators instead of coordinate- and phase-state basis func-
tions. As a consequence, the evaluation of the partition func-
tion Z is reduced to the path integral in coherent-state vari-
ables over the exponential of the action along the time
contour C.29 In our case, the result is summarized as

Z = Z0���e−�1/i��Sint�Hlead
�HI

�HRLC
, �31�

in other words, the exponential of the action Sint is averaged
over all reservoirs. The action Sint describes the interaction
among reservoirs, which is given by Sint=�Cd�HT��� on the
closed time-path C. Here, HT�t� is a counterpart of the tun-
neling Hamiltonian for each time branches, and is obtained

by replacing all operators with their coherent-state variables
�complex or Grassman numbers� while HT�t�=0 in the time
branch C�. As for spins, in order to utilize the coherent-state
representation, we map the effective spin-1 /2 operators onto
two fermion operators c and d �drone-fermion representa-
tion�, i.e., �+=c†�d†+d� and �z=2c†c−1.10

By the bracket notation, we mean an average weighted
with the action of a certain reservoir. The detailed form is
defined, for instance over Hlead, as

�O�Hlead
=

1

Z0
lead � D�ark��t�,ark�

* �t��e−1/�i��SleadO �32�

where Z0
lead is a normalization factor implying �1�Hlead

=1 and
equal to the equilibrium partition function of Hlead. Here,
�ank��t� ,ank�

* �t�� are Grassmann variables associated with
their fermionic operators and they satisfy anti-periodic
boundary conditions; ank��−��C+�=−ank��−�− i���C��.
The unperturbed action of the leads Slead is given as,

Slead = i��
C

d���
nk�

ank�
* ���

�

��
akn���� − Hlead���� �33�

using the trajectory notation, in which the function Hlead�t�
represents Hlead and Hlead−�� ��N� in the time branches C±
and C� respectively.

Since the unperturbed actions are quadratic, the thermal
average over all reservoirs of Eq. �31� is reduced to Gaussian
times polynomial integrals if one expands e−Sint/i� into a
power series. Then, using a standard procedure of a Gaussian
integral, each term in the series can be evaluated analytically.
Firstly the result over the reservoirs ��=D ,S , I� is summa-
rized by the appearance of a particle-hole Green’s function
b��t , t�� in the action Sint. The Green’s function b��t , t�� has a
form of,

b��t,t0� = − i�Nch�
k

�T��2gkI�t,t0�gk��t0,t�eip��t�−ip��t0�,

� = D,S . �34�

Here, the free-particle Green’s functions gk��t , t0� represents
the inverse function of their free actions and their physical
representations are equal to Eq. �18� which can be obtained
by the Keldysh rotation. Then, the function b��t , t�� repre-
sents just a single particle or hole creation in the island by
tunneling through a barrier �. Actually, in obtaining b��t , t��
we take into account only sequential processes of single par-
ticle or hole creation; one can see it if expanding the expo-
nential of Sint into a series. This is a good approximation for
a large number of transverse channels Nch, so called, the
wide junction limit because the sequential particle or hole
creation is dominated to the simultaneous creation of both, at
least, by Nch.7

These sequential processes are correlated by further
evaluation of the partition function over the c- and d-fields.
The result reads,
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Z = Z0�exp�− �
n=1

1

n
Tr�	gc

�

��
B

�

��

n���

HRLC

�
�exp�− i��

C

dtdt0��t�gd�t,t0���t0���
�=0

�35�

where the simplified notation of Tr�gc�� /���B�� /����
stands for

Tr�gc
�

��
B

�

��
� = �

C

dtdt0gc�t,t0�
�

���t0�
B�t0,t�

�

���t�

�36�

and B is the particle-hole Green’s function combined with
effects of the electrical environment by

B�t,t0� = �
�

e−i
��t�b��t,t0�ei
��t0�. �37�

Here, gc and gd are equilibrium Green’s functions for the c-
and d-fields with their eigenenergies �0 and zero, respec-
tively. The Grassmann field ��t� is introduced as a linear
source to the d-field, which gives an additional term of
−i��Cdt���t�d�t�−d*�t���t�� into the unperturbed action.

Finally, we evaluate the partition function over the elec-
trical environment. To do this, we transform bi-linearly
coupled harmonic oscillators in HRLC into independent ones
by an unitary transformation. Then, since each simple har-
monic oscillator is assumed to be in equilibrium, one can
exploit the Wick’s theorem to show that its thermal average
can be expressed in terms of, at most, the second order phase
correlation. To each term of the series in Eq. �35�, the appli-
cation of the theorem leads to the relation of,

�ei
�1
�1�e−i
�2

�2�…e−i
�n
�n��HRLC

= eK�1�2…�n
�1,2,…,n� �38�

where K�1�2…�1,2 ,… ,n� is defined by

K�1�2…�n
�1,2,…,n�

= 1
2 ��i
�1

�1� − i
�2
�2� + … − i
�n

�n��2�HRLC
. �39�

According to this, K�1�2…�1,2 ,…� is the sum of the second-
order correlation functions among all time-arguments, so that
all sequential processes of microscopic variables in each
term of Eq. �35� are correlated additionally. Actually, the
second-order correlation function of �
��1�
���2��HRLC

is re-
lated to the phase fluctuations of Eq. �19�. One of simple
ways for this is to display the fluctuation-dissipation theorem
in terms of K�1�2

�1,2� and then, by comparing it with Eq.
�19�, one obtains;

�
��t�
���t0��HRLC

−+ = �
��t�
���t0��0,

�
��t�
���t0��HRLC

+− = �
��t�
���t0��0
*,

�
��t�
���t0��HRLC

++ = ��t − t0��
��t�
���t0��0 + ��t0 − t�

��
��t�
���t0��0
*,

�
��t�
���t0��HRLC

−− = ��t − t0��
��t�
���t0��0
* + ��t0 − t�

��
��t�
���t0��0, �40�

where superscripts of ±� denote each section of the Keldysh
space in which both time arguments t and t0 belong.

The generating functional W is now calculated by sum-
ming all-connected diagrams in Z. To prevent the divergence
of the average charge at �0=0, we perform diagrammatic
sum to infinite order, however approximated forms in higher-
order diagrams cannot be inevitable for a simple form of W.
Expanding the partition function of Eq. �35� and arranging
diagrams, we write the approximated generating functional
as,

W 
 − i��Tr�ln gc
−1� − Tr�gc


�1�� − 1
2 Tr�gc


�2��

− 1
3 Tr�gc


�3�� + ¯� �41�

where we omit trivial non-interacting terms. In the first-order
term, a single diagram contributes the generating functional
and its self-energy has a form of,


�1��t,t0� = �
�

eK���t,t0�
�
f �t,t0� �42�

with a free-environment part of,


�
f �t,t0� = − 2i�gd�t0,t�b��t,t0� . �43�

However, for each higher-order term from the second, rich
connected diagrams are found. We approximate the generat-
ing function by taking into account only a single diagram in
each n order with its self energies of,


�n��t,t0� = �
�1..�n

�
C

d1d2 . . dneK�1�1…�n�n
�t,1,2,..,t0�

�
�1

f �t,1�gc�1,2�
�2

f �2,3�gc�3,4� . . 
�n

f �n,t0� .

�44�

The idea for such preferred diagrams comes from the work
of Utsmi et al.10 Actually, the partition function of Z is the
same as that in their work if it were not for the electrical
environment and time-dependent perturbations. So we com-
pose the approximated generating functional to recover their
results in the absence of the electrical environment and time-
dependent perturbations, say, in the case of K�…=0 and
p��t�=0.

As a result, the generating functional can be written in a
more compact form as,

W = − i�	Tr�ln gc
−1� − �

n=1

�
1

n
Tr��gc
�n�
 = − i� Tr�ln G−1�

�45�

where we introduce the full c-field Green’s function G obey-
ing the Dyson equation;

G−1�t,t0� = gc
−1�t,t0� − ��t,t0� �46�

with a noninteracting Green’s function gc�t , t0� of the c-field.
Here, the self-energy ��t , t0� is defined by,
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��t,t0� = 
�1��t,t0� + 1
2 �
�2� − 
�1�gc


�1���t,t0�

+ 1
3�
�3� − 3

2
�2�gc

�1� + 1

2
�1�gc

�1�gc


�1���t,t0�

+ … 
 
�1��t,t0� �47�

which is obtained by comparing Eqs. �41� and �45�. Since
Eq. �46� already sum up an infinite series, we calculate
��t , t0� to the lowest order of 
�1��t , t0�. This is equivalent to
neglecting additional correlations caused by the electrical en-
vironment in higher-order terms of the above equation. In
this case, the self-energy of ��t , t0� is expressed explicitly
with the product of terms representing effects of time-
dependent perturbations and the electrical environment, re-
spectively, as

��t,t0� = �D�t,t0� + �S�t,t0� ,

���t,t0� = eip��t�
��t,t0�e−ip��t0�,


��t,t0� = eK���t,t0�
�
0�t,t0� �48�

and thus 
�
0 represents the free self-energy from the environ-

ment and time-dependent perturbations,


�
0�t,t0� = − 2�2Nchgd�t0,t��T��2�

k

gkI�t,t0�gk��t0,t� . �49�

IV. EXPRESSIONS FOR CURRENTS AND NOISES

For the given generating functional and the self-energy of
Eqs. �45� and �48�, we now derive exact expressions for tun-
neling currents, averaged charges, and their noises. Using the
standard procedure, we perform functional derivatives as
specified in Eqs. �27�–�30�, and transform them into the
physical representation. The transformations are carried out
by adopting the Keldysh rotator as, for instance of G,

	G++ G+−

G−+ G−− 
 =
1

2
	 1 1

− 1 1

	 0 GA

GR GK 
	1 − 1

1 1

 , �50�

where superscripts A, R, and K denote its advanced, retarded,
and Keldysh components, respectively.

Then, with this rotator the Dyson equation of Eq. �46� is
transformed as;

GR�t,t0� = gc
R�t,t0� + �

−�

�

d�1d�2gc
R�t,�1��R��1,�2�GR��2,t0� ,

GK�t,t0� = �
−�

�

d�1d�2GR�t,�1��K��1,�2�GA��2,t0� ,

GA�t,t0� = GR*�t0,t� �51�

where gc
R�t , t0� is a retarded component of the free-particle

Green’s function specified in Eq. �18�. According to these
relations, GR,A has the same causality relation as that
of gc

R,A, and additionally satisfies the sum rule of
limt→t0

i�GC�t , t0�=1 with GC�GR−GA. For GK, we show it
in terms of GR and GA rather than its integral equation by

noting that �1+GR�R�gc
K=GR�gc

R�−1gc
K vanishes. On the other

hand, the application of the rotator to the self-energy of Eq.
�48� leads to


�
R�t,t0� = 
�

0R�t − t0�ReK��
−+�t,t0�

+ i
�
0K�t − t0�IeK��

−+�t,t0���t − t0� , �52�


�
K�t,t0� = 
�

0K�t − t0�ReK��
−+�t,t0� + i
�

0C�t − t0�IeK��
−+�t,t0�,

�53�


�
A�t,t0� = 
�

R�t0,t�*. �54�

Here, we arrange each term to depend only on the correlation
function of K��

−+�t , t0�. Thus, the self-energy of �� is directly
related to the phase fluctuation of Eq. �19� via K��

−+�t , t0�
= �
��0��
��t0− t�−
��0���0.

A detailed form of the bare self-energy ��
0 depends on a

cut-off function for the spectral density of the particle-hole
propagator b�. In this work we use a Lorenzian cut-off func-
tion ��E�=EE0

2 / �E2+E0
2� with a bandwidth of E0=EC as in

earlier works.7,10 Then, by substituting free-particle Green’s
functions and ��E� into �49�, and transforming into Fourier
forms by


�
0�t,t0� =

1

2�
� d�e−i��t−t0�
̃�

0���� , �55�

we find,


̃�
0R�	� =

RK

4�2R�

��	���2R�0	1 + i
	��

2�

 − �0	1 +

E0�

2�



− �0	E0�

2�

 − i� coth

�	�

2
� ,


̃�
0K�	� = i

RK

2�R�

��	�� ,


̃�
0A�	� = 
̃�

0R*�	� �56�

where 	�=	−��
0 and �0 is a digamma function. Here, R�

stands for 1 /R�=4�2Nch�T��2DID� /RK with energy-
independent density of states DI and D� at the metallic island
and the lead �, respectively. This is tunneling resistance of
the barrier connected to the lead �, so that the parallel resis-
tance is given by 1/RT=1/RD+1/RS in �0=RK / �4�2RT�.

For static conditions, an analytical solution of the Dyson
equation in Eq. �51� is easily obtained by transforming it to
the Fourier space. However, for arbitrary time-dependent
perturbation since the time-translational invariance of the
self-energy is broken, the solution shows up in a series or it
is necessary to solve the problem numerically. One of ap-
proximated solutions may be derived by noting that 
�

0�t , t0�
exhibits rapid decaying behavior as a function of time inter-
val t− t0. If this is the fastest time-variation in the problem,
the integral equation can be approximated to the first-order
differential equation. Then, the solution becomes similar to
that obtained in the the wide-band limit.27
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With the physical representation of the Green’s functions
and the self-energies, results of the functional derivatives are
summarized as the following. The averaged charge in the
island and the tunneling currents are given as,

�Q�t��0 = − e
i�

2
GK�t,t� , �57�

I�
t �t� = − eR��

K�t,t� �58�

while their fluctuations read

SQ�t,t0� =
�2e2

2
GK�t,t0�GK�t0,t� − �K → C� , �59�

S����t,t0� = e2R���
K�t,t0�GK�t0,t����� + ����

K �t,t0�GK�t0,t�

− ��
K�t,t0����

K �t0,t�� − �K → C� �60�

where �K→C� means the change of a Keldysh component to
a correlated one, for example, GK→GC=GR−GA. Here, the
functions of � and � are defined as,

��
K,C�t,t0� = �

−�

�

d����
K,C�t,��GA��,t0� + ��

R�t,��GK,C��,t0�� ,

����
K,C�t,t0� = �

−�

�

d����
K,C�t,�����

A ��,t0� + ��
R�t,�����

K,C��,t0�� ,

�61�

with ��
C=��

R−��
A. With these fluctuations, the noise spec-

trum at a frequency � is defined by,38–40

SQ��� = ��SQ�t,t0�cos ��t − t0���

S������ = ��S����t,t0�cos ��t − t0��� �62�

where the double bracket denotes the integration of,

��¯�� = R� lim
T→�

1

T
�

0

T

dt0�
−�

�

dt…� . �63�

As discussed in the previous section the above results obey
the charge conservation law even under arbitrary time-
dependent perturbations, i.e.,

��Q�t��0

�t
= �

�

I�
t �t� , �64�

�2SQ�t,t��
�t � t�

= �
���

S����t,t�� . �65�

This is also a direct consequence of the gauge-invariant gen-
erating functional of Eq. �45�.

Equations �57�–�60� are the main results of our work to-
gether with the generalized self-energies of Eq. �48� to arbi-
trary time-dependent perturbations and electrical environ-
ments. Even though the above equations give the exact
expressions within the given generating functional and pro-
vide easier ways in numerical calculations, their physical

meanings are not well revealed. So, in the subsequent section
we present another form by considering various limits.

A. Wide-band limit

In order to obtain more physically meaningful forms we
start with defining a spectral function A��	 , t� as

A��	,t� = �
−�

�

d�ei	��−t�/�e−ip����GA��,t� �66�

and writing 
̃�
K�	� as,


̃�
K�	� = 
̃�

C�	��2f��	� − 1� �67�

where f��	� is a Fermi-Dirac distribution function broadened
due to the presence of the dissipative environment, other-

wise, it is equal to f��	�=1/ �1+e��	−��
0��. Then, from Eq.

�57� the average charge can be rewritten as,

�Q�t��0 = e�
�
� d	 n��t,t;	��f�

+�	� − f��	�� �68�

where, by defining a hole-distribution function, f�
+�	�

=1− f��	�, we emphasize the roles of hole and electron con-
tributions. Here, n��t , t ;	� is a diagonal value of,

n��t,t0;	� �
i

4�
e−i	�t−t0�/�
̃�

C�	�A�
*�	,t�A��	;t0� , �69�

which can be interpreted as, owing to its unit, the evolution
of density of states at the lead � available to occupying the
island.

As for the tunneling currents, we additionally exploit the
relation of �1+�RGR�= �i��t−�0�GR and then obtain the
form of, from Eq. �58�,

I�
t �t� =

1

2eRK
R�

−�

�

d	��T�
F�t,t;	� − T�

R�t,t;	���f�
+�	� − f��	��

− T
�̄

F�t,t;	��f
�̄

+�	� − f �̄�	��� �70�

where the first term in the right-hand side represents the par-
ticle flux from the lead � and the second is the flux from the

opposite-side lead �̄. Here, T�
F�t , t ;	� and T�

R�t , t ;	� are trans-
port coefficients representing tunneling of holes �electrons�
in the region of positive �negative� energies. The function
T�

F�t , t ;	� is a diagonal part of,

T�
F�t,t0;	� = 4�i�

−�

�

d�eip��t�

�̄

C�t,��e−ip����n���,t0;	�

�71�

which depends on both sides of the tunneling barriers and
can be considered as the transmission function from the lead

� to the other side �̄. In writing T�
F, we adopt an approxi-

mated form for its further use by substituting 

�̄

C
instead of

2

�̄

R
. This approximation corresponds to the wide-band

limit.27 With this transmission function alone, the expression

CURRENT AND NOISE EXPRESSIONS FOR RADIO-… PHYSICAL REVIEW B 72, 165348 �2005�

165348-9



of Eq. �70� is consistent with the well-known Laudauer
formula.33 However, the additional function T�

R gives rise to a
deviated form from the formula; T�

R is given by,

T�
R�t,t0;	� = 8�i	i�

�

�t
− �0
n��t,t0;	� . �72�

According to this, T�
R�t , t0 ;	� is independent of the other-side

tunneling barrier �̄ contrast to T�
F implying not a transmission

function and, moreover, it does not appear in the flux from

the other-side lead �̄. These facts are likely to interpret the
function as a transport coefficient describing the electron or
hole flux supplied by the metallic island. This becomes more
apparent if one compares T�

R with Eq. �68� where the flux by
T�

R is equal to the decrease rate of charges in the island. This
flux has no a stationary component to be RT�

R�t , t ;	�=0, by
which our expression successfully recovers the Landauer for-
mula in a static condition.

On the other hand, the charge noise is rearranged to be,

SQ�t,t0� = �
���

SQ
����t,t0�

SQ
����t,t0� = 4e2�

−�

�

d	1d	2n��t,t0;	1�n���t0,t;	2��f��	1�f
�̄

+�	2�

+ f�
+�	1�f �̄�	2�� , �73�

which is the sum of all possible electron-hole correlations
tunneled from both leads.

The current noise in time-dependent cases is found to
have a complicated form due to the fluctuations arising from
various origins and, therefore, we show it under the wide-
band approximation separating into three contributions. The
self correlation of the tunneling current at the lead � is ar-
ranged as,

S���t,t0� = Sv
��t,t0� + Sr

��t,t0� +
�2

�t � t0
SQ

���t,t0� �74�

while the correlation between the different-side tunneling
currents can be obtained from Eq. �65� together with the one
above. Here, the first term reads,

Sv
��t,t0� =

1

e2RK
2 �

−�

�

d	1d	2L��t,t0;	1�n�̄�t0,t;	2��f��	1�f
�̄

+�	2�

+ f�
+�	1�f �̄�	2�� �75�

where L��t , t0 ;	� is defined by,

L��t,t0;	� = 8�ieip��t�−ip��t0�e−i	�t−t0�/�
̃�
C�	� . �76�

Actually, in a static condition this term is proportional to the

transmission coefficient TF and represents the noise arising
from backward tunneling after electrons and holes starting
from different leads, respectively, tunnel into the island si-
multaneously. As a result, the term is not correlated by the
Coulomb interaction in the island, by which it reproduces the
results of the co-tunneling theory.8,9 The second term of Eq.
�74� represents the correlation between the real tunneling
currents

Sr
��t,t0� =

2

e2RK
2 R�

−�

�

d	1d	2�T�
R�t,t0;	1�T

�̄

F�t0,t;	2�

��f��	1�f
�̄

+�	2� + f�
+�	1�f �̄�	2��

− T�
R�t,t0;	1�T�

F�t0,t;	2��f��	1�f�
+�	2� + f�

+�	1�f��	2��

+ �
����

����,�� − 1
2�T��

F �t,t0;	1�T��
F �t0,t;	2�

��f���	1�f��
+ �	2� + f��

+ �	1�f���	2��� , �77�

where each transport coefficient of TF and TR represents the
corresponding current and, thereby, the product of them de-
scribes their correlation. In a static case, the function T�

R has
no a real value, so that this term recovers the well-known
form that represents the correlated tunneling processes via
the Coulomb interaction. By recalling the term Sr

� to the self
correlation, some of the correlations between TR and TF are
missing or additionally incorporated in Eq. �77�. This is a
consequence of the last term which emphasizes the role of
the charge fluctuation in the island. In terms of the noise
spectrum, this term is written as �2SQ

�����.

B. Adiabatic limit

For sufficiently small frequencies of driving fields, it
is expected that the time-dependent fields just vary the
chemical potentials adiabatically, so that formal expressions
are the same as those in static problems. This is really the
case if one expands phases in the self-energy as p��t1�
= p��t0�+ ṗ��t0��t1− t0�+… and neglects higher-order terms,

���t1,t2� = eip��t1�
��t1,t2�e−ip��t2� � eiṗ��t0��t1−t2�
��t1,t2� .

�78�

Then, this changes simply the chemical potential in Eq. �56�
as,

��
0 → ���t0� = ��

0 − ev�
b�t0� − ���,D − CD/C
�eVD

0 �79�

where we separate the potential difference across a tunneling
barrier � into an alternating part of v�

b�t� and a direct part
with a static external voltage VD

0 of VD�t�. Here, we use the
time argument t0 to clarify the fact that the chemical poten-
tials in noise calculations depend on the reference time t0
rather than another time argument t.

Under the adiabatic approximation, the effective density
of states and the transport coefficients are simplified to
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n��t,t0;	� =
i

4�

̃�

C�	��GA�	��2e−i	�t−t0�/�,

T�
F�t,t0;	� = 4�i
̃

�̄

C�	�n��t,t0;	� ,

L��t,t0;	� = 8�i
̃�
C�	�e−i	�t−t0�/� �80�

and a spectral form of GA�t , t0� is given by,

G̃A�E� =
1

E − �0 − 
̃A�E�
. �81�

Substituting the above expressions into Eqs. �68�, �70�, �73�,
and �74�, one can find that static results in the work of Ref.
10 are exactly recovered. The function T�

R has no effects on
results because its value is imaginary in the approximation.

It is interesting to find the boundary within which the
adiabatic expressions are valid. To do this, we propose the
transmission function TF�t , t0 ;	� in Eq. �71� as a precursor.
Then, expanding phases in the self-energy as in Eq. �78� and
requiring the zeroth order term of TF much larger than the
largest non-adiabatic contribution �the first-order term�, one
obtain a criterion for the valid adiabatic expressions as,

���A�2

���A�2 + 4�0
2

��
�

ev�
b�t�/R��

��
�

��0 − ���t��/R��
� 1 �82�

where the absolute sign means a root-mean-square value of a
time-dependent function, �A is a frequency of external per-
turbation, and a total tunneling rate �0�I
A��0�. According
to this criterion, the adiabatic approximation is well hold
under the case of a smaller applied frequency �A than the
total tunneling rate �0 together with relatively weak ampli-
tudes of perturbations, as usually expected. However, in gen-
eral, it also depends on temperature, capacitances of the tun-
neling barriers, as well as the excitation energy �0.

C. Orthodox results

Under the adiabatic regime we further approximate the
formalism by assuming very opaque tunneling barriers. In

this case, �G̃A�	��2 becomes a nearly �-function, reflecting a
long life time of charged states. This makes possible the
integration in the formalism of Eqs. �68�, �70�, �73�, and �74�
as,

�
−�

�

d	F�	��GA�	��2 =
�

�0
F��0� ,

�
−�

�

d	F�	��GA�	��2 �GA�	 − ���2

=
�

�0�4�0
2 + �2�

�F��0� + F��0 + ���

where F�	� represents a smooth part of the integrand in the

equations and we neglect a renormalization effect on the ex-
citation energy �0. We find that our results in this limit are
identical to those based on the orthodox theory,14,40 implying
that the very opaque barriers allow ones to neglect high-
order co-tunneling.

V. APPLICATIONS OF FORMALISM

As applications of our formalism, we now examine the
performance of rf SETs numerically. For this, we consider
detailed geometry of the circuit which is characterized by the
impedances �ZG and ZD� and the voltage sources �VD and VG�
in Fig. 1. According to measuring processes of signals, there
are two kinds of SETs; reflected and transmitted types. In
this work we assume the reflected type of rf SETs where a
detector measures reflected signals from a SET.13,15,18 Appli-
cations to the transmitted type16,17 is basically identical with
slightly modified electrical environments.

Then, an equivalent circuit for the rf SET is given by
writing the impedances as

ZG��� = 0,

ZD��� = R0
1 + i�̃QF

1 − �̃2 + i�̃/QF

�83�

where R0 is the coaxial cable impedance �typically 50��,
�̃=� /�R is a normalized frequency with a resonant fre-
quency �R of the tank circuit, and QF is its quality factor. We
model microwaves propagating the coaxial cable as a sinu-
soidal form, v−�t�=vin cos��At� with amplitude and angular
frequency vin and �A, respectively, and also consider a static
voltage VD

0 provided by a bias tee. Then, the equivalent volt-
age source of VD�t� is given by, in its Fourier component,

ṼD��� =
ZD���

R0

2v−���
1 + i�̃QF

+ ����VD
0 �84�

or in a real-time space,

VD�t� = 2�0��A�vin cos��At + ���A�� + VD
0 �85�

with the phase and amplitudes defined by

�0���ei���� =
1

1 − �̃2 + i�̃/QF

. �86�

A gate voltage VG�t� represents a signal to be measured, for
instance, the voltage induced by time-varied charges of qu-
bits. If the signal is slowly varied in time, it can be treated in
the adiabatic way like the change of a static voltage VG

0 ,
which in turn gives rise to the modulation of the excitation
energy �0 adiabatically. In the following we assume this case
where VG�t� is no longer a voltage source, i.e., VG�t�=0, but
a parameter for the excitation energy �0. However, in gen-
eral it should be treated time-dependent fields for consider-
ations of gate charges rapidly varied.

From the voltage sources, the potential differences across
the tunneling barriers from Eq. �13� become
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	vD
b �t�

vS
b�t�


 = 	1 −
CD

C

−

CG

C


−
CD

C

−

CG

C



	VD�t� − VD
t �t�

VG�t� − VG
t �t�


 �87�

with VG�t�=0. Here, the induced voltages from the tunneling
currents are calculated from Eq. �11� as,

VD
t �t� =

1

TA
�

0

TA

d�ID
t ����R0 + 2RZD��A�ei�A�t−��� ,

VG
t �t� = −

1

TA
�

0

TA

d��ID
t ��� + IS

t ����2I
ei�A�t−��

i�ACG
, �88�

where, due to resonant properties of the tank circuit, the low-
est two harmonics of the tunneling currents are taken into
account and TA=2� /�A is a period of the microwave.

As for output signals, we consider a reflected voltage
v+�t� from the SET;

v+�t� = vin cos��At − 2���A�� − R0I0 + X cos��At�

+ Y sin��At� + higher harmonics. �89�

Here, we separate a pure reflected component of the micro-
wave �the first term in the right-hand side� from its responses
to the single-electron transistor. Each term depending on I0,
X, and Y is originated from the tunneling current,

It�t� = 	1 −
CD

C


ID

t �t� −
CD

C


IS
t �t� = I0 + I1 cos��At�

+ I1� sin��At� + higher harmonics, �90�

and their Fourier components are related to each other as,

X = −
R0

��1 − �̃2�2 + �̃2/QF
2

I1,

Y = −
R0

��1 − �̃2�2 + �̃2/QF
2

I1�. �91�

To model a detector we consider the average of observ-
ables multiplied by cos �t or sin �t over time.42,43 Espe-
cially, we focus on a homodyne detector measuring the am-
plitude X obtained from the reflected voltage v+�t�. As
indicated in Ref. 42, since the amplitude X is usually much
larger than Y for QF�1 implying a small reactance of tun-
neling barriers, it is a good approximation to express the
performance of the rf SET only in terms of X. After many
numerical simulations we find that this is also the case for
our system.

Then, the noise associated with X is derived as,

SXX��� =
2R0

2

�1 − �̃2�2 + �̃2/QF
2 SI��� �92�

with noise of a tunneling current SI���,

SI��� = �
���

	��,D −
CD

C


	���,D −

CD

C


��S����t + t0,t0�

��cos�2�t0 + 2����� + cos �t��� . �93�

It is noted that the current noise of SI��� is determined from
the average weighted with a factor cos�2�t0+2����� as well
as cos �t. This is a consequence of modeling the homodyne
detector. In static cases, the average with the former gives
zero because the current fluctuation of S����t+ t0 , t0� is invari-
ant under time-translation, and then SI just represents noise
of the total current It of Eq. �90�. However, in general since
the invariance is no longer valid under time-dependent con-
ditions as easily checked in Eq. �74�, the average has a finite
value and, as a result, the noise of X contains additional
contributions at every multiples of the half-frequency �A /2.

The zero-frequency approximations correspond to setting
of �=0 in cos �t for considering a small frequency � and
then our expression of Eq. �93� becomes similar to Eq. �30�
of Ref. 42.

Our numerical examinations are fulfilled under several
limitations due to the two-states approximation. So, the
range of parameters for operating points such as the excita-
tion energies �0 �or gate charges q0�, the amplitudes vin and
frequencies �A of microwaves, and the DC bias voltage VD

0

should be restricted not to occupy higher or lower charged
states. For this we consider the excitation energies in the
range of −EC��0�EC �or 0�q0�e� and microwave en-
ergy ��A much less than EC. When the frequency of a mi-
crowave is tuned to be resonant to the tank circuit �i.e.,
�A=�R, which is also assumed for our numerical calcula-
tions�, the maximum amplitude of 2QFvin is delivered to the
SET. Then, not to excite other charged states, the applied
amplitudes should satisfy the inequality of

�eVD
0 � + 2QFevin � min�C


CD
,

C


C
 − CD
�2EC	1 − �q0

e
−

1

2
�


�94�

which can be derived from simple electrostatic consider-
ation. According to this, energy provided by the drain volt-
ages �the left hand term in the above equation� is restricted to
be approximately less than EC and 2EC at completely block-
ade points �q0=0 ,e� and a degenerate point �q0=e /2�, re-
spectively.

Hereafter we use local units for calculated results and
system parameters. We display all quantities in units of
charging energy EC, but in units of an ohm for resistances. In
other words, thermal energy kBT, excitation energy �0, am-
plitude evin and frequency ��A of microwaves, and DC bias
voltages eVD

0 are measured in units of EC as well as currents
are measured in units of eEC /� and capacitances in units of
e2 /EC. In these units, the total capacitance becomes
C
=0.5. So, the situation such as CD=CS=0.2 in the follow-
ings means a small gate capacitance and, therefore, gives rise
to somewhat symmetric distribution of potential differences
across the tunneling barrier from Eq. �87� while the case of
CD=CS=0.01 represents asymmetric distribution. Our nu-
merical calculations are performed for R0=50�, a zero static
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voltage VD
0 =0, and a temperature of kBT=0.02EC �unless

mentioned otherwise�. Even though the dependence of the
SET performance on temperature and finite static voltages
are also interesting,15,42 we omit it for simplicity.

A. Environmental effects

First we discuss effects of the electrical environments. For
the given electric environment of Eq. �83�, its effects are
manifested into the self-energy of 
��E�. In general, the
presence of electrical environments broaden the self-energies
and one can identify this via the Fermi-Dirac distribution
functions of Eq. �67�. In Fig. 4, we show the Fermi-Dirac
distribution functions for two cases of resonance frequencies
for various quality factors, in which the resonance frequency
is comparable to thermal energy in Fig. 4�a� and much larger
than it in Fig. 4�b�. Characteristic behavior is that the distri-

bution function becomes more depleted around the chemical
potential ���

0=0� as the quality factors and the resonance
frequencies increase. This is resulted from the energy-
emitting and absorbing spectrum of the environment. As in-
dicated in Ref. 25 a small quality factor means rather rapid
damping in electrical dynamics of the environment or Ohmic
behavior, in which the spectrum has a peak around a zero
irrelevant of the resonance frequency. Whereas, a large qual-
ity factor leads to the environment with a single mode case
where quantized energy equal to ��R is incorporated into the
spectrum and produce peaks at every multiple of ��R. Thus,
in the case of the large quality factor, tunneling is mediated
to the environment by emitting or absorbing energy quanta
of ��R. As a result, if thermal energy kBT is less than it and
cannot excite the environment, the energy quanta should be
provided externally, which in turn reduces the effective num-
ber of particles for tunneling.

To emphasize the effect of the depletion in the particle
distributions we show calculated tunneling currents for static
cases in Fig. 4�c� using parameters in Fig. 4�b�. For a small
quality factor �QF=10�, tunneling currents are very similar to
that for the free environment. However, for a large value of
QF=80, noticeable differences are found. This difference be-
comes more enhanced for larger resonant frequencies over
the thermal energy and more asymmetric geometry of tun-
neling barriers like small capacitances of CD and CS com-
pared to CG.

B. Effects of photon-assisted tunneling

Next we discuss effects of time-dependent perturbations
on transport by comparing results calculated from the full
and adiabatic expressions. For this we consider sufficiently
large amplitudes and high frequencies of a microwave
compared to a temperature as well as asymmetric geometry
of barriers. Calculations are performed for two cases of
tunneling resistances; one is large resistance of RD=RS
=655k� ��0=0.002� and the other is a small one,
13.1k� ��0=0.1�. So, the case of the former is believed to be
dominated by sequential tunneling in transport while with
the small resistance both co-tunneling and sequential pro-
cesses are expected to be contributed.

Figure 5 shows calculated results of the currents and
noises for the above two cases as a function of gate charge;
for the larger �smaller� resistance in the left �right� column.
In each column we additionally distinguish results depending
on the formalism used; the full �solid lines from Sec. IV A�,
adiabatic �dotted lines from Sec. IV B�, orthodox �dashed
lines from Sec. IV C� formalism, respectively. Thus, the dif-
ferences between the full and adiabatic results represent the
existence of photon-assisted tunneling while those between
adiabatic and orthodox results just emphasize effects of co-
tunneling in the classical limit �for the small resistance the
orthodox theory is known to be invalid, nevertheless we also
show corresponding results just for comparison�. Conse-
quently, results of the full expression contain effects of
photon-assisted tunneling as well as co-tunneling relative to
the orthodox formalism.

From the calculated results, one can see that the system is
easily driven into the non-adiabatic regime around the de-

FIG. 4. We show the Fermi-Dirac distributions at the drain for
two electrical environments. In �a�, we choose a resonant frequency
of ��R=0.04 at a temperature of kBT=0.02 while in �b�
��R=0.08 and kBT=0.02. For various quality factors of QF=10
�dotted line�, 50 �dashed�, 80 �dot-dashed�, results are compared
with that in the case of the free environment �solid�. In �c� DC
tunneling currents are calculated as a function of DC drain
voltage VD

0 with parameters in �b� at q0=e /2. Here we use
RD=RS=13.1k� ��0=0.1� under a nearly symmetric configuration
of barriers, CD=CS=0.2.
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generacy point q0=e /2 in both cases of tunneling resistances
implying the fact that tunneling occurs in photon-assisted
ways and, there, tunneling currents as well as noises are
largely enhanced relative to the adiabatic results. This ten-
dency is more apparent in the case of the large resistance.
However, apart far from the degeneracy point, effects of
time-dependent perturbations are reduced to classical ones to
give nearly identical results independently of the formalism
used. In other words, the strength of the photon-assisted tun-
neling becomes weak far from the degeneracy point.

One of possible explanations for the different strength of
the photon-assisted tunneling depending on gate charges q0
and tunneling resistances is the resolution of photon energies
��A seen by particles. As inferred from Eq. �81� since par-
ticles in the island is decayed with a rate of �0=I
A��0�, its
dwelling time can be regarded to be inversely proportional to
the rate. Along this aspect, the left-hand term in Eq. �82� can
be interpreted as rough estimator of the resolution for energy
quanta ��A. We plot it in the bottom panel of Fig. 5 for both
cases of the tunneling resistances. According to the figure,
when the value is less than about 0.1, the calculations show
nearly identical behavior between the adiabatic and full re-

sults implying poor resolution for energy quanta. This fact is
also confirmed by studying the transmission function TF of
Eq. �71�. Figure 6 is a contour plot of the transmission func-
tion in the energy-time space for two different points of gate
charges at which the resolution is predicted to be poor �at
q0=0.2e� and good �at q0=0.5e� in Fig. 5. As shown in the
figure, their time and energy dependences are strikingly com-
plex. However, one can recognize the distinct feature differ-
ent from each other. In Fig. 5 for a given time the height of
the transmission function is changed continuously as a func-
tion of energy while in Fig. 5 it exhibits rather discrete be-
havior. Actually in the case of Fig. 5 the distance between
successive maximums is equal to photon energy of ��A,
which is well resolved enough to see photon-side bands.

For the frequency dependences of the current and charge
noises, we examine them at a gate charge q0=0.4e of Fig. 5
and show results in Fig. 7 in the range of low frequencies. In
the current noises, the differences at a frequency �=�A be-
tween the adiabatic and full results are found to be retained
in the whole range of frequencies accompanying some struc-
tured behavior in both tunneling resistances. A straightfor-
ward explanation for these differences is complicated by
various correlations among transport coefficients of n�, T�

F,
T�

R, and L� in Eq. �74� where they all are found to play roles
somewhat importantly. As for peaks located at multiple of a
frequency �A /2, they are apparently arisen from time-
dependent properties of external perturbations as noted in
Eq. �93�. Usually, the largest peak is found at �=�A, how-
ever, in the full results peaks at �=�A /2 and 3�A /2 are also
appreciable contrary to the adiabatic cases. This means that
in photon-assisted ways the correlations between different
harmonics of the above coefficients remain large while they
are unimportant in the adiabatic limit. In the bottom of the

FIG. 5. We plot the first harmonics of a tunneling current �in
units of EC /eRT�, current and charge noises �in units of EC /RT and
e4RT /EC, respectively�, and the criterion function as a function of
gate charge q0 for two sets of parameters. In the left column, tun-
neling resistances are chosen to be RD=RS=655k� ��0=0.002� and
a frequency of a microwave ��A=��R=0.01 while in the right
column RD=RS=13.1k� ��0=0.1� and ��A=0.2 are used. We com-
pare results calculated based on the full, adiabatic, and orthodox
formula by displaying them in solid, dotted and dashed lines, re-
spectively. Other parameters are kBT=0.01, CD=CS=0.1, QF=6,
and 2QFevin=0.5.

FIG. 6. We plot the transmission function TD
F�t , t ;E� at the

drain with parameters used in the right column of Fig. 5. For gate
charges of q0=0.2e and 0.5e, its contour plot is depicted in �a� and
�b�, respectively. Here, a time t is measured in units of a period
of a microwave TA. We also show the evolution of a peak in the
transmission function in the fully adiabatic case with the
dotted lines, that is, the peak position follows the energy of
EC�1−2q0 /e�+ �1−CD /C��2QFevin sin��At� as time elapses.
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figure, we show the charge noises as a function of frequency.
Due to a large frequency scale we do not distinguish their
differences clearly. However, in term of �2SQ���, we find
that each result shows an appreciable deviation from the oth-
ers. Actually, the function of �2SQ��� is related to the current
noises because the last term of Eq. �74� is approximately
equal to it neglecting geometrical factors between capaci-
tances. By comparing it with the current noises, we find that
a large portion of the difference in the current noise can be
associated with those in the charge noises.

For high frequencies, the noises are found to be nearly
identical to equilibrium noises calculated with no external
perturbations. Namely, the Johnson-Nyquist noises are domi-
nant.

C. Charge sensitivity

The sensitivity to gate charges is one of estimators for the
performance of a rf SET as an electrometer. If one measures
the amplitude X assuming a homodyne detector, the charge
sensitivity is calculated as,2,42

�q =
�SXX��A�
�dX/dq0�

=
�2SI��A�
�dI1/dq0�

, �95�

showing the dependence on the current noises SI and the
response function dI1 /dq0. In Fig. 8 we plot the sensitivity in
the q0-vin plane using three different formula. Aiming at the
simulation of Ref. 15, we use similar system parameters to
the experiment except for CD=CS=0.1 �unfortunately not
specified in the experiment�. To clarify calculated results we
omit the regions of poor sensitivity, which correspond to

smaller rf-wave amplitudes than the Coulomb-blockade
thresholds �lower left corner� and much higher rf-wave am-
plitude over the threshold with small excitation energies �up-
per right corner�. By comparing Fig. 8�a� and 8�b�, one can
see effects of photon-assistant tunneling to the sensitivity.
That is, the region of good sensitivity �for example, within
�q=2.5� is predicted to slowly vary as a function of rf-wave
amplitude than in the adiabatic limits, while it exhibits a
rather narrower region as a function of gate charge. Calcu-
lated optimum sensitivities �minimum value of �q� are also
found to have different values, �q=2.12, 2.38, and 1.83 for
the full, adiabatic, and orthodox formalism, respectively,
with a nearly same operating point of �q0 ,2QFvin�
= �0.47,0.12�0.17�. The slightly better optimum-sensitivity
in Fig. 8�a� compared with that in Fig. 8�b� comes from the
enhanced value of the response dIq /dq0 by photon-assisted
tunneling. However, photon-assisted tunneling does not al-
ways give the better sensitivity because it also enhances cur-
rent noises. We find that its role for the sensitivity depends
on system parameters. In the orthodox result, the sensitivity
is always predicted to be better than results of the others
because the absence of co-tunneling gives larger values of
the response dIq /dq0.

Using the experimental parameter of EC=178�eV, the
calculated optimum sensitivity �q=2.12 corresponds to
4.1�e /�Hz, which is lower than the measured value of

FIG. 7. Under the same condition as those of Fig. 5, we plot the
frequency dependence of current �top� and charge �bottom� noises
for �0=0.002 �left� and 0.1 �right panel�, respectively. In each fig-
ure, results by the full, adiabatic, and orthodox formula are repre-
sented by solid, dotted, and dashed lines, respectively, at a gate
charge q0=0.4 �current and charge noises are measured in units of
EC /RT and e4RT /EC, respectively�. Sharp peaks correspond to an
infinite averaging time T in Eq. �63�, otherwise smeared ones may
be obtained.

FIG. 8. Contour plots of the charge sensitivity �q �in units of
e�� /EC� in the space of rf amplitudes and gate charges are shown.
The used parameters are ��=0.04EC, QF=6, and RD=RS=100k�
at a temperature of kBT=0.02EC.
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47�e /�Hz by an order. This discrepancy between the theory
and experiment may be attributed to the preamplifier noise
and local heating of a SET.42

In Fig. 9, we show the dependence of the optimum sensi-
tivity on tunneling resistances for different applied frequen-
cies of microwaves and quality factors. First, Figs. 9�a� and
9�b� are results for QF=6 and 50, respectively. By comparing
different kinds of lines in each figure which means different
frequencies of microwaves at a resonant condition, one can
see that larger frequencies give rise to worse sensitives in a
wide range of tunneling resistance. Since a large driving fre-
quency corresponds to better-resolved energies of external

fields, associated photon-assisted tunneling is expected to de-
crease the sensitivity due to the enhanced current noises. On
the other hand, for a given frequency, the sensitivity as a
function of tunneling resistance is found to show different
behavior depending on the quality factor; monotonically im-
proved results are obtained for QF=6 as tunneling resistance
decreases while there is optimal resistance for the best sen-
sitivity for QF=50. For easier understanding of our results,
an analytic expression from Ref. 42,

�q � 2.65e��RD + RS�C
 � kBT

2EC
�96�

is also plotted with dot-dashed lines in the figure even
though it gives difference values from ours due to the ortho-
dox theory. According to this expression, since the sensitivity
is proportional to �0

−1/2 for RD=RS, one can see that calcu-
lated results are approximately scaled as the same power law.
However, for QF=50, the power law is no longer hold and
for small tunneling resistances it is scaled as even �0

1/2. This
behavior can be understood through a simple circuital analy-
sis as in Ref. 42. By replacing the tunneling barriers by re-
sistors, it is found that the best sensitivity is achieved for
series resistance equal to QF

2R0 at which input impedance of
microwaves is matched to that of the tunneling barriers.
Thus, for QF=6 the matching condition occurs at �0=1.5
while for QF=50 it is expected to be �0=0.02. As shown in
Fig. 9�b�, this condition well agrees with the calculated result
for the small frequency even though for high frequencies it is
slightly deviated due to the non-adiabatic effects of micro-
waves.

In Fig. 9�c� we show the dependence of the charge sensi-
tivity on tunneling resistances by omitting a calculational
factor one by one to emphasize its role. According to results,
considerations of self-consistent and non-adiabatic schemes
are found to be crucial for sensitivity calculations while ef-
fects of the environment is relatively unimportant. In addi-
tion, we find that symmetric geometry �dashed line� benefits
the charge sensitivity in the whole range of tunneling resis-
tance.

VI. SUMMARY

In this work, we develop a formalism for a radio-
frequency single-electron transistor taking into account elec-
trical environment, higher-order co-tunneling, and arbitrary
time-dependent perturbations. Assuming large charging en-
ergy, we use a two-charged-state model in a metallic island
and solved the problem based on the Schwinger-Keldysh ap-
proach combined with a generating functional method. We
calculate an approximated generating functional by summing
diagrams in infinite order and give full expressions for cur-
rent, charges in the island, and their noises within the gener-
ating functional. By defining generalized transport coeffi-
cients, we write the derived expressions in terms of them,
and show that tunneling currents in time-dependence cases
have a generalized form of the well-known Landauer for-
mula.

As application of our formalism, we examine tunneling
currents, its noises, and the charge sensitivity of rf SETs by

FIG. 9. The optimum charge sensitivities are plotted as a func-
tion of tunneling resistance for two quality factors of QF=6 in �a�
and 50 in �b�, respectively, together with different frequencies of a
microwave, ��A=0.1 �dotted�, 0.04 �solid�, and 0.005 �dashed�.
The dot-dashed lines denote the analytical result of Eq. �96�. Here,
we assume RS=RD, CD=CS=0.1, and kBT=0.02. In �c� we re-plot
the result of �b� represented by the solid line, and examine its
change without each calculational factor one by one; adiabatic ap-
proximation �dotted line�, no electrical environment �filled circle�,
symmetric geometry of CD=CS=0.24 �dashed line�, and calculation
neglecting a self-consistency �triangle�.
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accounting for a detailed tank circuit. First, effects of the
electrical environments are found to be relatively small, as
expected, in cases of microwaves delivered via an coaxial
cable with impedance 50�. However, for a large quality fac-
tor and a large resonant frequency its effects become large
and cannot be ignored. Second, effects of photon-assisted
tunneling are manifested to both enhanced responses and
noises of rf SETs. However, due to the larger enhancement of
the noises, photon-assisted tunneling is not helpful to the
charge sensitivity. As a consequence, with experimental pa-
rameters of Ref. 15, we obtain the charge sensitivity of �q
=4.1�e /�Hz, which is larger than that in the orthodox result,
however, still much smaller than the measure value of
47�e /�Hz. Finally, we discuss the charge sensitivity de-
pending on various sets of parameters. Especially, we focus
on its change as a function of tunneling resistance, and find

that the charge sensitivity for small quality factors is scaled
like �0

−1/2 as in the analytic result proposed by the previous
work. Whereas, for large quality factors the power law is no
longer valid and it is proportional to even �0

1/2 in the range of
small tunneling resistance to show optimal resistance for the
best sensitivity.

ACKNOWLEDGMENTS

We thank Dr. H. J. Lee for the introduction to coherent-
path-integral method and Dr. Y. S. Yu for providing his nu-
merical results for comparison with ours. This work was sup-
ported by the Korean Ministry of Science and Technology
through the Creative Research Initiatives Program under
Project No. r16-1998-009-01001-0.

*Electronic address: jungoh@iquips.uos.ac.kr
1 H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, NATO

ASI Ser., Ser. B 294, 167 �1991�.
2 D. V. Averin, K. K. Likharev, in Mesoscopic Phenomena in Sol-

ids, edited by B. L. Altshuler, P. A. Lee, and R. A. Webb
�Elsevier Science Publishers B. V., Amsterdam, 1991�.

3 G. Ingold and Y. V. Nazarov, in Single Charge Tunneling, edited
by H. Grabert and M. H. Devoret �Plenum Press, New York,
1992�.

4 L. P. Kouwenhven and P. L. McEuen, in Nano-Science and Tech-
nology, edited by G. Timp �AIP, New York, 1997�.

5 G. Schön, in Quantum Transport and Dissipation, edited by T.
Dittrich, P. Häggi, G. Ingold, B. Kramer, G. Schön, and W.
Zwerger �Wiley-VCH, Weinheim, 1998�.

6 C. W. J. Beenakker, Phys. Rev. B 44, 1646 �1991�.
7 H. Schoeller and G. Schön, Phys. Rev. B 50, 18436 �1994�.
8 D. V. Averin, in Macroscopic Quantum Coherence and Quantum

Computing, edited by D. V. Averin, R. Ruggiero, and P. Silves-
trini �Kluwer Academic/Plenum Publisher, New York, 2001�.

9 E. V. Sukhorukov, G. Burkard, and D. Loss, Phys. Rev. B 63,
125315 �2001�.

10 Y. Utsumi, H. Imamura, M. Hayashi, and H. Ebisawa, Phys. Rev.
B 66, 024513 �2002�; 67, 035317 �2003�.

11 Y. Makhlin, G. Schön, and A. Shnirman, Phys. Rev. Lett. 85,
4578 �2000�.

12 B. E. Kane, N. S. McAlpine, A. S. Dzurak, R. G. Clark, G. J.
Milburn, H. B. Sun, and H. Wiseman, Phys. Rev. B 61, 2961
�2000�.

13 A. Aassime, G. Johansson, G. Wendin, R. J. Schoelkopf, and P.
Delsing, Phys. Rev. Lett. 86, 3376 �2001�.

14 G. Johansson, A. Käck, and G. Wendin, Phys. Rev. Lett. 88,
046802 �2002�.

15 R. J. Schoelkopf, P. Wahlgren, A. A. Kozhevnikov, P. Delsing,
and D. E. Prober, Science 280, 1238 �1998�.

16 T. Fujisawa and Y. Hirayama, Appl. Phys. Lett. 77, 543 �2000�.
17 H. D. Cheong, T. Fujisawa, T. Hayashi, Y. Hirayama, and Y. H.

Jeong, Appl. Phys. Lett. 81, 3257 �2002�.
18 T. M. Buehler, D. J. Reilly, R. P. Starret, A. R. Hamilton, A. S.

Dzurak, and R. G. Clark, cond-mat/0302085 �unpublished�
19 P. K. Tien and J. R. Gordon, Phys. Rev. 129, 647 �1963�.
20 L. P. Kouwenhoven, S. Jauhar, J. Orenstein, P. L. McEuen, Y.

Nagamune, J. Motohisa, and H. Sakaki, Phys. Rev. Lett. 73,
3443 �1994�.

21 C. Bruder and H. Schoeller, Phys. Rev. Lett. 72, 1076 �1994�.
22 C. A. Stafford and N. S. Wingreen, Phys. Rev. Lett. 76, 1916

�1996�.
23 J. H. Oh, D. Ahn, and S. W. Hwang, Phys. Rev. B 68, 205403

�2003�.
24 M. H. Devoret, D. Esteve, H. Grabert, G. L. Ingold, H. Pothier,

and C. Urbina, Phys. Rev. Lett. 64, 1824 �1990�.
25 H. Grabert, G. Ingold, M. H. Devoret, D. Esteve, H. Pothier, and

C. Urbina, Z. Phys. B: Condens. Matter 84, 143 �1991�.
26 J. H. Oh, H. Lee, S. W. Hwang, and D. Ahn, J. Korean Phys. Soc.

45, S589 �2004�.
27 A. P. Jauho, N. S. Wingreen, Y. Meir, Phys. Rev. B 50, 5528

�1994�.
28 S. Camalet, J. Lehmann, S. Kohler, and P. Hánggi, Phys. Rev.

Lett. 90, 210602 �2003�.
29 J. W. Negele and H. Orland, in Quantum Many-particle Systems,

�Addison-Wesley, 1988�.
30 K. Chou, Z. Su, B. Hao, and L. Yu, Phys. Rep. 118, 1 �1985�.
31 V. S. Babichenko and A. N. Kozlov, Solid State Commun. 59, 39

�1986�.
32 A. O. Caldeira and A. J. Leggett, Ann. Phys. �N.Y.� 149, 374

�1983�.
33 R. Landauer, IBM J. Res. Dev. 32, 306 �1988�.
34 A. J. Rimberg, T. R. Ho, C. Kurdak, J. Clarke, K. L. Campman,

and A. C. Gossard, Phys. Rev. Lett. 78, 2632 �1997�.
35 N. Mason and A. Kapitulnik, Phys. Rev. Lett. 82, 5341 �1999�.
36 J. S. Penttilä, Ü. Parts, P. J. Hakonen, M. A. Paalanen, and E. B.

Sonin, Phys. Rev. Lett. 82, 1004 �1999�.
37 A. Shnirman and G. Schön, Phys. Rev. B 57, 15400 �1998�.
38 J. H. Davies, P. Hyldgaard, S. Hershfield, and J. W. Wilkins,

Phys. Rev. B 46, 9620 �1992�.
39 U. Hanke, Y. M. Galperin, K. A. Chao, and N. Zou, Phys. Rev. B

48, 17209 �1993�.
40 A. N. Korotkov, Phys. Rev. B 49, 10381 �1994�.
41 M. Büttiker, J. Low Temp. Phys. 118, 519 �2000�.
42 V. O. Turin and A. N. Korotkov, Phys. Rev. B 69, 195310 �2003�;

Appl. Phys. Lett. 83, 2893 �2003�.
43 L. Roschier, P. Hakonen, K. Bladh, P. Delsing, K. W. Lehnert, L.

Spietz, and R. Schoelkopf, J. Appl. Phys. 95, 1274 �2004�.

CURRENT AND NOISE EXPRESSIONS FOR RADIO-… PHYSICAL REVIEW B 72, 165348 �2005�

165348-17


