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The charge transfer statistics of a tunnel junction coupled to a quantum object is studied using the charge
projection technique. The joint dynamics of the quantum object and the number of charges transferred through
the junction is described by the charge specific density matrix. The method allows evaluating the joint prob-
ability distribution of the state of the quantum object and the charge state of the junction. The statistical
properties of the junction current are derived from the charge transfer statistics using the master equation for
the charge specific density matrix. The theory is applied to a nanoelectromechanical system, and the influence
on the average current and the current noise of the junction is obtained for coupling to a harmonic oscillator.
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I. INTRODUCTION

In recent years, it has become possible to couple charge
dynamics of electrons to vibrational modes of a nanostruc-
ture, and the new field of nanoelectromechanics has
emerged.1 Nanoelectromechanical devices are expected to
lead to new technologies, such as ultrasmall mass detection
techniques,2,3 as well as stimulating fundamental studies of
quantum phenomena in macroscopic systems.4 For example,
experiments have probed high-frequency nanomechanical
resonators in order to reach the quantum uncertainty limit.5–8

Charge transfer by mechanical motion has been studied in
experiments shuttling single electrons.9–11 Nanomechanical
resonators are investigated for use in quantum information
processing.12,13

The simplest possibility of detection and control of the
vibrational degree of freedom in a nanomechanical system is
at present via the coupling to a quantum point contact or a
tunnel junction. Recent theoretical studies of nanoelectrome-
chanical systems, therefore, have considered the coupling of
a harmonic oscillator to a tunnel junction. The master equa-
tion for the oscillator was originally obtained by Mozyrsky
and Martin,14 using a method limiting considerations to the
zero-temperature case, and the influence of the coupled os-
cillator on the average current was obtained. Smirnov,
Mourokh, and Horing examined the nonequilibrium fluctua-
tions of an oscillator coupled to a biased tunnel junction.15

Clerk and Girvin derived the master equation for the oscilla-
tor and considered the current noise power spectrum in the
shot noise regime, studying both the dc and ac cases.16 Ar-
mour, Blencowe, and Zhang considered the dynamics of a
classical oscillator coupled to a single electron transistor,17

and Armour the induced current noise.18 Related models
were studied in molecular electronics.19

Tunnel junctions functioning as position detectors or be-
ing monitored by a vibrational mode put emphasis on a de-
scription of the current properties of a tunnel junction in
terms of its charge dynamics. Recently, we considered a gen-
eral many-body system coupled to a quantum object and

considered their joint dynamics in the charge
representation.20 This approach, based on a previously intro-
duced charge projection technique,21 provides a quantum de-
scription of charge dynamics based directly on the density
matrix for the system, and allows us to treat the number of
particles in a given piece of material as a quantum degree of
freedom, establishing, thereby, in proper quantum mechani-
cal context, the charge representation. The evolution of the
coupled systems is described in terms of the charge specific
density matrix for the quantum object, �̂n�t�, i.e., the dynam-
ics conditioned on the number n of charges in a specified
spatial region of the environment. When a many-body envi-
ronment is coupled to another quantum object, the method
allows evaluating, at any moment in time, the joint probabil-
ity distribution describing the quantum state of the object and
the number of charges in the chosen region of the many-body
system. The charge specific density matrix description of the
dynamics of a quantum object, therefore, is an optimal tool
to study transport in nanostructures, since in electrical mea-
surements any information beyond the charge distribution is
irrelevant. So far we have applied the method to charge
counting in a tunnel junction coupled to a discrete quantum
degree of freedom, viz. that of a two-level system, and
shown that the charge state of the junction can function as a
meter providing a projective measurement of the quantum
state of the two-level system.20

In this paper, we shall apply the charge projection method
to the case where the quantum object coupled to the junction
is a continuous degree of freedom. In particular, we shall
concentrate on the properties of the current through the junc-
tion due to the coupling to the quantum object. The statistical
properties of the current through the junction and its corre-
lations with the dynamics of the quantum object coupled to
it, shall be expressed through the charge specific density ma-
trix. We shall illustrate the results for the case of a harmonic
oscillator coupled to the tunnel junction. It should be noted
that current experimental setups studying nanoelectrome-
chanical systems are operated under conditions where tem-
perature, oscillator excitation energy, and voltage bias across
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the junction are comparable.3,5,6 Furthermore, nanomechani-
cal oscillators, such as a suspended beam, are in addition to
the charge dynamics of the electrons in the junction invari-
ably coupled to a thermal environment, say the substrate
upon which the oscillator is mounted. Thus, we are consid-
ering the situation where a quantum object in addition to
interacting with a heat bath is interacting with an environ-
ment out of equilibrium. Having the additional parameter,
the voltage, characterizing the environment in nonequilib-
rium, gives rise to features not present for an object coupled
to a many-body system in equilibrium. The presented ap-
proach is applicable in a broad region of temperatures and
voltages of the junction and arbitrary frequency of the oscil-
lator and, thus, generalizes previous treatments.

The paper is organized as follows. In Sec. II, we introduce
the model Hamiltonian for a generic electromechanical nan-
oresonator, a harmonic oscillator coupled to a tunnel junc-
tion, and derive the Markovian master equation for the
charge specific density matrix. The master equation for the
charge unconditional density matrix, i.e., the charge specific
density matrix traced with respect to the charge degree of
freedom of the junction, is discussed in detail for the case of
a harmonic oscillator coupled to a tunnel junction. In Sec.
III, we consider the influence of the oscillator on the current-
voltage characteristic of the junction. In Sec. IV, we consider
the properties of the stationary state of the oscillator. We
calculate the heating of the oscillator due to the nonequilib-
rium state of the junction and calculate the steady-state I-V
characteristic of the junction. In Sec. V, we consider the cur-
rent noise in the junction using the charge representation and
obtain the explicit expression for the current-current cor-
relator in the Markovian approximation. In Sec. VI, the
theory is then applied to the case of an oscillator influencing
the current noise of the junction. Finally, in Sec. VII, we
summarize and conclude. Details of calculations are pre-
sented in the appendices.

II. MASTER EQUATION

As a model of a nanoelectromechanical system, we con-
sider a harmonic oscillator coupled to a tunnel junction. The
transparency of the tunnel barrier is assumed perturbed by
the displacement x of the oscillator. The resulting Hamil-
tonian is

Ĥ = Ĥ0 + Hl + Hr + ĤT, �2.1�

where Ĥ0 is the Hamiltonian for the isolated harmonic oscil-
lator with bare frequency �B and mass m. A hat marks op-
erators acting on the oscillator degree of freedom. The
Hamiltonians Hl,r specify the isolated left and right elec-
trodes of the junction

Hl = �
l

�lcl
†cl, Hr = �

r
�rcr

†cr, �2.2�

where l ,r labels the quantum numbers of the single particle
energy eigenstates in the left and right electrodes, respec-

tively, with corresponding energies �l,r. The operator ĤT de-
scribes the tunneling,

ĤT = T̂ + T̂†, T̂ = �
l,r

T̂lrcl
†cr �2.3�

with the tunneling amplitudes, T̂lr= T̂rl
† , depending on the os-

cillator degree of freedom. Due to the coupling, the tunneling
amplitudes and, thereby, the conductance of the tunnel junc-
tion depend on the state of the oscillator. In the following, we
assume a linear coupling between the oscillator position and
the tunnel junction

T̂lr = vlr + wlrx̂ , �2.4�

where vlr=vrl
* is the unperturbed tunneling amplitude and

wlr=wrl
* is its derivative with respect to the position of the

oscillator. The derivation of the equation of motion for the
charge specific density matrix presented in Appendix A
shows that the following combinations of the model param-
eters vlr and wlr enter the master equation:

�
G0

Gxx

Gx

gx

� =
2�

�
�
lr �

�vlr�2

�wlr�2

R�vlr
* wlr�

I�vlr
* wlr�

��−
�f��l�
��l

����l − �r� .

�2.5�

These lumped parameters for the junction have the following
physical meaning: Let G�x�=e2G�x�, e being the electron
charge, denote the conductance as a function of the oscillator
coordinate x when it is treated as a classical variable. Then,
G0 gives the conductance of the junction in the absence of
coupling to the oscillator, G0= �1/e2��G�x=0, and Gx

= �1/2e2���dG /dx�x=0� and Gxx= �1/2e2���d2G /dx2�x=0�. The
coupling constant gx cannot be expressed via G�x�. Note that
gx changes its sign upon interchange of tunneling amplitudes
between the states in the two electrodes, i.e., after the sub-
stitution l↔r. Therefore, it is only finite for an asymmetric
junction and is a measure of the asymmetry. As shown in
Sec. III, gx generates effects similar to charge pumping, as
well as nontrivial features in the electric current noise as
discussed in Sec. VI. For later use, it is convenient to present
the coupling constants in terms of conductances by introduc-
ing the characteristic length of the oscillator

G̃xx = Gxxx0
2, G̃x = Gxx0, g̃x = gxx0, �2.6�

where x0= �� /m�0�1/2, and �0 is the frequency of the
coupled oscillator as introduced in Appendix A.

A. Charge specific master equation

To study the interaction of charge dynamics in a tunnel
junction with the dynamics of a quantum object, we describe
the combined system, the quantum degree of freedom
coupled to a tunnel junction, using the charge specific den-
sity matrix method introduced in Ref. 20. The approach em-
ploys charge projectors to study the dynamics of the quan-
tum object conditioned on the charge state of the junction.
The charge projection operator, Pn, projects the state of the
conduction electrons in the junction onto its component for
which exactly n electrons are in a given spatial region, say in
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the left electrode. The charge specific density matrix is then
specified by

�̂n�t� = Trel„Pn��t�… , �2.7�

where ��t� is the full density matrix for the combined system,
and Trel denotes the trace with respect to the conduction
electrons in the junction. Provided the system at the initial
time, t=0, is in a definite charge state, i.e., described by a
charge specific density matrix of the form �̂n�t�=�n0�̂0,
where �̂0 is the initial state of the quantum object, the charge
index n can be interpreted as the number of charges trans-
ferred through the junction. Thus, the charge projector
method provides a basis for charge counting statistics in the
cases where the distribution function for transferred charge
is relevant as discussed in Ref. 21. The charge specific den-
sity matrix allows, therefore, the evaluation, at any moment
in time, of the joint probability of the quantum state of the
object and the number of charges transferred through the
junction. For example, if the charge specific density matrix is
traced over the quantum object degree of freedom, the prob-
ability pn�t� that n charges in time span t are transferred
through the low transparency tunnel junction is the expecta-
tion value of the charge projector, or expressed in terms of
the charge specific density matrix

pn�t� = Tr„�n�t�… , �2.8�

where the trace is with respect to the degree of freedom of
the coupled quantum object.

The Markovian master equation for the charge specific
density matrix, �̂n�t�, for the case of coupling of the junction
to a quantum object is derived and discussed in Appendix A.
The Markovian approximation is valid for describing slow
time variations of the density matrix; the exact conditions of
the applicability are specified later once the characteristic
times of the problem have been identified. To the lowest
order in the tunneling, the master equation for the charge
specific density matrix can be generally written in terms of
superoperators: a Lindblad-like term 	, a diffusion term D,
and a drift term J20

�̇̂n = −
i

�
	Ĥ0, �̂n
 + 	��̂n� + D��̂n�� + J��̂n�� , �2.9�

where �̂n� and �̂n� denote the discrete derivatives,

�̂n� =
1

2
��̂n+1 − �̂n−1� , �2.10�

�̂n� = �̂n+1 + �̂n−1 − 2�̂n. �2.11�

General expressions for the superoperators in Eq. �2.9� are
presented in Appendix A as well as their specific form for the
case of coupling to an oscillator. The equation shall, in Sec.
IV, be used to study the current noise in the junction due to
the coupling to a quantum object before we, in Sec. V, con-
sider the explicit case of an oscillator coupled to the junction.
However, first we analyze the master equation for the uncon-
ditional density matrix, i.e., the charge specific density ma-
trix traced with respect to the charge degree of freedom of
the junction.

B. Unconditional Master equation

Often interest is not in the detailed information of the
charge evolution of the tunnel junction contained in the
charge specific density matrix. If, for example, interest is
solely in properties of the oscillator, this information is con-
tained in the traced charge specific density matrix. Thus, we
are led to study the master equation for the reduced or charge
unconditional density matrix, the density matrix traced with
respect to the charge degree of freedom, �̂�t�=�n�̂n�t�. Per-
forming the charge trace on Eq. �2.9�, the master equation for
the reduced density matrix can be written in the form

�̇̂�t� =
1

i�
	ĤR, �̂
 +




i�
	x̂,�p̂, �̂�
 −

D

�2†x̂,	x̂, �̂
‡ +
A

�2†x̂,	p̂, �̂
‡ .

�2.12�

The form of the master equation is generic to any continuous
quantum degree of freedom coupled linearly to the junction
and has the well-known form for a particle coupled to a heat
bath.22,23 In the following, we consider the model Hamil-
tonian for a nanoelectromechanical system introduced in
Sec. II and encounter the renormalized oscillator Hamil-
tonian

ĤR =
p̂2

2m
+

m�0
2x̂2

2
, �2.13�

which in addition to having a renormalized oscillator fre-
quency �0, suffers a voltage dependent linear shift in the
equilibrium position of the oscillator, which in the following
is assumed absorbed into the position of the oscillator �for
details see Appendix A�.

The second and third term on the right in Eq. �2.12� rep-
resent the physical influences of friction and fluctuations of
the environment. For a nanomechanical object, the environ-
ment consists of several parts. The first one, which we have
explicitly included in the model, is the tunnel junction. The
other one is included phenomenologically by introducing 
0
and D0, the values of the friction and diffusion parameters in
the absence of coupling to the junction. The physical mecha-
nism generating the friction coefficient 
0 and diffusion co-
efficient D0 is, e.g., the heat exchange of the nanoscale os-
cillator and the bulk substrate it is mounted on. Thus the
latter environment could also be modeled microscopically in
the standard manner of coupling a quantum object to a heat
bath.22,24 Then, with the model Hamiltonian in Eq. �2.1� giv-
ing the electronic environment contribution due to the cou-
pling to the junction, the total friction and diffusion coeffi-
cients become


 = 
0 + 
e, D = D0 + De, �2.14�

where 
e is the electronic contribution to the damping coef-
ficient


e =
�2Gxx

m
�2.15�

proportional to the coupling strength Gxx, and the electronic
contribution to the diffusion coefficient is
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De = m
e� coth
�

2Te
, �2.16�

where �=��0 and the voltage dependent parameter Te is
given by the relation

coth
�

2Te
=

V + �

2�
coth

V + �

2T
+

V − �

2�
coth

V − �

2T
.

�2.17�

Here T is the temperature of the junction and we assume a dc
voltage bias, V=eU, U being the applied voltage. We note
that the right-hand side �r.h.s.� of Eq. �2.17� is proportional to
the well-known value of the power spectrum of current noise
of the isolated junction, taken at the frequency of the
oscillator.25 The fact that the junction as a part of the envi-
ronment is in a nonequilibrium state is reflected in the volt-
age dependence of the electronic contribution to the diffusion
coefficient. In Sec. IV, we show that Te is the effective tem-
perature of the junction seen by the oscillator.

The phenomenological parameters D0 and 
0 are related
to each other by virtue of the fluctuation-dissipation theorem.
Assuming that the junction and the part of the environment
responsible for 
0 and D0 have the same temperature T, the
diffusion coefficient can be generally presented in the form

D = m��
0 coth
�

2T
+ 
e coth

�

2Te
� . �2.18�

The master equation Eq. �2.12� contains the term propor-
tional to the coupling constant A. A term with this structure
has been obtained in previous discussions of quantum
Brownian motion.23,26 The derivation of the master equation
for the oscillator �see Appendix A� shows that the main con-
tribution to the coefficient A in Eq. �2.12� comes from virtual
tunneling processes with an energy difference of initial and
final states of the order of the Fermi energy, in contrast to the
friction and diffusion coefficients which are controlled solely
by the tunneling events in the vicinity of the Fermi surface.
Besides, compared with the other terms in Eq. �2.12�, the A
term has different symmetry relative to time reversal, i.e., the
transformation �̂→ ��̂�* and t→−t. The damping and diffu-
sion terms, which are odd relative to time reversal, describe
the irreversible dynamics of the oscillator, whereas the last
term in Eq. �2.12�, just like the Hamiltonian term, is time
reversible. These observations give the hint that the A term is
responsible for renormalization-like effects. This suggests
that the A term should be treated on a different footing than
the dissipative terms. Indirectly, the A term can be absorbed
into the Hamiltonian dynamics at the price of having the
time evolution of the oscillator described by a “renormal-
ized” density matrix. Indeed, if we apply a �nonunitary�
transformation to the density matrix, �̂̃=R��̂�, by acting on
the density matrix �̂ with the superoperator

R��̂� = �̂ + �†p̂,	p̂, �̂
‡ , �2.19�

we can by proper choice of the parameter �,

� =
A

2m�2 , �2.20�

cancel the A term in the equation for the transformed matrix

�̂̃. Leaving the 
 and D terms intact, the counterterm is pro-
duced by the superoperator R acting on the Hamiltonian part
of the master equation Eq. �2.12�. Applied to the original A
term, this procedure generates an additional contribution pro-
portional to the product �AA2, and it can be neglected to
the lowest order in the coupling, the limit which can be con-
sistently studied.

The renormalized density matrix now obeys the master
equation

�̇̂�t� = K��̂� , �2.21�

where

K��̂� =
1

i�
	ĤR, �̂
 +




i�
	x̂,�p̂, �̂�
 −

D

�2†x̂,	x̂, �̂
‡ , �2.22�

up to a term quadratic in the coupling constant. For compact
notation, we have introduced the superoperator K and
dropped the tilde for marking the renormalized density ma-
trix: thus, in the following, the renormalized density matrix
will also be denoted by �̂. The master equation being derived
for the case of coupling to a tunnel junction is seen to be of
the same form as for coupling linearly to a heat bath, i.e., an
equilibrium state of a many-body system; the generic form of
a damped quantum oscillator known from numerous investi-
gations on quantum Brownian motion.22 However, the diffu-
sion term is qualitatively different from the usual case where
the quantum object is coupled only to a heat bath. The non-
equilibrium state of the junction, characterized by its voltage,
gives rise to features not present when the coupling is simply
to a many-body system in equilibrium.

We note that the superoperator R does not change the
trace of the density matrix it operates on, and the renormal-
ized density matrix is also normalized to unity. However, one
has to keep in mind that the observables are to be calculated
with the “unrenormalized” density matrix. Up to the first
order in the coupling constant, the expectation value of an
observable O are now given in terms of the renormalized
density matrix according to

O� = Tr��Ô −
A

2m�2†p̂,	p̂,Ô
‡��̂� . �2.23�

This relation transfers renormalization from the density ma-
trix to observables. In the language of the Feynman diagram
technique, Eq. �2.23� corresponds to a vertex correction.

In this paper, we use the Markovian approximation to
describe the time evolution of the density matrix. This ap-
proximation is valid in the low-frequency limit. For the dc-
bias case, the characteristic frequency of time variation of the
density matrix � must be small enough to meet the condition
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� � �max, �max � max�T

�
,
V

�
� . �2.24�

From the unconditional master equation, the characteristic
frequency is seen to be determined by the friction coefficient,
��
. This means that the coupling constant Gxx in Eq.
�2.15� must be small enough to meet the condition 
��max.

III. CURRENT-VOLTAGE CHARACTERISTIC

The average value of the current through the junction is
given in terms of the probability distribution for charge
transfers, i.e.,20

I�t� = − e
d

dt�n

n Tr �̂n�t� , �3.1�

where Tr denotes the trace with respect to the degree of
freedom of the coupled quantum object. However, to the
lowest order in the tunneling, the average current turns out to
be expressible through the charge unconditional density ma-
trix, the reduced density matrix for the coupled quantum ob-
ject. Indeed, the master equation for the charge specific den-
sity matrix then enables one to express the time derivative in
Eq. �3.1� in terms of the reduced density matrix for the quan-
tum object, the charge unconditional density matrix

I�t� = e Tr J��̂�t�� , �3.2�

where the drift superoperator J is specified in Eq. �A11�.

A. Contributions to the current under dc bias

For a dc bias V=eU, U being the applied voltage, the drift
operator J is given by Eq. �A11�, and the current, Eq. �3.2�,
is specified by

1

e
I�t� = VG�t + Iq�V� + Ip�t� �3.3�

and is, in general, time dependent due to the coupling to the
oscillator. The current consists of three physically distinct
contributions. The first term is the Ohmic-like part of the
current proportional to the conductance

G�t = G0 + 2Gxx�t + Gxxx2�t, �3.4�

the instantaneous value of the conductance operator, Eq.
�A12�, where xn�t�Tr(x̂n�̂�t�). We note that besides the pure
Ohmic term of the isolated junction, the additional terms due
to the coupling to the oscillator will in general contribute to
the nonlinear part of the current-voltage characteristic since
the state of the oscillator will depend on the voltage. A case
in question is discussed in Sec. III B, where the stationary
state of the oscillator is considered.

The second term, Iq, originates from the commutator of
position and momentum operators, and for this reason, we
refer to it as the quantum correction to the current

Iq�V� = −
1

2
G̃xx�V, �3.5�

where �V is specified in Eq. �A13� or equivalently

�V = V + �� + V�N�+V − �� − V�N�−V �3.6�

and N�±V=1/ �e��±V�/T−1�.
The last term in Eq. �3.3�,

Ip�t� = e�gxẋ̂�t, ẋ̂ =
p̂

m
, �3.7�

is proportional to the average velocity of the oscillator and is
present only for an asymmetric junction, gx�0.

The Ohmic part of the current is calculated in Sec. IV B
for the stationary case. Next, we discuss the quantum correc-
tion and the dissipationless contribution to the current.

B. Quantum correction to the current

The quantum dynamics of the oscillator leads to a suppre-
sion of the dc current as expressed by the quantum correction
to the current, Iq�V�. Unlike the other terms in the expression
for the current, Eq. �3.3�, the quantum correction, Iq�V�, does
not depend on the state of the oscillator, but only on its
characteristic energy and the temperature of the junction. At
low voltages, V�T, the quantum correction is linear in the
voltage

Iq = − VG̃xx�1

2
+ N� −

�

T
N��N� + 1�� , �3.8�

where N�=1/ �e�/T−1�. At large voltages, it reaches a con-
stant value

Iq � −
1

2
G̃xx�, V � T,� , �3.9�

in agreement with an earlier result obtained by a technique
valid at zero temperature.14 Our approach generalizes the
expression for the current to arbitrary relations between junc-
tion voltage and temperature and the frequency of the oscil-
lator. The voltage dependence of the quantum correction to
the conductance, Gq= Iq /V, is shown in Fig. 1 for different
temperatures.

C. Dissipationless current

The last contribution in Eq. �3.3� to the current Ip is quali-
tatively different from the other terms. From Eq. �3.7�, one
sees that Ip is proportional to the velocity of the oscillator.
Therefore, the corresponding transferred charge through the
junction, �Qp= Ip�t, is controlled by the coordinate of the
oscillator: �Qp=e�gx�x�. Being proportional to a velocity,
the current contribution Ip is odd with respect to time rever-
sal and, therefore, a dissipationless current.

The presence of the term Ip in the current, which does not
depend explicitly on the voltage, means that a current
through the junction can be induced just by the motion of the
oscillator alone, i.e., by the time variation of a system pa-
rameter which in our case is the junction transparency. This
effect is closely related to the well-known physics of quan-
tum pumping,27,28 but has not, to our knowledge, been dis-
cussed in the present context. The dissipationless
“pumping”-like current Ip is proportional to the coupling

STATISTICS OF CHARGE TRANSFER IN A TUNNEL… PHYSICAL REVIEW B 72, 165347 �2005�

165347-5



constant gx. This contribution to the current, thus, is only
present if the tunnel junction is asymmetric. This is in con-
cordance with the quantum pumping effect.29 The global
symmetry properties of the system, thus, crucially determine
the existence and magnitude of the induced current.

A single mode oscillator driven by an external periodic
force at frequency � induces an ac current I� with the same
frequency and a phase of the ac current rigidly following the
phase of the external force. For a given amplitude of the
oscillations, xmax, the magnitude of the ac current can be
estimated as

I� � �ase� , �3.10�

where the dimensionless parameter �as=�gxxmax character-
izes the effective asymmetry of the junction. In principle, �as
may be comparable to unity so that I��e�, provided that
the amplitude of the oscillations xmax is large enough and the
conductance of the junction is not too small.

One can show that in the case of an oscillator with two or
more modes interacting with the junction, the corresponding
term generates directed pumping of charge.30

IV. STATIONARY STATE PROPERTIES

In this section, we shall study the stationary state of the
reduced density matrix for the oscillator in the Markovian
approximation. The question arises whether the stationary
state of the oscillator is a thermal equilibrium state even
though the environment is in a nonequilibrium state as the
junction is biased. According to Eq. �2.21�, the stationary
renormalized density matrix of the oscillator �̂s is determined
by the equation

K��̂s� = 0, �4.1�

and the solution is indeed of the form of a thermal density

matrix, �̂sexp�−ĤR /T*�, where the temperature of the os-
cillator T* is specified by the relation

coth
�

2T* =
D


m�
.

Using Eq. �2.18�, the temperature of the oscillator is related
to the environment temperature and the voltage bias accord-
ing to

coth
�

2T* =

0


0 + 
e
coth

�

2T
+


e


0 + 
e
coth

�

2Te
. �4.2�

The average occupation number for the oscillator N* is given
by the Bose function, N*=1/ �e�/T*

−1�, and seen to be popu-
lated separately by the interaction with the two environments

N* =

0



N� +


e



Ne, �4.3�

where Ne=1/ �e�/Te −1�.31

We observe that the oscillator acquires the temperature of
the bath, T*�T, if the interaction with the junction is weak
and 
0 is the dominant contribution to the friction, 
0�
e.
The general case and the opposite limit, where the dynamics
of the junction is dominating, 
e�
0, we proceed to con-
sider.

A. Oscillator heating

When the oscillator is well isolated and the interaction
with the junction dominates, 
e�
0, the oscillator attains,
according to Eq. �4.2�, the effective temperature of the junc-
tion Te, as given by Eq. �2.17�. As expected, in the absence
of a bias voltage across the junction, V=0, the temperature of
the oscillator equals that of the junction irrespective of its
temperature. When the junction is biased, the oscillator is
generally heated except at zero temperature and low volt-
ages, and we first discuss the case of a junction at zero tem-
perature.

At zero junction temperature, T=0, we must distinguish
two voltage regions. If the voltage is smaller than the fre-
quency of the oscillator, V��, the temperature of the oscil-
lator is also zero, T*=0, independent of the voltage as it
follows from Eq. �4.2�. In this regime, the interaction with
the tunneling electrons is unable to excite the oscillator from
its ground state. Heating can only take place beyond the
voltage threshold given by the oscillator frequency. If instead
the voltage is larger than the frequency of the oscillator, V
��, the temperature of the oscillator T* is determined by the
following relation to the voltage

tanh
�

2T* =
�

�V�
. �4.4�

At high voltages, V��, the temperature of the oscillator
approaches half the bias voltage, T*=V /2, in agreement with
the result obtained in a previous study where the temperature
of the junction was assumed to vanish.14

FIG. 1. Voltage dependence of the quantum correction to the
junction conductance Gq. The three curves correspond to the fol-
lowing relations between the junction temperature T and the oscil-
lator frequency: T=0.01 �, T=�, and T=10 �. At high tempera-
tures, T��, the quantum correction is small and shows no
particular voltage dependence �dotted line�. At low temperatures,
T��, two distinct regions can be distinguished. At voltages lower
than the oscillator frequency the quantum correction stays constant,
and at voltages higher than the oscillator frequency, it is inversely
proportional to the voltage.
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The heating of the oscillator, its excess temperature, �T
=T*−T, as a function of the bias, is shown in Fig. 2, both for
the case where the coupling to the junction dominates and
the opposite case of dominating external damping. The effect
of the external damping is shown for moderate to strong
external coupling, 
 /
e=5, 10, 100. Increasing the coupling
to the external heat bath leads to the suppression of the heat-
ing of the oscillator, the additional environment acting as a
heat sink. In the case where the coupling to the junction
dominates, the inset shows that at low temperatures, the os-
cillator is not excited at voltages below the frequency of the
oscillator.

At high voltages, V�� ,T, in the shot noise regime, the
temperature of the oscillator T* can be found from Eq. �4.4�.
Just as in the case of vanishing junction temperature, the
oscillator temperature approaches half the bias voltage, T*

=V /2, at large bias, and these results generalize previous
studies which were limited to zero temperature and high
voltages, V��.14,16

In the quest for using tunnel junctions to measure the
position of a coupled object with the ultimate precision set
by the uncertainty principle,5–8 it is important to take into
account that the measuring, involving a finite voltage, will
invariably heat the oscillator. In this respect, the presence of
the additional heat bath, described by the coupling 
0, is
important. For example, envisioning the oscillator has been
cooled to a temperature T much lower than � and a voltage
has been turned on. In order to obtain an appreciable signal,
the voltage must be larger than �. The oscillator will then in
a time span of the order of 
−1 be heated and attain a tem-
perature for which the average number of quanta in the os-
cillator is

N* =

e

2


�V� − �

�
. �4.5�

Estimating the oscillator temperature, we have T*

�� / ln�
 /
e�. A strong environmental coupling can thus be
beneficial for retaining the oscillator in the ground state.

B. I-V characteristic

In the stationary state, the dc current I�V�, Eq. �3.3�, is
conveniently written in the form

1

e
I�V� = VG0 +

1

2
G̃xx„2VN* + �� − V�N�−V − �� + V�N�+V… .

�4.6�

As before, N* is the occupation number of the oscillator at
the temperature T*. In the stationary state, only the coupling
constant Gxx is effective.

The first term in Eq. �4.6� is the current through the iso-
lated junction, and the remaining term describes the influ-
ence of the oscillator on the current. It is interesting to con-
sider the latter in the limit of vanishing environment
temperature, T=0. At zero temperature, we must distinguish
two voltage regimes. If the voltage is smaller than the fre-
quency of the oscillator, V��, we observed in Sec. IV A
that the oscillator remains in the ground state, N*=0, and the
average current turns out to be equal to that of an isolated
junction, I=eG0V. One observes that the effect of zero point
fluctuations present in the conductance, Eq. �3.4�, is exactly
canceled by the quantum correction, Eq. �3.5�. This lack of
influence of zero point fluctuations is expected since the os-
cillator in its ground state is inert to the tunneling electrons
for such low bias.

If the voltage is larger than the oscillator frequency, V
��, the slope of the I-V characteristic, at T=0, abruptly

increases, I=VG0+ �V−��G̃xx /2.
At arbitrary temperatures, the linear conductance of the

junction, G= I /V, V→0, is given by

1

e2G = G0 + G̃xx
�

T
N��N� + 1� . �4.7�

To derive this formula, we recall that in the limit of vanish-
ing bias, V→0, the oscillator attains the temperature of the
junction, T*=T.

At high temperatures, T�V ,�, the quantum correction to
the current, and, thereby, the nonlinear quantum corrections,
vanish. We obtain the result

1

e
I�V� = V�G0 + Gxxx2�*�, x2�* =

T*

m�0
2 , �4.8�

where x2�* is the mean square of the oscillator coordinate at
temperature T*. This result is to be expected from a classical
oscillator in thermal equilibrium influencing the conductance
of a tunnel junction. The I-V characteristic is in this regime
nonlinear due to the voltage dependence of T*, Eq. �4.2�.

FIG. 2. Heating of the oscillator, its excess temperature, �T
=T*−T, as a function of the bias voltage for the temperature T
=0.1 �, and different ratios of 
e /
, covering from moderate to
strong external coupling. The influence of the external damping
reduces the heating effect. The inset shows the heating with negli-
gible external damping �
e /
=1� as a function of the bias voltage
for different junction temperatures. At junction temperatures that
are low compared to the oscillator frequency, T��, two regions of
voltage dependence can be distinguished with a rapid switch as the
voltage passes the value of the frequency of the oscillator. If the
bias voltage is smaller than the oscillator frequency, V��, the
oscillator temperature T* depends only weakly on the voltage. In
the region where the voltage exceeds the oscillator frequency, V
��, the oscillator temperature approaches V /2.
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V. CURRENT NOISE

In this section, we use the charge projection technique to
develop the description of the statistical properties of the
current of a tunnel junction coupled to a quantum object. The
discussion will be kept quite general before we, in Sec. V A,
specialize to the case of a harmonic oscillator, the nanoelec-
tromechanical model of Sec. II. We shall show how the
charge dynamics, described by the master equation for the
charge specific density matrix, can be used to obtain the
statistical properties of the junction current, such as the noise
power spectrum. The prerequisite for the success of this en-
deavor is that for the considered low transparency tunnel
junction, the charge representation in fact provides the prob-
ability distribution for the charges transferred through the
junction.20,21

A. Current noise in the charge representation

The probability, pn�t�, for n charge transfers in time span
t is according to Eq. �2.8� given by pn�t�=Tr �̂n�t�, where
�̂n�t� is the charge specific density matrix, Eq. �2.7�. The
charge-transfer probability distribution specifies the stochas-
tic process of charge transfers, n�t�. The variance of the
charge fluctuations,

Šn2�t��‹ = n2�t�� − n�t��2 �5.1�

is defined in terms of the moments of the probability distri-
bution of charge transfers

nr�t�� = �
n

nrpn�t�, pn�t� = Tr„�̂n�t�… . �5.2�

To express the statistical properties of the current in terms
of the probabilities for charge transfers, we inherit the sto-
chastic current process, i�t�, through its relation to the charge
transfer process

n�t� = �
0

t

dt�i�t�� . �5.3�

The average current, given by i�t�=dn�t�� /dt, is in accor-
dance with Eq. �3.1�. The variance of the charge fluctuations
are expressed via the current fluctuations according to

Šn2�t��‹ = �
0

t

dt1�
0

t

dt2�i�t1��i�t2�� , �5.4�

where �i�t�= i�t�− i�, and i� is the average dc current. In the
following, we shall consider the stationary state. Stationary
current noise is characterized by the current-current cor-
relator

S��� = �i�t + ���i�t�� . �5.5�

Inserting this expression into Eq. �5.4�, one obtains

Šn2�t��‹ = 2�
0

t

d��t − ��S��� . �5.6�

This expression allows one to relate the charge and current
fluctuations.

Taking time derivatives of Eq. �5.6� gives

dŠn2�t��‹
dt

= 2�
0

t

d�S��� , �5.7�

and

S�t� =
1

2

d2
Šn2�t��‹

dt2 , �5.8�

i.e., the current-current correlator equals the second deriva-
tive of the variance of charge transfers. This relation allows
one to calculate the current-current correlator, S�t�, by evalu-
ating the charge fluctuations using the master equation for
the charge specific density matrix.

Eventually, interest is in the current noise power spec-
trum, S�, given by

S� = 4�
0

�

dt cos��t�S�t� , �5.9�

where � is the frequency at which the noise is measured.32

We observe that the zero frequency noise power, accord-
ing to Eqs. �5.7� and �5.9�, can be calculated from the general
relation

S�=0 = 2�dŠn2�t��‹
dt

�
t→�

, �5.10�

i.e., as the rate of change of the charge variance at large
times.

In the present approach, it is convenient to calculate di-
rectly the current-current correlator, as is done in Sec. V B
and Appendix B. Only at the end, we then transform to ob-
tain the noise power spectrum. However, we note that the
approach is equivalent to employing the widely used Mac-
Donald formula.33

B. Current-current correlator

In this section, we show how the master equation for the
charge specific density matrix can be used to obtain the noise
power spectrum of the current. A convenient feature of the
method is that it allows one directly to obtain the time de-
pendence of the current noise.

The probability distribution of charge transfers, pn�t�, is
obtained from the master equation for the charge specific
density matrix given the initial condition corresponding to a
state of definite initial charge

�̂n�t = 0� = �n,0�̂s �5.11�

at the time when the charge counting starts, the initial time
t=0. We are interested in the noise properties of the station-
ary state and, therefore, the stationary density matrix of the
oscillator, the thermal state �̂s, enters the initial condition.

In the following, we shall treat the charge specific dynam-
ics in the Markovian approximation. The charge specific den-
sity matrix, �̂n�t�, is obtained as the solution of the master
equation, Eq. �2.9�. For notational convenience, we write the
charge specific master equation in the form
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d�̂n

dt
= K��̂n� + D��̂n�� + J��̂n�� , �5.12�

where K is the superoperator introduced in Eq. �2.21�. Al-
though the �̂n’s are time dependent, the unconditional density
matrix, �̂=�n�̂n�t�, remains equal to the thermal state, �̂s, by
virtue of its stationarity property, K��̂s�=0. Our goal is now
to evaluate the variance of the charge transfers and, thereby,
the current-current correlator with the help of Eq. �5.8�.

The rate of change of the first charge moment, i.e., the dc
current according to Eq. �3.1�, becomes in the stationary
state

1

e
I = − Tr�J��̂s�� , �5.13�

following from Eq. �3.2� and the stationarity property of the
density matrix for the coupled quantum object, �̂�t�= �̂s. The
dc current was calculated in Sec. IV B.

It readily follows from Eq. �5.12� that the time derivative
of the variance of charge transfers, Šn2�t��‹, can be pre-
sented in the form

d

dt
Šn2�t��‹ = 2 Tr�D��̂s�� − 2 Tr„J��N̂�t��… , �5.14�

where �N̂�t� denotes the traceless matrix

�N̂�t� = �
n

„n − n�t��…�̂n�t� . �5.15�

We observe that only the truncated density matrix, �N̂�t�, is
needed to calculate the noise.

Comparing Eqs. �5.14� and �5.7�, one concludes that the
current-current correlator has a � function like singularity at
the initial time, t=0, where the charge counting starts. In-
deed, the r.h.s. of Eq. �5.14� has a finite limit as t→0 given
by the first term, since the second term initially vanishes,

�N̂�t=0�=0. For this result to be compatible with Eqs. �5.7�
and �5.8�, the current-current correlator, S�t�, must have the
following structure:

S�t� = S1�t� + S2�t� , �5.16�

the sum of a singular contribution,

S1�t� = 2 Tr�D��̂s����t� , �5.17�

where ��t� denotes a function peaked at t=0 and normalized
according to the condition �0

�dt��t�= 1
2 , and a regular part

given by

S2�t� = − Tr„J��Î�t��… , �5.18�

where �Î denotes the matrix, �Î= �d /dt��N̂. The finite time
correlation of the current described by the regular part S2�t�
is solely due to the interaction with the quantum object, as

follows from �Î�t� being traceless. We note here that the
�-function singularity, which would provide noise at arbi-
trary high frequencies, is an artifact of the Markovian ap-
proximation.

The task of calculating the time-dependent current noise
is thus reduced to obtaining the time derivative of the charge-

averaged density matrix, �N̂�t�, given in Eq. �5.15�. From the
master equation for the charge specific density matrix, one

obtains the following equation for �Î�t�:

d

dt
�Î = K��Î� , �5.19�

and the initial condition

��Î�t=0 = − �J��̂s� . �5.20�

Here, the superoperator �J acts on its argument matrix ac-
cording to

�J�X� = J�X� − X�Tr J�X�� . �5.21�

We note, that acting on a matrix X with unit trace, Tr X=1,
the superoperator �J returns a traceless matrix. The dynam-

ics of the charge averaged quantity �Î is thus identical to that
of the charge unconditional density matrix of the oscillator.

The formal solution to Eq. �5.19� can be written in terms
of the time evolution superoperator for the charge uncondi-
tional density matrix of the oscillator

Ut = eKt �5.22�

as

�Î�t� = − Utˆ�J��̂s�‰ �5.23�

and the regular part of the current-current correlator can be
written on the form

S2�t� = Tr��J�Utˆ�J��̂s�‰�� . �5.24�

Here, J in Eq. �5.18� has been replaced for �J in Eq. �5.18�;
the replacement is valid under the trace operation since

Tr �Î�t�=0. Combined with the singular part in Eq. �5.16�,
this gives the general expression in the Markovian approxi-
mation for the current-current correlator of a tunnel junction
interacting with a quantum system in its stationary state. The
current noise correlator has thus conveniently been written
with the help of the Markovian superoperators K, J, and D.

In Sec. VI, we shall turn to calculating the noise proper-
ties for the case of the nanoelectromechanical device de-
scribed in Sec. II.

VI. NOISE POWER SPECTRUM

We now turn to calculate the current-current correlator of
the tunnel junction coupled to the harmonic oscillator as de-
scribed by the model of Sec. II. Taking advantage of the
general analysis in the Markovian approximation presented
above in Sec. V B, the current-current correlator can be writ-
ten in the following form:

S�t� = S1�t� + Sx�t� + Sx2�t� . �6.1�

Here S1 is the singular part defined in Eq. �5.17� and speci-
fied in Eq. �B11�. The regular contribution is given by sec-
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ond and third terms on the right in Eq. �6.1�, as obtained by
inserting the expression for the drift superoperator J, Eq.
�A11�, into the expression for the regular contribution, Eq.
�5.24�, giving

Sx�t� = 2VGxxJ�t� + gx
�

m
pJ�t� �6.2�

and

Sx2�t� = VGxxxJ
2�t� , �6.3�

where the time dependent quantities are given by

XJ�t� = Tr�X̂Utˆ�J��̂s�‰� , �6.4�

with X̂= x̂ , p̂ , x̂2, respectively. It is readily checked that the
latter quantities evolve in time in accordance with their cor-
responding classical equations of motion for a damped oscil-
lator with initial conditions given by

XJ�0� = Tr�X̂�J��̂s��, X̂ = x̂, p̂, x̂2, p̂2. �6.5�

The calculation of these quantities are presented in Appendix
B, giving, according to Eqs. �6.2� and �6.3�, an explicit ex-
pression for the current-current correlator S�t� and, thereby,
according to Eq. �5.9�, for the noise power S�. Fourier trans-
forming the current-current correlator gives, according to
Eqs. �B9�–�B11�, peaks in the noise power as well as a con-
stant upshift in the noise floor, the noise pedestal. The noise
power spectrum is displayed in the inset in Fig. 3. As ex-
pected, there is a pronounced peak at the frequency of the
oscillator, and in addition, two side peaks each shifted by the
frequency of the oscillator, one at zero frequency and one at
twice the oscillator frequency.

Below, we analyze the noise in two frequency regions: �i�
low frequency noise at frequencies ��
; and �ii� noise in
the vicinity of the oscillator resonance frequency ���0 and
��2�0. We examine the voltage and temperature features of
the noise power.

A. Low-frequency noise

Let us consider low-frequency noise, at frequencies of the
order of the damping rate and lower, ��
. Then the noise
power spectrum is given by the Fourier transform of the
correlation functions S1�t� and Sx2�t� in Eqs. �B10� and
�B11�, respectively, giving

S� = S�0� + S�1� + S�
�2�, �6.6�

where

S�0� = 2G0V coth
V

2T
�6.7�

is the low frequency, ��V, white Nyquist or Schottky noise
of the isolated junction, and S�1� is the correction to the white
noise due to the interaction with the oscillator

S�1� = 2G̃xx�„N*�Ne + 1� + Ne�N* + 1�… . �6.8�

Together, these two contributions form the noise pedestal,
S�=S�0�+S�1�. The frequency-dependent part, S�

�2�, becomes
at low frequencies

S�
�2� = G̃xx

4

e

�2 + 4
2

V

�
„2VN*2 + �V − �V��2N* + 1�… .

�6.9�

The low-frequency noise is displayed explicitly proportional
to the coupling to the electronic tunnel junction environment

as we have taken advantage of the relation 
e= G̃xx�. The
width of the low-frequency peak is twice the damping rate
2
. At zero bias, V=0, where S�

�2�=0 and the oscillator and
effective junction temperatures equal the environment tem-
perature, leaving N*=Ne=N�, one recovers the fluctuation-
dissipation relation for the noise power, S�=0=4TG, where G
is the linear conductance of the junction in the presence of
the interaction with the oscillator, i.e., given by Eq. �4.7�.

In the following, we discuss the features of the low-
frequency excess noise, the noise due to the coupling to the
oscillator, and in particular the noise peak height at zero
frequency, in the limits of temperatures high and low com-
pared to the oscillator frequency.

1. Low-temperature noise

First, we consider the low-frequency noise at low tem-
peratures, T��. As expected, no excess noise is according
to Eq. �6.6� generated by the oscillator at zero temperature
and voltages below the oscillator frequency, �V���, where
the oscillator cannot be excited from its ground state. Indeed,
in the region of low temperatures, T��, and low voltages,
V��, the oscillator is nonresponsive and the excess noise,
S�1� and S�

�2�, vanishes exponentially in � /T below the acti-
vation energy �.

FIG. 3. The excess noise power spectrum, �S�=S�−S�, due to
an oscillator coupled to an asymmetric junction is shown by the full
line for the parameter values V /�=10, T /�=0.01, 
0 /�0=0.05,

and conductances G0=1, G̃x=0.07, g̃x=0.05, and G̃xx=0.005 giving
for the electronic coupling constant 
e /�0=0.005. The dotted line
shows the contribution symmetric in the voltage, S�

+, and the
dashed-dotted line shows the contribution asymmetric in the volt-
age, S�

−. The inset shows the noise power spectrum for the high
temperature T=100 �, but otherwise the same set of parameters, a
regime where the peaks at zero and twice the oscillator frequency
are also visible.
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Close to the noise onset threshold, �V���, in the narrow
region, ��V�−���T, the peak height relative to the pedestal
rises linearly with temperature

S�=0
�2� =


e



TG̃xx. �6.10�

At voltages much higher than threshold, �V���, the peak
height relative to the pedestal becomes

S�=0
�2� = 2

G̃xx
2



V2�1

2
+


e




�V�
2�

+ �
e




V

2�
�2� . �6.11�

The zero frequency noise is proportional to V4 if the effective
coupling to the electronic environment is appreciable, i.e.,
the ratio 
e /
 is not too small. In the high voltage limit, the
oscillator is in the classical regime, but with the oscillator
temperature given by T*= �V� /2 as discussed in Sec. IV.

2. High-temperature noise

At temperatures higher than the oscillator frequency, T
��, we can distinguish two voltage regimes. At low volt-
ages, V�T, the peak height scales quadratically in both the
temperature and voltage

S�=0
�2� =

2



G̃xx

2 V2� T

�
�2

, �6.12�

and we recall that the oscillator temperature equals the junc-
tion temperature, T*=T.

At high voltages, V�T, the peak height becomes

S�=0
�2� =

2



V2G̃xx

2 �
0




T

�
+


e




�V�
2�

�2

. �6.13�

At high temperatures, the oscillator is in the classical re-
gime and the average occupation number depends linearly on
the oscillator temperature. The peak height, proportional to
the fluctuations in the oscillator position squared, is propor-
tional to the square of the average occupation number and is,
therefore, proportional to the square of the oscillator tem-
perature.

B. High-frequency noise

Next, we investigate the properties of the peaks in the
noise power spectrum occurring at finite frequencies, at the
oscillator frequency, ���0, and its harmonic, ��2�0. The
Markovian approximation allows us to consider the high-
frequency noise only under the condition, Eq. �2.24�, that the
frequency is much smaller than the maximum value of the
voltage or the temperature, and for frequencies in question,
this means that max�T ,V��� for consistency. The inset in
Fig. 3 shows the frequency dependence of the noise power
spectrum, Eq. �5.9�, in the case of high temperatures, T��.
The noise power displays three peaks. The noise power spec-
trum consists at ���0 of a Lorentzian part, as given by the
Fourier transform of Eq. �B9�, with a width given by the
damping rate 
 and an asymmetric part specified by Eq. �B9�
and present only for an asymmetric junction. At ��2�0, the
noise power spectrum is according to Eq. �B10�, a Lorentz-

ian with a width given by twice the damping rate 2
. We
now discuss these peak heights at high and low temperatures.

1. High-frequency noise at high temperatures

At high temperatures, T�V��, the height of the peak at
the oscillator frequency relative to the pedestal depends lin-
early on temperature

S�=�0

�2� = 2
T



�G̃x

24V2

�
− g̃x

2�� �6.14�

and is determined by the conductances G̃x and g̃x.
At double the oscillator frequency, the peak height de-

pends quadratically on temperature

S�=2�0

�2� =
1



G̃xx

2 V2T2

�2 �6.15�

and just as the peak at zero frequency determined by the

conductance G̃xx. We note that its height is half that of the
peak at zero frequency, Eq. �6.12�.

The expressions for the excess noise, Eqs. �6.14� and
�6.15�, are in fact also valid at low voltage. Contrary to the
peaks at �=0 and �=2�0, which vanish in the absence of
voltage, the excess noise power at ���0 is, therefore, finite
for an asymmetric junction even at zero voltage and, accord-
ing to Eq. �6.14�, in fact negative. An asymmetric junction
with a Q factor much larger than T /� can thus at zero volt-
age lead to a suppression of the noise power below that of an
isolated junction.

2. High-frequency noise at low temperatures

At high voltages and low temperatures, V���T, the
peak height at the oscillator frequency becomes

S�=�0

�2� =
2V



�2G̃x

2V�1 +

e




�V�
�
� − g̃x

2��1 −

e

2

�� ,

�6.16�

and the peak height at twice the oscillator frequency be-
comes

S�=2�0

�2� =
1



G̃xx

2 V2
e




�V�
2�

�
e




�V�
2�

+ 1� . �6.17�

The noise can be large due to the high oscillator temperature.

3. Noise asymmetry

A striking feature of the finite frequency noise is the con-
tribution proportional to gxGx. It is odd relative to the sign of
the voltage and does not depend on the state of the oscillator
	see Eq. �B10�
. This term, which is only present for an
asymmetric junction, gx�0, does not contribute to the peak
height at the oscillator frequency, but provides the asymme-
try of the peak in the frequency region around the oscillator
frequency, �=�0. Separating the even and odd voltage con-
tributions in the noise power, S�

± = 1
2 (S��V�±S��−V�), the odd

contribution becomes
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S�
− = g̃xG̃x„F�0

��� − F−�0
���…

� �V2 coth
V

2T
+ �V�2Ne + 1� −

�

2
�V� �6.18�

with the frequency dependence given by the function

F�0
��� =

2��0 − ��

2 + �� − �0�2 .

The noise power spectrum is displayed by the full line in
Fig. 3 for the temperature T=0.01�, where only the peak at
the oscillator frequency is appreciable. The even part in volt-
age of the noise power, S�

+, displayed by the dotted line, is a
symmetric function of the frequency relative to the fre-
quency of the oscillator, and the odd part in the voltage, S�

−,
displayed by the dashed-dotted line, is an antisymmetric
function of the frequency relative to the oscillator frequency.
If the voltage is reversed, the frequency dependence of the
asymmetric part is mirrored around the frequency �=�0.

In contrast to an isolated junction, the noise power of the
coupled junction-oscillator system shows asymmetry in the
voltage. This behavior is a novel feature that arises when an
asymmetric junction is coupled to an additional degree of
freedom.

VII. CONCLUSIONS

We have applied the charge projection technique to obtain
the charge specific dynamics of a continuous quantum degree
of freedom coupled to a tunnel junction. The master equation
for the charge specific density matrix has been derived, de-
scribing the charge conditioned dynamics of the coupled ob-
ject as well as the charge transfer statistics of the junction.
The method allows evaluating at any moment in time the
joint probability distribution describing the quantum state of
the object and the number of charges transferred through the
junction.

The approach, generally valid for any quantum object
coupled to the junction, has been applied to the generic case
of a nanoelectromechanical system, a harmonic oscillator
coupled to the charge dynamics of a tunnel junction. In this
regard, it is important that the method allows inclusion of a
thermal environment in addition to the electronic environ-
ment of the tunnel junction since nanoresonators are invari-
ably coupled to a substrate. The oscillator dynamics, de-
scribed by the reduced density matrix for the harmonic
oscillator, the charge specific density matrix traced with re-
spect to the charge index, has upon a renormalization been
shown to satisfy a master equation of the generic form valid
for coupling to a heat bath. Even though the electronic envi-
ronment is in a nonequilibrium state, the master equation is
of the Caldeira-Leggett type, consisting of a damping and a
fluctuation term. Though the coefficients of the terms are not
related by the equilibrium fluctuation-dissipation relation, the
fluctuation term originating from the coupling to the junction
is of the steady-state fluctuation-dissipation type, containing
the current noise power spectral function of the isolated junc-
tion taken at the frequency of the oscillator. The diffusion
parameter is thus determined by all energy scales of the

problem including temperature, voltage, and oscillator fre-
quency. The presence of an environment in a nonequilibrium
state thus leads to features which are absent when the oscil-
lator is only coupled to a heat bath.

The Markovian master equation for the charge specific
density matrix has been used to calculate the current. In gen-
eral, the average junction current consists of an Ohmic term,
however, with a conductance modified due to the coupling to
the oscillator dynamics, a quantum correction, and a dissipa-
tionless ac current only present for an asymmetric junction
and proportional to the instantaneous velocity of the oscilla-
tor. The latter term does not depend on voltage explicitly and
is an example of an effect similar to quantum pumping.

The stationary state of the oscillator has been shown to be
a thermal state even though the environment is in a nonequi-
librium state. Therefore, the only effect of the bias is heating
of the junction. Thus, the stationary oscillator state is a ther-
mal equilibrium state, though in equilibrium at a higher tem-
perature than that of the environment if the junction is in a
nonequilibrium state of finite voltage. This is a back-action
effect of the measuring device, the tunnel junction, on the
oscillator. At zero temperature and voltages below the oscil-
lator frequency, the oscillator remains, to lowest order in the
tunneling, in its ground state, and the dc current equals that
of an isolated junction. The coupling of the oscillator to the
additional heat bath, described by the coupling constant 
0,
is shown to be beneficial for avoiding heating of the oscilla-
tor due to a finite voltage. This is of importance for applica-
tion of quantum point contacts and tunnel junctions to posi-
tion measurements aiming at a precision reaching the
quantum limit.

The charge projection method has been used to infer the
statistical properties of the junction current from the charge
probability distribution. For example, the noise power spec-
trum is specified in terms of the variance of the charge dis-
tribution. The master equation for the charge specific density
matrix, therefore, can be used to obtain the current-current
correlator directly, and this has been done explicitly in the
Markovian approximation. The excess noise power spectrum
due to the coupling to the oscillator consists of a main peak
located at the oscillator frequency and two smaller peaks
located at zero frequency and twice the oscillator frequency,
respectively. The peaks at zero frequency and at twice the
oscillator frequency have heights proportional to the cou-
pling constant Gxx squared, whereas the height of the peak at
the oscillator frequency is proportional to the coupling con-
stants Gx and gx squared. The voltage and temperature de-
pendencies of the peaks has been examined in detail.

For an asymmetric junction, the noise power spectrum
contains a term with the striking feature of being an odd
function of the voltage and independent of the state of the
oscillator. Contrary to the case of a symmetric junction, the
coupling of an oscillator to an asymmetric junction with tem-
perature higher than the oscillator frequency results, even at
zero voltage, in a suppression of the noise power at the os-
cillator frequency, the excess noise power being negative.
For an asymmetric junction, the noise power at ���0 can
thus be suppressed below the Nyquist level of the isolated
junction.

The Markovian approximation employed to calculate the
noise power cannot be validated at arbitrary frequencies
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compared to temperature or voltage. Not surprisingly, naive
attempts to extend expressions beyond the Markovian appli-
cability range, Eq. �2.24�, leads to unphysical results for the
noise. For example, at zero temperature and voltages below
the oscillator frequency, a spurious noise power arises even
for the oscillator in the ground state.
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APPENDIX A: CHARGE SPECIFIC MASTER EQUATION

In a previous paper, we introduced the charge representa-
tion for a general many-body system.20 The approach is
based on the use of charge projectors previously introduced
in the context of counting statistics.21 In the charge represen-
tation, the dynamics of a quantum object coupled to a many-
body system is described by the charge specific density ma-
trix

�̂n�t� = Trel„Pn��t�… , �A1�

where ��t� is the full density matrix for a many-body system
and a quantum object coupled to it. Trel denotes the trace
with respect to the degrees of freedom of the many-body
system, which, in the following, is assumed to be the con-
duction electrons of a tunnel junction. The charge projection
operators Pn, which project the state of the system onto its
component for which exactly n electrons are in a specified
region of space, have been discussed in detail earlier.20,21

There, we discussed the circumstances under which the
charge index n can be interpreted as the number of charges
transferred through the junction, and the charge projector
method, thus, provides a basis for charge counting statistics
in the cases where the distribution function for transferred
charge is a relevant concept. In this case, the charge specific
density matrix allows the evaluation, at any moment in time,
of the joint probability of the quantum state of the object and
the number of charges transferred through the junction. In
the previous paper, the non-Markovian master equation for
the charge specific density matrix for an arbitrary quantum
object coupled to a low transparency tunnel junction was
derived.20 A non-Markovian master equation is less tractable
for calculational purposes and the Markovian approximation
is employed in the present paper. This is quite sufficient for
calculations of average properties, such as the average cur-
rent through the tunnel junction, where only the long time
behavior needs to be addressed. However, when calculating
the current noise of the junction, the Markovian approxima-
tion limits the description to the low-frequency noise as dis-
cussed in Sec. VI.

The Markovian charge specific master equation for a
quantum object coupled to the junction was in general shown
to have the form20

�̇̂n�t� =
1

i�
	Ĥ0, �̂n�t�
 + 	��̂n�t�� + D��̂n��t�� + J��̂n��t�� ,

�A2�

where �̂n� and �̂n� denote the “discrete derivatives” introduced
in Eqs. �2.10� and �2.11�, and the Lindblad-like superopera-
tor, 	��̂n�, has the form

	��̂� =
1

���lr f l�1 − fr��	T̂lr
† 
�̂T̂lr − T̂lr	T̂lr

† 
�̂�

+ �
lr

fr�1 − f l��T̂lr�̂	T̂lr
† 
 − �̂	T̂lr

† 
T̂lr�� + H.c.,

�A3�

where here, and in the following, H.c. represents the Hermit-
ian conjugate term with respect to the variable of the quan-
tum object. The bracket denotes the operation

	T̂lr
 =
1

�
�

0

�

d�ei��+eV��/�e−iĤ0�/�T̂lre
iĤ0�/�, �A4�

where T̂lr is the oscillator perturbed tunneling amplitude, Eq.
�2.4�, and �=�l−�r, and f l and fr are the single particle en-
ergy distribution functions for the electrodes, which in the
following are assumed in equilibrium, described by the junc-
tion temperature T. In this paper, we restrict ourselves to the
case where the junction is biased by a constant voltage U,
denoting V=eU, where e is the electron charge. The dagger
indicates Hermitian conjugation of operators of the coupled
quantum object.

The drift superoperator is

J�R̂� =
1

�
�
lr

Flr
a

2
�	T̂lr

† 
R̂T̂lr + T̂lrR̂	T̂lr
† 
 + H.c.�

+
Flr

s

2
�	T̂lr

† 
R̂T̂lr − T̂lrR̂	T̂lr
† 
 + H.c.� , �A5�

and it has been written in terms of the symmetric and anti-
symmetric combinations of the distribution functions

Flr
s = f l + fr − 2f lfr, Flr

a = f l − fr.

The diffusion superoperator can be obtained from the drift
superoperator according to

D�R̂� =
1

2
Js↔a�R̂� , �A6�

where the subscript indicates that symmetric and antisym-
metric combinations of the distribution functions should be
interchanged, Flr

s ↔Flr
a .

The bracket notation is specified in Eq. �A4�, where, in
general, H0 denotes the Hamiltonian for the isolated arbitrary
quantum object. In the following, we consider an oscillator
coupled to the junction, and H0 represents the isolated har-
monic oscillator.

As expected, the coupling of the oscillator to the tunnel
junction leads to a renormalization of its frequency, �B

2

→�0
2. The renormalization originates technically in the term

present in the Lindblad-like operator, 	��̂�, which is qua-
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dratic in the oscillator coordinate and of commutator form
with the charge specific density matrix, and gives for the
renormalized frequency

�0
2 = �B

2 −
2

m
�
lr

Flr
a �P+ + P−��wlr�2,

where

P± = R
1

� − V � ��0 + i0
. �A7�

For the considered interaction, the renormalization can be
simply handled by changing in Eq. �A4� from the evolution
by the bare oscillator Hamiltonian to the oscillator Hamil-
tonian with the renormalized frequency, the shift being com-
pensated by subtracting an identical counter term. The above
frequency shift is then identified by the counter term having
to cancel the quadratic oscillator term of commutator form
generated by the 	��̂� part in Eq. �A2�. Substituting, in �A4�,
the renormalized Hamiltonian, Eq. �2.13�, for the bare oscil-

lator Hamiltonian, Ĥ0, all quantities are expressed in terms of
the physically observed oscillator frequency �0. In particular,
the bracket becomes

	T̂lr
 = ���0vlr + ��+ + �−�
wlr

2
x̂ − i��+ − �−�

wlr

2m�0
p̂�

+ i�P0vlr + �P+ + P−�
wlr

2
x̂ − i�P+ − P−�

wlr

2m�0
p̂� ,

�A8�

where

�0 = ��� − V�, �± = ��� − V � ��0� , �A9�

and

P0 = R
1

� − V + i0
. �A10�

In the following, the notation �=��0 for the characteristic
oscillator energy is introduced.

Evaluating the diffusion and drift operators for the case of
position coupling of the oscillator to the junction, Eq. �2.4�,
we obtain for the drift superoperator

J�R̂� = VG�R̂� +
�

m�
Gxx�VI�x̂R̂p̂� + Gx

i�

2m�
�V	p̂,R̂


+ gx
�

2m
�p̂,R̂� + gx

1

2i
�V coth

V

2T
+ SV�	x̂,R̂
 ,

�A11�

where the conductance superoperator is defined as

G�R̂� � G0R̂ + Gx�x̂,R̂� + Gxxx̂R̂x̂ �A12�

and

�V =
V + �

2
coth

V + �

2T
−

V − �

2
coth

V − �

2T
�A13�

and

SV =
V + �

2
coth

V + �

2T
+

V − �

2
coth

V − �

2T
, �A14�

the latter being proportional to the current noise power spec-
trum at the frequency of the oscillator. For the diffusion su-
peroperator, we obtain

D�R̂� =
V

2
coth

V

2T
G�R̂� +

Gxx

2
�BVx̂R̂x̂ +

�

m
I�x̂R̂p̂��

+
�A

m�
R�p̂R̂x̂� +

Gx

4
�BV�x̂,R̂� +

i�

m
	p̂,R̂
�

+ gx� V

2i
	x̂,R̂
 +

��V

4m�
�p̂,R̂�� , �A15�

where

BV = SV − V coth
V

2T
, �A16�

and we have introduced the notation

R�p̂R̂x̂� =
1

2
��p̂R̂x̂� + �p̂R̂x̂�†� �A17�

and

I�p̂R̂x̂� =
1

2i
��p̂R̂x̂� − �p̂R̂x̂�†� �A18�

in �A11� and �A15�.
The parameter A in Eq. �A15� is given by

AV =
�2

2m�
�
lr

�wlr�2Flr
s �P+ − P−� �A19�

and was encountered and discussed in connection with the
unconditional master equation, Eq. �2.12�. Technically, it
originates in our model from the principal value of integrals,
i.e., from virtual processes where electronic states far from
the Fermi surface are involved. Estimating its magnitude un-
der the assumption that the couplings �wlr�2 are constants,
one obtains with logarithmic accuracy

A �
2�2Gxx

�m
ln

EF

max�V,T,��
. �A20�

In the course of evaluating the diffusion and drift opera-
tors, combinations like I /R�vlr

* wlr� appear together with
principal value terms. The phase of vlr

* wlr will in general be
a random function of the electron reservoir quantum num-
bers l and r. Summing over these quantum numbers, where
the principal value term does not provide any restriction of
the energy interval, as it happens in the case of terms pro-
portional to delta functions, they will tend to average to zero.
Therefore, in the following, we shall neglect such terms.34

APPENDIX B: NOISE IN MARKOVIAN
APPROXIMATION

In this appendix, we evaluate in the Markovian approxi-
mation the current-current correlator of the tunnel junction
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for the case of a harmonic oscillator coupled to the junction.
The task has been reduced to evaluating the expressions in
Eqs. �6.2� and �6.3�, i.e., quantities of the form Eq. �6.4�
where the involved superoperator is the evolution operator
for the charge unconditional density matrix given in Eq.
�2.21�.

It immediately follows from the master equation, Eq.

�2.21�, that quantities like X�t�=Tr(X̂�̂�t�), where X̂ can de-
note x̂, p̂, x̂2, and p̂2, and �̂ is an arbitrarily normalized solu-
tion to the master equation, satisfy the corresponding classi-
cal equations of motion for a damped oscillator. The
variables entering Eq. �6.4�, therefore, can be expressed in
terms of their initial values at time t=0. Restricting our-
selves, for simplicity, to the case of weak damping, 
��0,
they have the form corresponding to that of an underdamped
classical oscillator

xJ�t� = xJ�0�e−
t cos �0t +
pJ�0�
m�0

e−
t sin �0t �B1�

and

pJ�t� = − m�0xJ�0�e−
t sin �0t + pJ�0�e−
t cos �0t �B2�

and

xJ
2�t� = e−2
txJ

2�0�cos2 �0t +
pJ

2�0�
m2�0

2e−2
t sin2 �0t

+ e−2
t �x,p�J�0�
2m�0

sin 2�0t . �B3�

The initial values in these equations are found from Eq. �6.5�
to be

xJ�0� = Gx� �2

m�
��V�2N* + 1� −

1

2
�V� , �B4�

pJ�0�
m

= gx
�

2
���2N* + 1� − �V coth

V

2T
+ SV�� , �B5�

pJ
2�0�
2m

+
m�0

2xJ
2�0�

2
= G̃xx��VN*2 + ��V − �V��N* +

1

2
�� ,

�B6�

m�0
2xJ

2�0�
2

−
pJ

2�0�
2m

= G̃xx�VN*�N* + 1� , �B7�

�x,p�J�0� = 0. �B8�

Substituting these initial values into equations Eqs.
�B1�–�B3�, we obtain, using Eqs. �6.2� and �6.3�, the expres-
sions in Eq. �6.1� for the regular part of the current-current
correlator

Sx�t� = G̃x
2e−
t cos �0tV„2V�2N* + 1� − �V…

− g̃x
2e−
t cos �0t�1

2
�V coth

V

2T
+ �2�Ne − N*��

− g̃xG̃xe
−
t sin �0t

��V2 coth
V

2T
+ �V�2Ne + 1� −

1

2
��V� �B9�

and

Sx2�t� =
1

2
G̃xx

2 e−2
tV�2VN*2 + �V − �V��2N* + 1��

+ G̃xx
2 e−2
tV2N*�N* + 1�cos 2�0t . �B10�

Evaluating in Eq. �5.17�, the trace of the diffusion superop-
erator in the stationary state of the oscillator, D��̂s�, we ob-
tain, according to Eq. �A15�, for the singular part of the noise
correlator,

S1�t� = 2��t��G0
V

2
coth

V

2T
+ G̃xx

�

2
�N*�Ne + 1� + Ne

��N* + 1��� . �B11�

We observe that as to be expected, the Markovian approxi-
mation for the dynamics of the charge specific density matrix
only captures the low-frequency noise, ��max�T /� ,V /��.
Therefore, in Sec. VI, we shall only discuss this limit.35
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