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We present a theoretical analysis of several aspects of nonequilibrium cotunneling through a strong
Coulomb-blockaded quantum dot �QD� subject to a finite magnetic field in the weak coupling limit. We carry
this out by developing a generic quantum Heisenberg-Langevin equation approach leading to a set of Bloch
dynamical equations which describe the nonequilibrium cotunneling in a convenient and compact way. These
equations describe the time evolution of the spin variables of the QD explicitly in terms of the response and
correlation functions of the free reservoir variables. This scheme not only provides analytical expressions for
the relaxation and decoherence of the localized spin induced by cotunneling, but it also facilitates evaluations
of the nonequilibrium magnetization, the charge current, and the spin current at arbitrary bias-voltage, mag-
netic field, and temperature. We find that all cotunneling events produce decoherence, but relaxation stems only
from inelastic spin-flip cotunneling processes. Moreover, our specific calculations show that cotunneling pro-
cesses involving electron transfer �both spin-flip and non-spin-flip� contribute to charge current, while spin-flip
cotunneling processes are required to produce a net spin current in the asymmetric coupling case. We also point
out that under the influence of a nonzero magnetic field, spin-flip cotunneling is an energy-consuming process
requiring a sufficiently strong external bias-voltage for activation, explaining the behavior of differential
conductance at low temperature: in particular, the splitting of the zero-bias anomaly in the charge current and
a broad zero-magnitude “window” of differential conductance for the spin current near zero-bias-voltage.
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I. INTRODUCTION

Recent advances in probing and manipulating electronic
spin in semiconductor quantum dots and other nanostructures
hold the promise of new applications relating to quantum
computation and quantum information processing. A single
electronic spin not only can be used as an elementary quan-
tum memory unit, i.e., the qubit, due to its relatively long
relaxation time in semiconductors, but it is also expected to
be useful as an element of calculation in the context of quan-
tum computing algorithms or quantum information transport
processing, which depend essentially on its temporal persis-
tence of quantum interference.1

This expectation provides strong motivation to develop a
full understanding of the coherent evolution dynamics of a
single spin in semiconductors. Actually, much effort has been
made on this matter from both theoretical and experimental
points of view. In particular, for a single quantum dot �QD�,
it has been predicted that measurements of the tunneling cur-
rent between two leads via this QD may be an appropriate
experimental tool to extract information about the orientation
and dynamics of a single spin localized inside the QD.2 In-
deed, recent scanning tunneling experiments have observed
modulation of the tunneling current through a single mol-

ecule with a spin subject to a constant magnetic field at the
Larmor frequency, which is the characteristic dynamical
�precession� frequency of a single spin under influence of
magnetic field, with a corresponding peak in its noise power
spectrum.3,4 This feature has been examined theoretically on
the basis of two different weak tunneling models in the
strong Coulomb blockade regime: �a� sequential tunneling
using a simple quantum rate equation approach,5 and �b� the
two-channel Kondo Hamiltonian using the nonequilibrium
Green’s function formalism jointly with the Majorana-
fermion representation.6

However, from a fundamental quantum mechanical point
of view, any quantum measurement will inevitably introduce
some disturbances into the measured system and conse-
quently induce decoherence in the system variable conjugate
to the one being measured. Therefore, the information con-
cerning spin dynamics extracted from a tunneling measure-
ment is expected to involve a reaction signature of the tun-
neling upon the coherent evolution of the single spin. It is
therefore crucial to theoretically account for the tunneling-
measurement-induced spin relaxation and decoherence be-
haviors as functions of temperature and bias-voltage applied
between the two leads; so as to provide a better understand-
ing of the information obtained from measurement, and to
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give useful insight on how to raise measurement efficiency.
The earlier papers cited above have concentrated on inter-

pretation of the peak in the current noise spectrum, but a
systematic investigation of the nonequilibrium relaxation and
decoherence effects, as far as we know, is still lacking. It is
the main purpose of this paper to perform these investiga-
tions. In treating the open quantum system at hand, we will
employ the quantum Heisenberg-Langevin equation ap-
proach, to establish a set of quantum Bloch equations �i.e.,
equations of motion for the reduced density matrix� for a
two-level system �a single spin in the QD� tunnel-coupled to
two normal leads in a fully microscopic way, and then pro-
ceed to study the dynamics of a single spin qubit in an am-
bient magnetic field under nonequilibrium transport condi-
tions.

As mentioned above, two different tunneling mechanisms
have been utilized to describe the quantum measurement
process. If the chemical potentials of the two leads are nearly
matched with the energy level of the sandwiched spin, the
resonance condition is satisfied and the lowest-order tunnel-
ing, i.e., sequential tunneling, is observed in the transport
process. However, it is quite likely that the chemical poten-
tials are probably further from the resonant point in actual
experiments. In this case, the lowest-order tunneling of an
electron into the QD is largely suppressed, but at very low
temperature, a higher-order tunneling mechanism known as
inelastic cotunneling dominates the transport in the strong
Coulomb blockade regime; in this mechanism an electron
tunnels from the left lead to a virtual state in the dot, and
then another electron tunnels from the dot to the right lead
without changing the charge inside the QD. This is the tun-
neling mechanism that gives rise to the Kondo effect in QD
tunneling. In fact, an exact mapping has been established
between such cotunneling and the anisotropic Kondo prob-
lem by analyzing and comparing their respective perturba-
tion series for tunneling amplitudes.7 Accordingly, we will
adopt the Kondo Hamiltonian in this paper to describe the
inelastic cotunneling process and study its dissipation in-
volved in coherent tunneling via the QD: we do so by devel-
oping a generic Langevin equation approach in second-order
perturbation theory with respect to the s-d exchange cou-
pling constant, J, in the weak tunneling limit.

Moreover, we will evaluate the nonequilibrium spin mag-
netization of a QD subject to a magnetic field in steady state
and examine the behavior of charge flow �cotunneling cur-
rent� through the QD within the same framework. Actually,
an interesting calculation of the spin magnetization of a
Kondo QD has already been carried out recently by means of
the Majorana-fermion Green’s function technique.8 The
striking result obtained in that paper is that their magnetiza-
tion result differs from the thermal equilibrium formula even
at zero order in the spin-leads exchange coupling, J. More
impressively, theoretical analysis shows that if proper ac-
count of this nonequilibrium magnetization is taken in a cal-
culation of the current, the resulting differential conductance
will demonstrate double peaks at bias voltages eV= ±g�BB
�the Zeeman energy�, a signature of Kondo effect with a
constant magnetic field B, even in the second-order pertur-
bation calculations.9 Of course, the log-signature peculiarity
of the Kondo effect occurs essentially in the next orders of

perturbation theory. Here, in the present paper, we ignore
such higher-order terms; thus we confine our study to the
ordinary cotunneling processes. A detailed analysis of the
third-order perturbation contribution to the current has been
established in Ref. 9, computing an explicit logarithmic en-
hancement in current.

Recent theoretical studies have shown that nonequilib-
rium Kondo physics is fundamentally governed by weak-
tunneling perturbation theory when the bias voltage is much
larger than the Kondo temperature, TK; this can be ascribed
to current induced decoherence of the resonant spin-flip term
in cotunneling processes, which can eliminate the generic
logarithmic divergence in conventional Kondo physics.10–12

This is the reason that the third-order contribution in Ref. 9
provides a quantitatively relatively small modification to the
second-order term in the nonequilibrium current formula in
the weak tunneling limit �albeit qualitatively important�. It is
also shown in Ref. 9 that the second-order calculation �co-
tunneling� of the differential conductance exhibits cusps at
bias voltages eV= ±g�BB, a remnant of the Kondo effect.
Therefore, we call this cotunneling behavior “Kondo-type”
cotunneling. In this paper, we will systematically study this
kind of nonequilibrium cotunneling through a single spin in a
finite magnetic field using second-order perturbation theory
and will specifically analyze the cotunneling processes re-
sponsible for its special transport characteristics.

In addition, we will also examine the behavior of the spin
current and show that inelastic spin-flip cotunneling can pro-
duce a nonzero spin current for asymmetric coupling systems
subject to a finite magnetic field and an activation bias-
voltage. Unlike charge current, we find that the sign of spin
current is independent of the direction of the applied bias-
voltage, but it does depend on the asymmetry of the coupling
constants to the left and right leads and the direction of ex-
ternal magnetic field.

The remaining parts of the paper are organized as follows.
In Sec. II, we present the physical model used in this paper:
a single spin weakly tunnel-coupled to two normal leads. To
focus on tunneling induced decoherence here, it is assumed
that the single spin is free of any other dissipative heat bath
except for the tunneling reservoirs. In Sec. III, we will then
present the derivation of the quantum Langevin equations of
motion for the single spin. In Sec. IV, qualitative discussion
and concrete calculations will be given for the resulting de-
coherence and relaxation rates as functions of magnetic field,
bias-voltage, and temperature. Section V focuses first on the
derivation of closed-form expressions for charge current and
spin current within the framework of the quantum Langevin
equation approach developed here, and then addresses all
possible cotunneling processes that occur in this system, and
their respective contributions to the currents. A numerical
evaluation of differential conductance for the charge current
and the spin current is provided in the last part of this sec-
tion. Finally, our conclusions are summarized in Sec. VI.

II. MODEL HAMILTONIAN

We employ the two-lead Kondo Hamiltonian discussed
above to model inelastic cotunneling through a single spin
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�or QD� in a magnetic field, B, in the weak-coupling regime:

H = H0 + HI, HI = Hrefl + Htrans,

H0 = �
�k�

��k − ���c�k�
† c�k� − g�BBSz,

Hrefl = �
�,k,k�

J����c�k↑
† c�k�↑ − c�k↓

† c�k�↓�S
z

+ c�k↑
† c�k�↓S

− + c�k↓
† c�k�↑S

+� ,

Htrans = JRL �
k,k�

��cRk↑
† cLk�↑ − cRk↓

† cLk�↓�S
z + cRk↑

† cLk�↓S
−

+ cRk↓
† cLk�↑S

+� + �R ↔ L� , �1�

where c�k�
† �c�k�� creates �annihilates� an electron in lead

� �=L ,R� with momentum k, spin � and bare energy �k.
JLL , JRR, and JLR=JRL=�JLLJRR are Kondo exchange cou-
pling constants between the electrons and the localized spin-
1
2 , S= �Sx ,Sy ,Sz�, S±=Sx± iSy. H0 stands for the free Hamil-
tonian containing �1� two noninteracting normal leads, indi-
vidually in local equilibrium with temperature T �not to be
confused with decay times to be introduced below�, respec-
tive chemical potentials ��, and Fermi distribution functions
defined as f����= �1+e��−���/kBT�−1; and �2� Zeeman energy of
the localized spin subject to magnetic field B �g and �B are
the Landé factor and the Bohr magneton, respectively�. It
should be noted that we ignore the Zeeman effect in the lead
electrons. The interaction part of the total Hamiltonian, HI,
also includes two terms: Hrefl describes the reflection pro-
cesses, in which an electron from a given lead is scattered
back into the same lead in both spin-conserving and spin-flip
configurations; while Htrans describes the transmission
events, where an electron from one lead cotunnels into the
other lead, also in both configurations. Except for the tunnel
coupling, we ignore all other “environmental” decay interac-
tions of the single spin.

Here, we assume the leads to have a flat density of states,
��, in the wide-band limit. We take the chemical potentials,
��, to vanish in equilibrium and use this choice as the refer-
ence of energy throughout the paper. In the nonequilibrium
case, we assume the bias-voltage is applied symmetrically,
�L=−�R=eV /2. Throughout, we will use units with �=kB
=e=1.

The conceptual structure of our model is predicated on the
idea that the full system can be separated into two sub-
systems: one of which is the measured subsystem, the single
spin, and the other consists of the two leads jointly compris-
ing a “heat bath” or “reservoir.” The interaction between the
two subsystems, HI, must be weak in order that the separa-
tion of the two subsystems is physically meaningful. Accord-
ingly, HI generates dissipation for the dynamics of the
“open” measured quantum subsystem, which is the principal
focus for study in this paper. For notational brevity, we re-
write this term as a sum of three products of two variables:

HI = QzFQz + Q+FQ+ + Q−FQ−, �2a�

with

Qz = �
�,��

Q���
z = �

�,��,k,k�

J����c�k↑
† c��k�↑ − c�k↓

† c��k�↓� ,

�2b�

Q+ = �
�,��

Q���
+ = �

�,��,k,k�

J���c�k↑
† c��k�↓, �2c�

Q− = �
�,��

Q���
− = �

�,��,k,k�

J���c�k↓
† c��k�↑, �2d�

as functions of reservoir variables, and the corresponding
generalized forces, FQ, depend on the variables of the mea-
sured subsystem as

FQz = Sz, FQ+ = S−, FQ− = S+. �2e�

Here, the terms Q±FQ± describe spin-flip tunneling processes,
in which the conduction electron spin changes its orientation
in the process of tunneling, and the localized spin is also
flipped. On the other hand, the term QzFQz is responsible for
non-spin-flip �spin-conserving� tunneling, in which no spin
exchange takes place. All of these tunneling processes are
schematically elaborated in Fig. 3.

III. QUANTUM LANGEVIN EQUATIONS

In this section, we derive a generic quantum Langevin
equation approach and establish a set of quantum Bloch
equations to describe the dynamics of a single spin modeled
by Eq. �1�. It is well known that the underlying quantum
Langevin equation approach has been extensively developed
and successfully employed in the contexts of quantum elec-
trodynamics and quantum optics.13–15 Albeit that the great
advantage of this scheme is that it allows us to naturally
incorporate the effects of quantum noise introduced by the
“environment” on the studied system variables,16 we will
take no account of such fluctuation issues here. Considering
that such noise has a very short correlation time �determined
by the reservoir correlation time, �r�, it is reasonable to ne-
glect it for the longer time scale �	�r� of interest in the
present paper.

The Heisenberg equations of motion for the spin Pauli
operators Sz ,S± and the lead operators are given by

iṠz = �Sz,H�− = :�Sz,HI�−: = :�Q−S+ − Q+S−�: , �3�

iṠ± = �S±,H�− = ± 
S± + :�S±,HI�−:

= ± 
S± ± :�2Q±Sz − QzS±�: , �4�

iċ�k↑ = �c�k↑,H�− = ��kc�k↑ + :�c�k↑,HI�−:

= ��kc�k↑ + �
k�

�Sz�J��c�k�↑ + J��̄c�̄k�↑�

+ S−�J��c�k�↓ + J��̄c�̄k�↓�� , �5�
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iċ�k↓ = �c�k↓,H�− = ��kc�k↓ + :�c�k↓,HI�−:

= ��kc�k↓ + �
k�

�− Sz�J��c�k�↓ + J��̄c�̄k�↓�

+ S−�J��c�k�↑ + J��̄c�̄k�↑�� , �6�

where we have ��k=�k−��, �̄=L�R� if �=R�L�, and 

=g�BB. �A ,B�±�AB±BA are, respectively, the commutator
and the anticommutator of operators A and B. The equations
of motion for c�k�

† are easily obtained by Hermitian conju-
gation of the equations for c�k�. The colon-pair notation,
:�¯�:, in these equations denotes normal ordering of the
operators, ¯, inside the square brackets: all annihilation res-
ervoir operators c�k� are placed to the right of all spin op-
erators, Sz�±�, and the creation reservoir operators c�k�

† are
placed to the left of all spin operators, if the operators in-
volved have equal-time arguments. For instance, the last two
lines in Eqs. �5� and �6� are already normal-ordered. This
normal ordering employed here is an operator counterpart of
determining a cumulant in terms of Feynman diagrams with
the elimination of disconnected diagrams involving products
of lower order Green’s functions. The latter disconnected
diagram terms involve the effects of weak coupling �to the
bath� which oscillate rapidly at the high frequencies of mi-
croscopic dynamics, with attendant destructive interference.
While such terms do contribute small quantum corrections
�“renormalization,” “radiative corrections”� to the micro-
scopic dynamics on a short time scale, they are negligible in
the context of the much longer time scale implicitly under
consideration in our formulation of a quantum Heisenberg-
Langevin equation. A full explanation of the normal ordering
scheme in the equations of motion is provided in Refs.
13–17, to which we refer the reader.

Formally integrating these Heisenberg equations of mo-
tion from initial time 0 to t we obtain the exact solutions for
these operators as

Sz�t� = Sz�0� − i�
0

t

dt�:�Sz�t��,HI�t���−:, �7a�

S±�t� = e�i
tS±�0� − i�
0

t

dt�e�i
�t−t��:�S±�t��,HI�t���−:,

�7b�

c�k��t� = e−i��ktc�k��0� − i�
0

t

dt�e−i��k�t−t��

� :�c�k��t��,HI�t���−:. �7c�

In the absence of interaction, HI→0, these solutions become

So
z�t� = So

z�t�� , �8a�

So
±�t� = e�i
�t−t��So

±�t�� , �8b�

c�k�
o �t� = e−i��k�t−t��c�k�

o �t�� . �8c�

A standard assumption in the derivation of a quantum Lange-
vin equation is that the time scale of decay processes is much

slower than that of free evolution, which is reasonable in the
weak-tunneling approximation. In this context it is appropri-
ate to substitute the time-dependent decoupled reservoir and
spin operators of Eqs. �8a�–�8c� into the formal solutions of
Eqs. �7a�–�7c�. Obviously, the full solution for the reservoir
operator comprises two contributions, one from free evolu-
tion and the other from reaction of the spin through the weak
coupling, and we denote these with superscripts “o” and “i,”
respectively:

c�k��t� = c�k�
o �t� + c�k�

i �t� , �9a�

with

c�k�
i �t� = − i�

0

t

dt�:�c�k�
o �t�,HI

o�t���−:, �9b�

where HI
o is composed of the operators in HI which are re-

placed by their decoupled counterparts �interaction picture�.
In fact, this is just the operator formulation of linear response
theory. It should also be noted that Eq. �9a� implies that the
two subsystems, the quantum dot and the reservoirs, are
completely isolated before t0=0, and the perturbative inter-
action, HI, is adiabatically switched on from the initial time
t= t0. Using Eqs. �9a� and �9b�, the reservoir variables,
Q

���
z�±��t�, become �Appendix A�

Q���
z �t� = Q���

zo �t� + Q���
zi �t�

= Q���
zo �t� − i����

−�

t

d� :�Q���
zo �t�,HI

o�t���−:,

�10a�

Q���
± �t� = Q���

±o �t� + Q���
±i �t�

= Q���
±o �t� − i����

−�

t

d� :�Q���
±o �t�,HI

o�t���−:,

�10b�

with �= t− t� and ��� represents the Heaviside step-function.
Similarly, the formal solutions for the spin operators are also
divided into two parts:

Sz�t� = So
z�t� + Si

z�t� = So
z�t� − i����

−�

t

d� :�So
z�t�,HI

o�t���−:,

�11a�

S±�t� = So
±�t� + Si

±�t� = So
±�t� − i����

−�

t

d� :�So
±�t�,HI

o�t���−:.

�11b�

Substituting these approximate solutions of Eqs. �10a�,
�10b�, �11a�, and �11b� into the equations of motion for Sz

and S± �Eqs. �3� and �4�� and taking average evaluations with
respect to the reservoir electron ensemble 	¯
e and over the
localized spin degrees of freedom 	¯
s, one can derive the
desired quantum Bloch equations up to second order in the
Kondo coupling constant J. After some algebraic manipula-
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tions �details are provided in Appendix A�, the quantum dy-
namic equations take the compact form:

	Ṡz
 = −
1

2
����

−�

t

d�	�Qo
−�t�,Qo

+�t���+
e	�S+�t�,FQ+�t���−
s

−
1

2
����

−�

t

d�	�Qo
−�t�,Qo

+�t���−
e	�S+�t�,FQ+�t���+
s

+
1

2
����

−�

t

d�	�Qo
+�t�,Qo

−�t���+
e	�S−�t�,FQ−�t���−
s

+
1

2
����

−�

t

dt�	�Qo
+�t�,Qo

−�t���−
e	�S−�t�,FQ−�t���+
s,

�12�

	Ṡ±
 = � i
	S±
 � ����
−�

t

d�	�Qo
±�t�,Qo

��t���+
e

�	�Sz�t�,FQ��t���−
s � ����
−�

t

d�	�Qo
±�t�,Qo

��t���−
e

�	�Sz�t�,FQ��t���+
s ±
1

2
����

−�

t

d�	�Qo
z�t�,Qo

z�t���+
e

�	�S±�t�,FQz�t���−
s ±
1

2
����

−�

t

d�	�Qo
z�t�,Qo

z�t���−
e

�	�S±�t�,FQz�t���+
s. �13�

In these equations, we drop the superscript “o” in the spin
operators occurring inside integrations, since they involve
the dynamical spin variables after taking expectation values.
However, it must be borne in mind that their time evolutions
are governed by Eqs. �8a� and �8b�. Apart from free evolu-
tion, it is clear that the spin dynamics are modified by the
spin-lead interaction in a way that is precisely relevant to the
response function, Rab�t , t��, and correlation function,
Cab�t , t��, �a ,b=z , + ,−� of free reservoir variables, which
are defined as

Rab�t,t�� = 1
2���	�Qo

a�t�,Qo
b�t���−
e, �14�

Cab�t,t�� = 1
2���	�Qo

a�t�,Qo
b�t���+
e. �15�

These forms of quantum Langevin-type dynamic equations,
expressed explicitly in terms of the correlation and response
functions of free reservoir variables, have also been proposed
in Ref. 18 by employing the quantum Furutsu-Novikov theo-
rem. The present derivation seems more direct and its mean-
ing is more transparent.

Considering the reservoirs to be in separate �local� equi-
librium states except for differing chemical potentials �re-
flecting the bias-voltage driving the current� and noting that
these free fermion reservoir operators, c�k�

o , c�k�
o† , obey

Wick’s theorem �without correlation between the leads�, we
can readily express the functions Rab�t , t�� and Cab�t , t�� in
terms of reservoir distribution functions. The calculational
details are provided in Appendix B. Here we cite some useful

properties. First, these response and correlation functions are
functions only of the time difference �= t− t�. Second, these
functions are related as

R��� = R+−��� = R−+��� = 1
2Rzz��� , �16�

C��� = C+−��� = C−+��� = 1
2Czz��� . �17�

Therefore, it is convenient to introduce single Fourier time
transforms for the two bath functions into frequency space:

R��� = �
−�

�

d�ei��R��� , �18�

C��� = �
−�

�

d�ei��C��� . �19�

Third, the spectral function C��� is an even function of �,
while the imaginary part of the frequency-dependent retarded
susceptibility R��� is an odd function. In equilibrium, they
are exactly related by the fluctuation-dissipation theorem.

Employing the definitions of response and correlation
functions and free evolution relation S±�t��=e±i
�S±�t�, Eq.
�12� yields

Ṡz = − 2Sz�
−�

t

d�e−i
�C��� − �
−�

t

d�e−i
�R���

− 2Sz�
−�

t

d�ei
�C��� + �
−�

t

d�ei
�R��� . �20�

�Hereafter, we suppress the brackets around the spin vari-
ables since they are all c numbers.� In a transport measure-
ment experiment, a single spin decays to its external bias-
voltage-driven steady state in a characteristic time, �c, of the
system. If we assume that the single spin changes signifi-
cantly only over a time scale t��c, an appropriate Markov
approximation may be generated by making the replacement

�
−�

t

d� ⇒ �
−�

�

d� . �21�

From a physical point of view, this presumption is consistent
with the normal ordering scheme performed in the operator
equations of motion, in regard to elimination of the rapid
oscillations in microscopic dynamics. In this case, the equa-
tion of motion for Sz can be further simplified as

Ṡz = − 2�C�
� + C�− 
��Sz + R�
� − R�− 
�

= − 4C�
�Sz + 2R�
� . �22�

Analogously, the quantum Langevin equation for S± becomes

Ṡ± = � i
 S± − 2S±�
−�

t

d�e±i
�C��� − 2S±�
−�

t

d�C���

= � i
 S± − 2�C�
� + C�0��S±. �23�
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IV. NONEQUILIBRIUM MAGNETIZATION,
DECOHERENCE, AND RELAXATION

In this section, on the basis of the derived Bloch equa-
tions, Eqs. �22� and �23�, we will carry out analytical evalu-
ations of the relaxation and decoherence rates, as well as the
magnetization of the single spin under transport conditions,
as functions of temperature, bias-voltage, and external mag-
netic field.

It is well known that there are two decay mechanisms
leading to standard Bloch equations which define two dis-
tinct relaxation time scales: �1� The longitudinal relaxation
time, T1, is responsible for the spin magnetic moment relax-
ation, while �2� the transverse relaxation time, T2, is respon-
sible for decoherence of the quantum superposition state
composed of the two spin states �=↑ and ↓. These time
scales are defined by the time evolutions of Sz�t� and S±,
respectively:

1

T1
= 4C�
�

= 2��JLL
2 �L

2 + JRR
2 �R

2�T��


T
� + 2�JLR

2 �L�RT

���
 + V

T
� + ��
 − V

T
�� , �24�

1

T2
= 2�C�
� + C�0�� =

1

2T1
+ 2C�0�

=
1

2T1
+ 2��JLL

2 �L
2 + JRR

2 �R
2�T + 2�JLR

2 �L�RT��V

T
� .

�25�

In deriving these results, we employed Eqs. �B19� and �B20�.
It is noteworthy that the transverse spin relaxation rate, 1 /T2,
includes two contributions: the relaxation-induced dephas-

ing, 1 /2T1, and also pure decoherence, 2C�0�.
From Eqs. �12� and �13�, we can easily deduce that the

longitudinal relaxation time �T1� stems completely from
spin-flip cotunneling events, which is conceptually consistent
with the physical definition of spin relaxation and implies its
dependence on magnetic field. Furthermore, spin-flip pro-
cesses also contribute to decoherence with the partial rate,
1 /2T1. In contrast, non-spin-flip processes do not induce spin
relaxation but they do contribute to pure decoherence with
the partial rate 2C�0�, which is independent of magnetic
field. This difference in the magnetic field dependences of
the two rates may be understood in the following terms: the
non-spin-flip process entails charge transport through the QD
via a virtual state but the QD eventually returns back to its
original spin state without changing energy �which is why
this process is referred to as elastic cotunneling in the litera-
ture�; whereas energy exchange does take place between the
QD and leads in the spin-flip process in a finite magnetic
field, in which the spin of the QD is finally flipped and thus
the QD is inelastically excited or decays accompanied by
excess energy, the Zeeman energy, 
. Of course, in the ab-
sence of an external magnetic field, spin-flip cotunneling also
becomes elastic. In this case, the two relaxation times are
equal �i.e., it is inelastic cotunneling that makes them differ�,

1

T1
0 =

1

T2
0 = 4C�0� = 4��JLL

2 �L
2 + JRR

2 �R
2�T + 4�JLR

2 �L�RT��V

T
� .

�26�

On the other hand, in the limit of zero bias-voltage �equi-
librium condition�, the relaxation rates become

1

T 1
eq = 4�� JLL

2 �L
2 + JRR

2 �R
2

2
+ JLR

2 �L�R�T��


T
� , �27�

FIG. 1. The cotunneling-induced spin relax-
ation rate �T 1

−1� and decoherence rate �T 2
−1� as

functions of magnetic field 
 ��a�, �b�� and of
bias-voltage V ��c�, �d�� for given temperatures
indicated in these figures. The parameters we use
in calculation are JLL�L=JRR�R=JLR

��L�R=0.02.
Here, we use the decay rate of purely thermal
fluctuations, �th, Eq. �29�, as the unit of the two
rates.
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1

T 2
eq =

1

2T 1
eq + 4�� JLL

2 �L
2 + JRR

2 �R
2

2
+ JLR

2 �L�R�T . �28�

It is clear that the contribution of non-spin-flip cotunneling to
the pure decoherence rate, the second term in Eq. �28�, is
proportional to temperature, while spin-flip cotunneling leads
to a somewhat complicated temperature dependence,

 coth�
 /2T�. This difference can also be ascribed to energy
exchange in the dissipation process. It is worth noting that
without transport �V→0�, dissipation �relaxation and deco-
herence� is due solely to quantum thermal fluctuations �ther-
mal noise�. Furthermore, if the external magnetic field is
quenched, the thermal fluctuations are purely non-energy-
consuming:

�th =
1

T 1
eq =

1

T 2
eq = 8�� JLL

2 �L
2 + JRR

2 �R
2

2
+ JLR

2 �L�R�T ,

�29�

indicating that the dissipation is totally determined by ther-
modynamics �temperature� of the reservoirs.

For illustrative purposes, we exhibit in Fig. 1 the depen-
dences of the relaxation rate and the dephasing rate on mag-
netic field �a ,b� and on bias-voltage �c ,d� for given tempera-
tures. At relatively low temperatures, T /V=0.01 �or T /

=0.01�, these rates show linear increase with respect to bias-
voltage V �magnetic field 
� with the rates of increase de-
pending on the relative magnitudes of V and 
. Interestingly,

dephasing, 1 /T1, is independent of V for V�
, as shown in
Fig. 1�c�. This comes about because the hyperbolic cotangent
functions behave as ���
+V� /T�+���
−V� /T�→ �
+V�
+ �
−V� in the limit T→0. As expected, rising temperature
smears out the low-temperature structures in these rates
�Figs. 1�b� and 1�c��. Finally, the temperature dependences of
the two rates are summarized in Fig. 2.

The magnetization of the QD, defined as M =Sz, is readily
obtained using the steady solution of Eq. �22� as

M�
,V� = S�
z =

R�
�
2C�
�

=
� JLL

2 �L
2 + JRR

2 �R
2

2
+ JLR

2 �L�R�


T

�JLL
2 �L

2 + JRR
2 �R

2���


T
� + JLR

2 �L�R��
 + V

T
� + ��
 − V

T
�� , �30�

which is identical to previous theoretical result.8,9 In absence
of bias-voltage, V=0, it reduces to the equilibrium expres-
sion M�
 ,0�= 1

2 tanh�
 /2T�.

V. NONLINEAR TUNNELING CURRENT

The calculation of steady state tunneling charge current,
Ic, measuring the charge flow from left lead to right lead, is
based on the equation of motion for the charge density NL
=��NL�=�kcLk�

† cLk� in the left lead, which is a sum of both
spin-up and spin-down electrons flows, Ic= IL↑+ IL↓,

IL↑ = − 	ṄL↑


= i	�NL↑,H�


= i	�QLR
z↑↑ − QRL

z↑↑�Sz − �QLL
− + QRL

− �S+ + �QLL
+ + QLR

+ �S−
 ,

�31�

IL↓ = − 	ṄL↓


= i	�NL↓,H�


= i	�QRL
z↓↓ − QLR

z↓↓�Sz + �QLL
− + QLR

− �S+ − �QLL
+ + QRL

+ �S−
 ,

�32�

with the definition Q���
z�� =J����k,k�c�k�

† c��k��. Using the
same procedure described in the preceding section and Ap-
pendix A, and employing the various response and correla-
tion functions of the free reservoir variables determined in
Appendix B, we have derived analytic expressions for the
spin-resolved current, IL�. For example, the spin-up current,
IL↑, takes the form

FIG. 2. The cotunneling-induced spin relaxation rate �T 1
−1� and

decoherence rate �T 2
−1� as functions of temperature for 
 /V=2.5,

1.0, and 0. Other parameters are the same as in Fig. 1.
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IL↑ =
1

2
�

−�

t

d��RLR,RL
zz↑↑ ��� − RRL,LR

zz↑↑ ����

− �
−�

t

d��e−i
��RLL,LL
−+ ��� + RRL,LR

−+ ���� − ei
��RLL,LL
+− ���

+ RLR,RL
+− �� − 2Sz�

−�

t

d��e−i
��CLL,LL
−+ ��� + CRL,LR

−+ ����

+ ei
��CLL,LL
+− ��� + CLR,RL

+− ����� . �33�

Using Eqs. �B4�, �B5�, and �B9�–�B11�, and then making the
replacement �−�

t d�⇒�−�
� d�, we finally arrived at an explicit

result for IL↑ as a function of temperature and bias-voltage
�after performing the � integrals of Eqs. �B16� and �B17��,

IL↑ =
3�

2
JLR

2 �L�RV + �
�JLL
2 �L

2 + JLR
2 �L�R�

− 2�TJLL
2 �L

2��


T
� + JLR

2 �L�R��
 + V

T
��Sz.

�34�

Similarly, the current from spin-down electrons, IL↓, is given
by

IL↓ =
3�

2
JLR

2 �L�RV − �
�JLL
2 �L

2 + JLR
2 �L�R�

+ 2�TJLL
2 �L

2��


T
� + JLR

2 �L�R��
 − V

T
��Sz.

�35�

The total charge current, Ic, is thus

Ic = �JLR
2 �L�R�3V + 2SzT��
 − V

T
� − ��
 + V

T
��� .

�36�

It is worth noting that the cotunneling current, Eq. �36�, is
just proportional to second order in the exchange coupling
constant, JLR, and higher-order contributions are all ne-
glected. This is because we employ the approximation for-
mula, Eq. �A2�, to derive non-Markovian quantum dynamic
equations and the current, leading to the absence of the char-
acteristic logarithmic divergence term in current. Thus, the
present approach cannot be applied to describe strong Kondo
correlations, but can be used to study the ordinary cotunnel-
ing process in the weak tunnel-coupling limit.

Due to the fact that spin-up electrons are coupled with
spin-down electrons via the spin-flip processes in this model,
there is an imbalance between the spin-up current and spin-
down current, i.e., there is a net spin current, Is, with respect
to the left lead, defined as

Is = IL↑ − IL↓

= 2�
�JLL
2 �L

2 + JLR
2 �L�R� − 2�T�2JLL

2 �L
2��


T
�

+ JLR
2 �L�R��
 − V

T
� + ��
 + V

T
���Sz. �37�

To better understand these formulas and the physical per-
spective involved, we elaborate the physical picture of co-
tunneling processes through a QD in a finite magnetic field.
When the electronic levels of the QD, �d�, are far below the
chemical potentials of the two leads, i.e., �d���L�R�, the
first-order tunneling process, sequential tunneling, vanishes.
However, higher-order tunneling processes, cotunneling, are
active and dominate the quantum transport. In the strong
Coulomb blockade regime, the QD is always singly occupied
by an electron because of the deep electronic energy, �d�, and
the extremely strong charging energy, U→�, involved when
an additional, excess electron attempts to enter the QD, i.e.,
�d�+U��L�R�. This steady occupation means that no charge
fluctuation takes place, provided that the applied bias-voltage
is not strong enough to force the chemical potential in one of
leads below the QD level, �d�, so as to drive the transport
into the sequential tunneling regime. Therefore, in nonequi-
librium conditions, a cotunneling event consists of two
single-particle tunneling processes, ① and ② which can take
place in sequence as follows: event ①, an electron inside the
QD with spin � will at first tunnel out to a lead L or R,
inducing a virtual empty state in the dot, but this is immedi-
ately followed by a second single-particle tunneling event ②
in which an electron in one of the leads is injected into the
QD with the same spin � �spin-conserving elastic cotunnel-
ing� or with the opposite spin �spin-flip inelastic cotunnel-
ing�. The two tunneling events occur via a virtual empty-dot
state in a very short time interval to insure coherence. Im-
portantly, spin-flip cotunneling provides a mechanism for the
spin orientation of the QD to be changed, which is fully
quantum phenomenology. Moreover, it stimulates intrinsic
spin fluctuation, which is a fundamental concept in the con-
text of Kondo physics. Obviously, there is a total of 16 dif-
ferent cotunneling events allowed in this strong Coulomb
blockade system, which are schematically shown in Fig. 3.
We can classify them in four different categories/types.

Type-I cotunneling involves only one lead and equal spin
orientations in two successive single-particle tunneling
events. Figures 3�a�–3�d� depict such trivial cotunneling
events, in which an electron with spin � exits the QD to the
lead � and subsequently an electron with the same spin in the
same lead �probably not the same electron� transfers to the
QD. Obviously, these events make no contribution to the
current. In contrast, type-II cotunneling experiences a spin-
flip process as shown in Figs. 3�e�–3�h�, in which the final
spin state in the QD is opposite to its initial state. Of course,
only events Figs. 3�e� and 3�f� relate to the currents in the
left lead, and involve the terms �QLL

− S+ and ±QLL
+ S− in Eqs.

�31� and �32�. However, the spin-up and spin-down electrons
flow in opposite directions and contribute to the currents
with equal magnitudes. As a result, no charge current occurs
in this type cotunneling but spin current does emerge. Fur-
thermore, because only one lead is involved, the contribu-
tions of events Figs. 3�e� and 3�f� are naturally independent
of the bias-voltage and are only dependent on the magnetic
field, involving the terms ±�
JLL

2 �L
2 �2�TJLL

2 �L
2��
 /T�Sz in

spin-up and spin-down currents with ±→ + ,−, respectively.
Figures 3�i�–3�l� represent all type-III cotunneling processes.
This kind of cotunneling describes an equivalent spin-
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conservative tunneling process, in which an electron is trans-
ferred from one lead to another lead via the QD without spin
exchange. The corresponding terms in Eqs. �31� and �32� are
±QLR�RL�

z↑↑�↓↓�Sz. Moreover, we observe that �1� the spin-up events

Figs. 3�i� and 3�j� and the spin-down events Figs. 3�k� and
3�l� yield currents having not only the same directions, but
they also have equal magnitudes; and �2� these spin-up
�down� events involve only the difference of chemical poten-
tials, leading to a contribution proportional to the bias-
voltage, 3

2�JLR
2 �L�RV. This observation reveals that type-III

cotunneling excludes the possibility of spin current, but it
does provide a linearly bias-voltage-dependent term in the
charge current, Eq. �36�. Finally, type-IV cotunneling com-
prises the four electron-transferring tunneling events accom-
panied by a spin-flip process as exhibited in Figs. 3�m�–3�p�.
They produce the terms −QRL

− S+ , +QLR
+ S− in Eq. �31� and

QLR
− S+ ,−QRL

+ S− in Eq. �32�. Differing from type-III cotunnel-
ing, we find that in type-IV cotunneling the spin-up �down�

events Figs. 3�m� and 3�n� �or Figs. 3�o� and 3�p�� involve
both the voltage change and spin flip, and the corresponding
contributions to current are dependent on both V and

 : ± �
−2SzT��
±V /T���JLR

2 �L�R. Type-IV cotunneling
produces both spin and charge currents. In sum, the mecha-
nism for creating spin current stems solely from inelastic
spin-flip cotunneling processes �type-II and -IV�, while the
electron-transferring elastic and inelastic cotunneling pro-
cesses �type-III and IV� are responsible for producing charge
current.

Substituting the steady-state solution, Eq. �30�, into the
charge current, Eq. �36�, and the spin current, Eq. �37�, we
readily find that �1� both the charge current and the spin
current are zero if V=0; �2� the resulting spin current is
nonzero in nonequilibrium conditions, V�0, if and only if
two conditions are satisfied: JLL�JRR, i.e., the asymmetrical
Kondo coupling case, and there is a nonvanishing magnetic
field, 
�0; �3� the spin current is an even function of the
applied bias-voltage, V, indicating that the sign of spin cur-

FIG. 3. Schematic description
of all 16 cotunneling processes
�a�–�p� through a QD subject to
Zeeman splitting energy 
 be-
tween the spin-up and -down elec-
tronic states, in the strong Cou-
lomb blockade regime. A finite
bias-voltage V is applied between
the two leads, L and R. An open
circle inside the QD stands for the
initial occupied electron state be-
fore tunneling events, while the
solid circle denotes the final state
occupied by an electron after the
cotunneling processes. The single-
particle tunneling event ① takes
place first and then is followed by
the tunneling event ②, which to-
gether comprise the entire cotun-
neling process. The reservoir vari-
able below each of the figures
denotes the corresponding physi-
cal process occurring in the reser-
voir. The arrow beneath the left
lead in each of the figures denotes
the flow direction of the spin-up
and/or spin-down electron with re-
spect to the left lead.
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rent is not related to the direction of the bias-voltage;
whereas charge current, Eq. �36�, is an odd function of the
bias-voltage and will change its sign when bias-voltage is
applied in the opposite direction; �4� the magnetic-field-
related spin current changes its sign when the direction of the
applied magnetic field is reversed �odd function�, while the
charge current is an even function of 
, because it measures
the results of the total charge flow irrespective of the spin
orientation. The sign property of the spin current was also
pointed out in previous study.19

As an illustration, we plot the bias-voltage-dependent dif-
ferential conductance, dIc /dV, in Fig. 4. The differential con-
ductance shows a characteristic jump at V= ±
, which is the
signature of the Kondo effect in the presence of an external
magnetic field. Mathematically, this feature comes from the
hyperbolic cotangent function in the current formula, Eq.
�36�. From a physical point of view, this splitting can be
qualitatively understood from the following consideration: a
small bias-voltage, �V��
, cannot provide enough energy to
spur the spin-flip cotunneling process that is an energy-
consuming event in the case of nonzero magnetic field; how-
ever, when �V��
, the spin-flip cotunneling process is ener-
getically activated, thus an additional channel is opened for
electron transport. Moreover, the effect of temperature is to
smear and reduce the peak.

We also exhibit the resulting spin current, Is, and its dif-
ferential conductance, defined as dIs /dV, as functions of
bias-voltage V /
 in Fig. 5. We observe that at low tempera-
tures, T /
=0.01 and 0.05 in Fig. 5�a�, the calculated spin
currents are nearly zero in the small bias-voltage region,
�V��
, notwithstanding JLL /JRR=4.0 and 
�0. Analogous
to the peak splitting of the differential conductance shown in
Fig. 4, the low-temperature vanishing of spin current is also
due to the fact that spin-flip scattering is energetically inac-
cessible in the case of small bias-voltage. This vanishing
produces a “window” of zero differential conductance for
spin current. Nevertheless, at higher temperatures, thermal
fluctuation provides an additional possibility to flip spin in
the tunneling processes, leading to a slow increase of the
spin current and the gradual disappearance of the zero “win-
dow” in dIs /dV. In Fig. 5�b�, we show that the sign of the
spin current is also determined by the relative magnitudes of
JLL and JRR.

VI. CONCLUSIONS

In this paper, we have systematically examined nonequi-
librium inelastic cotunneling through a single spin �QD� sub-
ject to a finite magnetic field in the strong Coulomb blockade
regime, in the weak tunnel coupling limit. For this purpose,
we introduced the Kondo Hamiltonian to model cotunneling
in the QD and employed a generic Heisenberg-Langevin
equation approach to establish a set of quantum Bloch-type
dynamical equations describing inelastic cotunneling phe-
nomenology.

In our formulation, the operators of the localized spin and
the reservoirs were first determined formally by integration
of their Heisenberg equations of motion, exactly to all orders
in the tunnel coupling constants. Next, under the assumption
that the time scale of the decay processes is much slower
than that of free evolution, we expressed the time-dependent
operators involved in the integrands of these equations of
motion approximately in terms of their free evolution. Third,
these equations of motion were expanded in powers of the
tunnel-coupling constants to second order; this approxima-
tion is physically valid in the weak tunnel-coupling limit. On
the basis of these consideration, jointly with normal order-
ing, we developed the Bloch-type equations expressed ex-
plicitly and compactly in terms of the response and the cor-
relation functions of the free reservoir variables, which
facilitated our theoretical examination of relaxation and de-
coherence in the localized spin induced by the “environ-
ment.”

In the problem at hand, dissipation of the QD spin stems
from tunnel-coupling of the QD to two leads by cotunneling
mechanisms. Based on our derived Bloch equations, we ob-
tained explicit analytical expressions for the corresponding
relaxation and decoherence rates at arbitrary bias-voltage and
temperature. We found that relaxation results exclusively
from spin-flip cotunneling processes alone, whereas both
spin-flip and non-spin-flip cotunneling events contribute to
decoherence. In this analysis, we carried out systematic ex-
aminations of the relaxation rate and the decoherence rate as

FIG. 4. The calculated differential conductance dIc /dV vs bias-
voltage V /
 for several temperatures at nonzero magnetic field in
units of G0=4�JLR

2 �L�R �linear conductance at zero magnetic field�.
Other parameters are the same as in Fig. 1.

FIG. 5. The calculated spin current, Is, and its differential con-
ductance, dIs /dV, as functions of bias-voltage V /
, at nonzero
magnetic field. �a� Exhibits results for several temperatures and
JRR /JLL=4.0, JLL=0.02. �b� Plots the results for JRR /JLL=5.0 �JLL

=0.02� as solid lines, and for JLL /JRR=5.0 �JRR=0.02� as dashed
lines.
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functions of bias-voltage, external magnetic field, and tem-
perature. Our formulation also facilitated the derivation of an
analytic expression for the nonequilibrium magnetization
that is found to match that of earlier theories.

Employing this approach, we also derived closed-form
expressions for the spin-resolved currents, which facilitated
our calculation of both the charge current and the spin cur-
rent. Furthermore, we classified and examined all possible
cotunneling processes occurring in the strong Coulomb inter-
action QD �16 events�, and categorized them in four distinct
types. In this, we found that �1� type-I cotunneling make no
contribution to current; �2� spin-flip processes, types-II and
IV cotunneling, drive the spin current; �3� the electron-
transferring processes, types-III �non-spin-flip� and IV �spin-
flip� cotunneling, produce charge current; and �4� we also
determined formulas for their respective contributions to the
charge and spin currents. Our numerical calculations exhibit
splitting of the zero-bias-voltage peak in the differential con-
ductance for charge current in a finite magnetic field, which
is a typical signature of the Kondo effect, and a wide “win-
dow” of zero differential conductance for spin current about
zero-bias-voltage. With insight gained from our specific
analyses, we can ascribe these low-temperature transport
characteristics to the fact that inelastic spin-flip cotunneling
is energetically active only for sufficiently strong applied
bias-voltage, V�
. We have also shown that spin current,
unlike charge current, is an even function of the applied bias-
voltage, and its direction depends on the orientation of the
ambient magnetic field and asymmetry of the Kondo cou-
pling constants to the left and the right leads.

ACKNOWLEDGMENTS

This work was supported by the Department of Defense
through the DURINT Program administered by the U.S.
Army Research Office, DAAD Grant No.19-01-1-0592.

APPENDIX A: DERIVATION OF EQS.
(10a), (12), AND (13)

In this Appendix, we first prove Eqs. �10a� and �10b�.
Consider Q���

z for example. Substituting Eqs. �9a� and �9b�
into the definition of Eq. �2b�, we have

Q���
z �t� = J����

k,k�

�c�k↑
o† �t� + c�k↑

i† �t���c��k�↑
o �t� + c��k�↑

i �t��

− J����
k,k�

�↑ → ↓�

= Q���
zo �t� − iJ����

k,k�
�

0

t

dt�

� �c�k↑
o† �t�:�c��k�↑

o �t�,HI
o�t���−

− :�c�k↑
o† �t�,HI

o�t���−:c��k�↑
o �t�� + iJ����

k,k�

�↑ → ↓�

= Q���
zo �t� − iJ����

k,k�

����
0

�

dt�

� :�c�k↑
o† �t�c��k�↑

o �t�,HI
o�t���−: + iJ����

k,k�

�↑ → ↓�

= Q���
zo �t� − i����

−�

t

d� :�Q���
zo �t�,HI

o�t���−:. �A1�

In the second stage of Eq. �A1�, we neglect terms of the
form, c�k�

i† c��k���
i , since they are of second order in the cou-

pling constant, O�J2�, yielding a third-order contribution to
Q���

z with respect to J.
To derive Eqs. �12� and �13�, we consider the normally

ordered product of the reservoir and spin operators, :QaSb:,

:Qa�t�Sb�t� ª :�Qo
a�t� + Qi

a�t���So
b�t� + Si

b�t��:

= :Qo
a�t�So

b�t�:

− i����
−�

t

d��:Qo
a�t�:�So

b�t�,HI
o�t���−:

+ :�Qo
a�t�,HI

o�t���−:So
b�t�:� . �A2�

Once again, we neglect the term Qi
aSi

b as it is proportional to
O�J3�. The first term in Eq. �A2� involves only the free res-
ervoir variables and the decoupled single spin. The other
interaction terms �we designate the operator expressions in
the integrand as I� arise from tunneling reaction, upon which
we focus in the following derivation. Using the compact
definition of the interaction Hamiltonian, Eq. �2a�, HI
=�c��z,+,−�Q

cFQc, we have

I = �
c

�:Qo
a�t�Qo

c�t���So
b�t�,FQc

o �t���−

+ �Qo
a�t�,Qo

c�t���−FQc
o �t��So

b�t�:�

= �
c
�:

1

2
�Qo

a�t�,Qo
c�t���+�So

b�t�,FQc
o �t���−

+
1

2
�Qo

a�t�,Qo
c�t���−�So

b�t�,FQc
o �t���−

+ �Qo
a�t�,Qo

c�t���−FQc
o �t��So

b�t�:�
=

1

2�
c

�:�Qo
a�t�,Qo

c�t���+�So
b�t�,FQc

o �t���−

+ �Qo
a�t�,Qo

c�t���−�So
b�t�,FQc

o �t���+:� . �A3�

Therefore, the full normal-ordered operator product �:QaSb : �
is written as the sum of a zero-order term and a term of
second-order in the coupling constant J, having the compact
form:

:Qa�t�Sb�t� ª :Qo
a�t�So

b�t�:− i�
−�

t

d��
c

�:Ĉac�t,t��

� �So
b�t�,FQc

o �t���− + R̂ac�t,t���So
b�t�,FQc

o �t���+:� ,

�A4�

with the definitions
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R̂ac�t,t�� = 1
2����Qo

a�t�,Qo
c�t���−, �A5�

Ĉac�t,t�� = 1
2����Qo

a�t�,Qo
c�t���+. �A6�

The reservoir equilibrium ensemble averages of R̂ac�t , t�� and

Ĉac�t , t�� are just the response function Rac�t , t�� and the cor-
relation function Cac�t , t�� defined in Eqs. �14� and �15�, re-
spectively.

In the spin operator equations of motion, these zero-order
terms contribute quantum fluctuations associated with the
reservoir fields, as well as quantum effects pertaining to the
intrinsic character of the reservoirs �for example, supercon-
ducting or ferromagnetic leads�. In any event, we take the
ensemble average of each equation of motion separately in
regard to the electron ensembles of the reservoirs and in
regard to the quantum spin states. Thus, the normally ordered
operator products factorize in the averaging procedure. Con-
sidering that we take no account of quantum fluctuations in
the present paper and only normal leads are connected to the
single spin, the zero-order terms make no contribution to the
quantum Bloch equations. Moreover, only 	Qo

±�t�Qo
��t��
e

and 	Qo
z�t�Qo

z�t��
e are nonzero for normal leads �see Appen-
dix B�. Combining all the above results, we obtain Eqs. �12�
and �13�.

APPENDIX B: RESPONSE AND CORRELATION
FUNCTIONS OF THE RESERVOIRS

To obtain explicit expressions for the Bloch equations and
the current, we need to determine the various correlation and
response functions C�R��1�2,�3�4

ab �t , t�� of the free reservoir
variables, which are defined as

C�R��1�2,�3�4

ab �t,t�� =
1

2
���	�Q�1�2

ao �t�,Q�3�4

bo �t���±
 .

�B1�

In the following, we drop all super�sub�scripts, “o,” bear-
ing in mind that all operators are free reservoir operators. In
our calculations, we assume that �i� the leads have a flat
density of states �� for both spin orientations, so we can
make the replacement

�
k

�¯� → ��� d��¯�; �B2�

�ii� the normal leads are in the respective bias-voltage-driven
local equilibrium states described by

f���� = �1 + e��−���/T�−1, �B3�

with temperature T and chemical potential ��; and �iii� the
time evolution of free reservoir operators is governed by Eq.
�8c�. According to Wick’s theorem and properties �i� and
�ii�, it is easy to see that only the functions
C�R����,���

zz , C�R����,���
+− , and C�R����,���

−+ are nonzero. We
calculate them individually.

�1� C�R�zz�t , t��=��,��C�R����,���
zz �t , t��:

C�R�LR,RL
zz↑↑ �t,t��

=
1

2
���	�QLR

z↑↑�t�,QRL
z↑↑�t���±
e

=
1

2
���JLR

2 �
k,k�,q,q�

	�cLk↑
† �t�cRk�↑

† �t�,cRq↑
† �t��cLq�↑

† �t���±
e

=
1

2
���JLR

2 �
k,k�,q,q�

ei��Lq�−�Rq��

� �	cLk↑
† �t�cLq�↑

† �t�
e	cRk�↑
† �t�cRq↑

† �t�
e

± 	cRq↑
† �t�cRk�↑

† �t�
e	cLq�↑
† �t�cLk↑

† �t�
e�

=
1

2
���JLR

2 �L�R� d�d��ei��−����

� � fL����1 − fR����� ± fR�����1 − fL����� . �B4�

Exchanging the roles of R and L, L↔R, C�R�RL,LR
zz↑↑ �t , t��

yields

C�R�RL,LR
zz↑↑ �t,t�� =

1

2
���JLR

2 �L�R� d�d��e−i��−����

� �fR�����1 − fL���� ± fL����1 − fR������ .

�B5�

As we take the leads to be normal metals /�semiconductors�,
we have

C�R�LR,RL
zz↓↓ �t,t�� =

1

2
���	�QLR

z↓↓�t�,QRL
z↓↓�t���±
e

= C�R�LR,RL
zz↑↑ �t,t�� ,

C�R�RL,LR
zz↓↓ �t,t�� = C�R�RL,LR

zz↑↑ �t,t�� ,

C�R�LR,RL
zz↑↓ �t,t�� =

1

2
���	�QLR

z↑↑�t�,QRL
z↓↓�t���±
e = 0,

C�R�LR,RL
zz↑↓ �t,t�� = 0.

Furthermore,

C�R�LL,LL
zz �t,t�� =

1

2
���	�QLL

z �t�,QLL
z �t���±
e

= ���JLL
2 �L

2 � d�d��ei��−����

� �fL����1 − fL����� ± fL�����1 − fL����� ,

�B6�
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C�R�RR,RR
zz �t,t�� =

1

2
���	�QRR

z �t�,QRR
z �t���±
e

= ���JRR
2 �R

2 � d�d��ei��−����

� �fR����1 − fR����� ± fR�����1 − fR����� .

�B7�

Finally, C�R�zz�t , t�� are functions only of the time difference
� and take the form:

C�R�zz��� = ����
�

J��
2 ��

2 � d�d��ei��−����

� �f�����1 − f������ ± f������1 − f������

+ ���JLR
2 �L�R� d�d���ei��−���� ± e−i��−�����

� �fL����1 − fR����� ± fR�����1 − fL����� .

�B8�

�2� C�R�+−/−+�t , t��=��,��C�R����,���
+−/−+ �t , t��:

C�R�LR,RL
+−/−+��� =

1

2
���	�QLR

+/−�t�,QRL
−/+�t���±
e

=
1

2
���JLR

2 �L�R� d�d��ei��−����

� �fL����1 − fR����� ± fR�����1 − fL����� ,

�B9�

C�R�RL,LR
+−/−+��� =

1

2
���	�QRL

+/−�t�,QLR
−/+�t���±
e

=
1

2
���JLR

2 �L�R� d�d��ei��−����

� �fR����1 − fL����� ± fL�����1 − fR����� ,

�B10�

C�R�LL,LL

RR,RR

+−/−+
��� =

1

2
����QLL

RR

+/−
�t�,QLL

RR

−/+
�t���

±
�

e

=
1

2
���JLL/RR

2 �L/R
2 � d�d��ei��−����

� �fL/R����1 − fL/R�����

± fL/R�����1 − fL/R����� . �B11�

Moreover, we can easily obtain

C�R�+−��� = C�R�−+��� =
1

2
C�R�zz��� . �B12�

Therefore, in �-Fourier space, the spectral function C���
defined in Eq. �17� is given by

C��� =
1

2
�

−�

�

d�ei��Czz���

=
1

2
��

�

J��
2 ��

2 � d��f�����1 − f��� + ���

+ f��� + ���1 − f������

+
1

2
�JLR

2 �L�R� d��
�

�f�����1 − f �̄�� + ���

+ f�����1 − f �̄�� − ���� . �B13�

Also, the imaginary part of the retarded susceptibility R���
defined in Eq. �16� is

R��� =
1

2
�

−�

�

d�ei��Rzz���

=
1

2
��

�

J��
2 ��

2 � d��f���� − f��� + ���

+
1

2
�JLR

2 �L�R� d��fR�� − �� − fR�� + ��� .

�B14�

It is readily seen that

C�− �� = C���, R�− �� = − R��� . �B15�

Using the formulas

� d��f��� + �� − f������ = − ���� − �� + �� , �B16�

and

� d�f��� + ���1 − f������ =
� − �� + ���

e��−��+����/T − 1
, �B17�

we can perform the � integrals in the large bandwidth limit,
with the results

R��� = �� JLL
2 �L

2 + JRR
2 �R

2

2
+ JLR

2 �L�R�� , �B18�

C��� =
�

2
�JLL

2 �L
2 + JRR

2 �R
2�T���

T
�

+
�

2
JLR

2 �L�RT��� + V

T
� + ��� − V

T
�� ,

�B19�

where we have defined

��x� � x coth� x

2
� . �B20�

It should be noted that when leads are in thermodynamic
equilibrium, �L=�R, the spectral function C��� and the
function R��� obey the fluctuation-dissipation theorem
C���=R���coth�� /2T�.
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