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We employ the density functional Kohn-Sham method in the local spin-density approximation to study the
electronic structure and magnetism of quasi-one-dimensional periodic arrays of few-electron quantum dots. At
small values of the lattice constant, the single dots overlap, forming a nonmagnetic quantum wire with nearly
homogenous density. As the confinement perpendicular to the wire is increased, i.e., as the wire is squeezed to
become more one dimensional, it undergoes a spin-Peierls transition. Magnetism sets in as the quantum dots
are placed farther apart. It is determined by the electronic shell filling of the individual quantum dots. At larger
values of the lattice constant, the band structure for odd numbers of electrons per dot indicates that the array
could support spin-polarized transport and therefore act as a spin filter.
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I. INTRODUCTION

Quantum dots or “artificial atoms,” as they are frequently
called, confine a few electrons on a small conduction elec-
tron island, built in �or from� a semiconductor heterostruc-
ture. Being finite-sized fermion systems, quantum dots can
show strong shell effects which determine their physical
properties. Just like for atoms, quantum dots with closed
shells are particularly stable, implying “noble” structures for
certain numbers of electrons in the dot. Following Hund’s
rules, at a half-filling of a shell, orbital degeneracy can lead
to spin alignment. This was discovered first, to the best of
our knowledge, for small vertical quantum dot samples with
circular-parabolic shapes by Tarucha et al.1 The experimental
findings were later theoretically confirmed by electronic
structure calculations using mean field methods as well as
quantum Monte Carlo techniques or even a numerical diago-
nalization of the full many-body Hamiltonian �see Reimann
and Manninen2 for a review�.

Experimentally, few-electron quantum dot structures
where the shell effects on magnetism could be observed, are
challenging to fabricate. One example where spontaneous
magnetism has been found, are one-dimensional quantum
point contact constrictions formed in a gate-patterned
heterostructure.3–5 The intrinsic magnetic properties of these
nanostructures have drawn much attention recently due to
their potential applicability in spintronics devices.6 Quantum
point contacts7 and single quantum dots8,9 were found to
have spin filtering capabilities, with a possibility to serve for
either generating or detecting spin-polarized currents.

Arranging many quantum dots in a lattice, one can build
artificial crystals with designed band structure10,11 which can
be manipulated, for example, by tuning the interdot coupling
and the number of confined electrons in the single quantum
dots. The dot lattice does not suffer from structural deforma-
tions, which has the advantage that it can be designed freely
without having to consider lattice instabilities.12

Fabrication of a quasi-one-dimensional artificial crystal
consisting of a sequence of a few quantum dots was sug-
gested by Kouwenhoven et al.10 already in the 1990s. They
observed oscillations in the conductance as a function of gate

voltage, arising from the mini-band-structure in the periodic
crystal. Small dots in well-ordered lattices could be synthe-
sized by self-organized growth.15 A particularly interesting
artificial lattice structure is the Kagome lattice, due to the
possibility of flat-band ferromagnetism.12,16–19 Shiraishi et
al.16 have pointed at the importance of these structures for
fast processing and high-density storage of information.

For square lattices, Koskinen et al.20 showed within the
density-functional scheme that few-electron quantum dot lat-
tices have a rich magnetic phase diagram, depending on the
lattice constant and electron number. Related observations
have been made also within the Hubbard model.12,21,22

In this paper, we investigate the electronic and magnetic
properties of quasi-one-dimensional quantum dot arrays. We
suggest that such linear quantum dot chains could, in fact,
lead to single-spin conductivity.

In our model the single quantum dot confinement is pro-
vided by a rigid Gaussian-shaped background charge distri-
bution. At the single dot centers, this potential is approxi-
mately parabolic. The band structure and the magnetic
properties depend on the lattice constant, a, and the number
of electrons per dot N. Here, conductivity of the dot chain is
only considered by observing whether there is a band gap at
the Fermi level or not, which allows a qualitative under-
standing.

At small values of the lattice constant, the single dots
overlap, forming a nonmagnetic quantum wire with nearly
homogenous density. As the confinement perpendicular to
the wire is increased, i.e., the wire is squeezed to become
more one-dimensional, the ground state is a spin density
wave caused by a spin-Peierls transition.24–26 Magnetism sets
on as the lattice constant is increased. It is determined by the
shell structure of the individual dots: the arrays are nonmag-
netic insulators for closed single-dot shells at N=2 and 6. At
the half-filled shell �N=4� the spin of the dot is determined
by Hund’s rule and the array is an antiferromagnetic insula-
tor. Ferromagnetism is observed both at the beginning and
the end of a shell �here N=3,5�. The spin-up and spin-down
bands are separated by the exchange splitting. At sufficiently
large lattice constant a one observes a gap between these
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bands. In this case the current would be carried by a single
spin only, acting as a spin filter.

II. THE COMPUTATIONAL METHOD

In order to model the one-dimensional quantum dot array,
we consider interacting electrons moving in two dimensions
in a rigid periodic background charge distribution e�B. The
background charge number per unit cell is chosen to match
the electronic charge of the unit cell in order to ensure over-
all charge neutrality. We employ the Kohn-Sham method
with periodic boundary conditions. The Kohn-Sham orbitals
are of Bloch form �nk��r�=exp�ik ·r�unk��r�, where n labels
the band, �= �↓ , ↑ � is the spin index and the wave vector k is
confined into the first Brillouin zone. The periodic functions
unk��r� satisfy the Bloch-Kohn-Sham equations

−
�2

2m* �� + ik�2unk��r� + vef f
� �r�unk��r� = �nk�unk��r� ,

�1�

where the periodic effective potential is

vef f
� �r� =� e2

„��r�� − �B�r��…
4�	0	�r − r��

dr� + vxc
� ���r�,
�r�� , �2�

� is the electron density and 
= ��↑−�↓� /� is the polarization.
In the local spin-density approximation we use the
generalized27 Tanatar-Ceperley28 parameterization for the
polarization-dependent exchange-correlation potential
vxc

� ���r� ,
�r��. In the band structure calculation, the func-
tions unk��r� are expanded in a basis with 11�11 plane
waves. For one-dimensional systems, the wave vector re-
duces to a wave number for which we chose an equidistant
19-point mesh in the first Brillouin zone. The self-consistent
iterations were started with antiferromagnetic and ferromag-
netic initial potentials. Small random perturbations were
added to the initial guesses in order to avoid convergence
into saddle points of the potential surface. In addition, we
use an artificial temperature to allow fractional occupation
numbers for nearly degenerate states at the Fermi level. We
noted that by decreasing the temperature the amplitudes of
the spin-density and the average spin per dot become some-
what higher for small lattice constants. Nevertheless, we
must emphasize that the temperature is low enough not to
affect the ground-state. The statistical occupations merely
help occupying degenerate levels to ensure convergence.
We use effective atomic units with Hartree Ha
=m*e4 /�3�4�	0	�2 for energy and the Bohr radius aB

*

=�24�	0	 /m*e2 for length, where m* is the effective mass
and 	 the dielectric constant of the semiconductor material in
question.

III. MAGNETISM IN A 1D QUANTUM DOT ARRAY

Studying magnetism in a one-dimensional array, the sim-
plest geometry to choose for the unit cell is a rectangle with
two quantum dots per cell. These dots lie in a row along the
x axis of the cell, one in the center and one crossing periodi-
cally to the edge of the cell. The confining potential is mod-

eled by a periodic positive background charge distribution
described by a sum of Gaussians centered at lattice sites R
=a�nx ,0�, nx=0,1 ,2 , . . .,

�B�r� = �
R

�d�r − R�; �d�r� =
1

�rs
2 exp�− r2/Nrs

2� , �3�

where r= �x ,y� is a two-dimensional position vector. A single
Gaussian carries positive charge Ne with density 1/�rs

2 at
the center. The parameter rs determines the average electron
density at the center of the dot. Throughout this paper we use
the value rs=2aB

* which is close to the equilibrium density of
the two-dimensional electron gas. The bottom of the confin-
ing potential provided by the background charge distribution
is harmonic to a good approximation. Since there are two
quantum dots in the unit cell, the electronic levels are split
into bonding and antibonding bands. As a consequence, for
both spins there are two 1s bands, four p bands, six 2s1d
bands and so on. In a one-dimensional quantum dot array
one can have a smooth transition from the tight-binding de-
scription to the nearly-free-electron picture simply by vary-
ing the lattice constant a.

Figure 1 shows the bands for N=3 with different interdot
separations. Spin-up and spin-down bands are plotted in
solid and dashed lines, respectively, and the Fermi level is
fixed at zero energy. The spin degeneracy is lifted by the
exchange splitting causing magnetism as will be discussed
later. For very large values of the lattice constant a, the elec-
tron densities of the single dots hardly overlap, and the dots
are isolated. In this case, the energies of ferromagnetic and
antiferromagnetic solutions are nearly degenerate as the local
approximation is unable to distinguish between them. Fur-
thermore, the bands are flat with band gap energies approxi-
mately equal to the single dot level spacings. Even though
the Fermi energy stays inside a band, in the limit of large

FIG. 1. �Color online� Lowest bands at selected values of the
lattice constant a for a quantum dot array with three electrons per
quantum dot �in atomic units, see text�. The spin-down bands are
plotted with dashed lines, and spin-up bands are plotted with solid
lines. The dotted line indicates the Fermi level fixed at zero energy.
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lattice constant the dot array is expected to become a Mott
insulator13,14 due to a diminished hopping probability be-
tween the single dots.

By decreasing a, i.e., by bringing the quantum dots closer
to one another, the band dispersion increases. The bands cor-
responding to some specific quantum dot level are bunched
and the bunches are separated by energy gaps, which is dem-
onstrated in Fig. 1 for lattice constant a=10.13aB

* . By de-
creasing a further, the band gaps close. For sufficiently small
a the quantum dots overlap strongly, which leads to an es-
sentially homogenous quantum wire with a Gaussian cross
section. In this nearly-free limit the transverse motion sepa-
rates from the longitudinal one. Consequently, the transverse
states are quantized by the Gaussian-shaped well, while the
longitudinal states remain “free” with parabolic dispersion.
This is reflected in the band structure, showing nearly equi-
distant subband parabola where the nth subband for a given k
corresponds to a Kohn-Sham-Bloch orbital with n−1 nodes
in the transverse direction. We note also that the higher bands
have parabolic dispersion at longer interdot separations than
the lower ones due to the longer spatial extent of high-energy
orbitals. From Fig. 1 we note that the second transverse sub-
band is occupied at a=5.06aB

* while at a=3.14aB
* the Fermi

level reaches the third subband. Having also the higher trans-
verse modes occupied, the quantum dot chain becomes
quasi-one-dimensional.

Figure 2 shows the magnetism of the quasi-1D quantum
dot array as a function of electron numbers per quantum dot
and lattice constant a. Shown in Fig. 2 are regions where the
array is conducting or insulating. The bars indicate regions
where the Fermi level resides solely on a single spin band.
The arrows indicate the spin arrangement in the array.

For a single electron per quantum dot, N=1 only the
bonding s band is filled. Due to the exchange splitting of the
single dot levels, the bonding and antibonding bands are
separated by an energy gap and the array shows antiferro-
magnetic order. Note that this case can be approximated with
a half-filled Hubbard model which, in the limit of small hop-
ping probability leads to an antiferromagnetic Heisenberg
model.23 Figure 3 shows that the average spin per dot, cal-
culated by integrating the spin density over a single dot,
drops gradually from 1

2 to 0 as the lattice constant is de-
creased. The band gap and thus the antiferromagnetism per-
sists down to very small values of the lattice constant. At the
closed shell N=2 the bonding and antibonding 1s bands are

filled leading to a nonmagnetic insulator. The transition from
a tightly bound insulator to a nearly free metal occurs at the
lattice constant a�6aB

* , when the gap between the 1s and p
bands closes up.

Next, the p bands are occupied. At large values of the
lattice constant there are two degenerate p orbitals for a
single dot giving rise to two bonding bands and two anti-
bonding bands for both the spins as shown in Fig. 4. For
narrow bands the density of states is high which according to
the Stoner criterion14 leads to ferromagnetism. The orbitals
with density lobes oriented along the wire yield higher dis-
persion than the ones perpendicular to it. For N=3 there is
one p electron per quantum dot, which triggers ferromag-
netism. An example of the total electron and spin densities is
shown in Fig. 5. The levels with majority spin are lower than
the ones with minority spin as a result of the exchange split-
ting of the energy bands. The density in the array increases
as the dots are brought closer. Consequently, the kinetic en-
ergy becomes the dominant contribution to the total energy.
From Fig. 1 we note that at a=5.06aB

* , the dispersion is para-
bolic and the spin degeneracy is restored. When the lattice
constant is further reduced to a=3.14aB

* , another transverse
subband reaches the Fermi level. At the band minimum, the
density of states diverges �in 1D� which according to the
Stoner criterion leads to ferromagnetism as seen in Figs. 1
and 3.

Since the Fermi level is bound to the p-band region, the
array with three electrons per dot remains conductive at all
lattice constants. Figure 4 shows that the bands of the minor-
ity spin are pushed up in energy by exchange splitting. As a
consequence, just before the insulating phase, when the
bandwidths are relatively narrow, the Fermi level for the mi-
nority spin lies in the band gap but the majority spin remains
conductive. A similar behavior is found in the case of N=5
since there are three p electrons and the shell is almost filled.
However, this time the minority spin is conductive because
the levels with fewer electrons are pushed to higher energies.
The spin-dependent conductivity might open an intriguing
opportunity to use the linear quantum dot chain as a spin
filter.

At half-filled p shells �N=4� Hund’s rule leads to maxi-
mized spin in an isolated quantum dot. Indeed, the spin per

FIG. 2. �Color online� Magnetism in a linear chain of quantum
dots as a function of the number of electrons per dot, and the lattice
constant. The conducting, the insulating, and the phase where only
one spin is conductive are shown.

FIG. 3. �Color online� Spin per dot for N=1, 3, 4, and 5 as a
function of lattice constant.
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dot for N=4 is at its maximum �1.0� at lattice constant a
�18aB

* and it decreases gradually with a as the spin densities
“spill” into the other dots. Due to Hund’s rule and the ex-
change splitting, the system will be magnetic. Now, however,
antiferromagnetism is favored since the antiferromagnetic or-
der opens a gap at the Fermi level while the ferromagnetic
order would stay metallic. Since a gap is formed at the Fermi
surface, the array is insulating until a transition to a nearly
homogenous wire occurs. Finally for N=6, the p shell is
filled and the linear quantum dot chain remains nonmagnetic
at all values of a.

The results are presented in effective atomic units. The
parameters are chosen so that they correspond to typical
quantum dots in GaAs.2 Then the exchange splittings shown
in Fig. 1 correspond to 0.1–0.2 meV, and the energy differ-

ence between the ferromagnetic and antiferromagnetic solu-
tions for N=3 with a large lattice constant of 100 nm is still
0.05 meV �corresponding to a temperature of 0.6 K�. These
length and energy scales are experimentally accessible.

IV. SPIN-PEIERLS TRANSITION IN A HOMOGENOUS
QUANTUM WIRE

At small values of the lattice constant a the quantum dots
overlap significantly, forming a homogenous quantum wire
with a Gaussian cross section. Let us look at this limit more
closely. Consider a quantum wire with a Gaussian cross sec-
tion closed in a rectangular unit cell. The background charge
distribution is chosen to be

FIG. 4. �Color online� 1p-bands and lowest 2s 1d-bands for �a� N=3 at a=13.05aB
* and �b� N=5 at a=15.30aB

* . The dashed lines are the
spin-down bands, the solid lines the spin-up bands. The dotted line indicates the Fermi level. The spin-up and spin-down bands are separated
by a gap which leads to single-spin conductivity.

FIG. 5. �Color online� Total density and spin
density for N=3 at lattice constant 13.05aB

* .
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�B�x,y� =
1

2rs
1D

1
	2��

exp
−
y2

2�2� , �4�

where rs
1D is the one-dimensional density parameter. The

wire lies along the x axis and its width is measured by the
full width at half maximum 2	2 ln 2�. Since there is no
definite lattice parameter for the wire, the length L of the unit
cell is chosen such that �B integrates to the desired charge
Ne, thus we have L=2rs

1DN. We have chosen four electrons
in the unit cell �N=4� and fixed rs

1D=2aB
* . In addition, we

define parameter C1D=2rs
1D/� to describe the ratio of the

average interelectron separation and the width of the wire:
with increasing C1D the wire becomes narrower. Conse-
quently, the energies of the higher transverse modes are
pushed up in energy.

Figure 6 shows band structures of homogenous quantum
wires for selected widths. For C1D=2, the dispersion is para-
bolic and the Fermi level lies close to the second transverse
subband. In this case the wire shows no magnetism. Antifer-
romagnetism sets on at C1D=4, as the spin-Peierls transition
occurs. The ground state is a spin density wave with wave
length of L /2=rs

1DN=8aB
* . The spin-Peierls transition opens

a gap at the Fermi level and turns the wire into an insulator.
The amplitude of the spin density wave increases with in-
creasing C1D.

V. SUMMARY

We studied the electronic and magnetic properties of one-
dimensional arrays of few-electron quantum dots. The spin
per dot, and thus the magnetism of the array, depends on the
shell filling of the individual dots and the interdot coupling.

Furthermore the band structure of chains with open-shell
dots suggests that conductivity could become spin dependent
at suitable values of the lattice constant.
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