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We theoretically study “cavity” phonons, i.e., acoustic phonons localized in a foreign layer �a cavity layer�
embedded in a periodic one-dimensional superlattice �SL� in the isotropic, continuum approximation. To find
the eigenfrequencies of the cavity modes we develop a formulation based on the transfer matrix and Green’s
function methods and apply it to the case where the confined phonons propagate along the layer interfaces.
These cavity phonons are predicted to exist for both the coupled longitudinal and transverse acoustic mode �the
sagittal mode� and the single mode with pure transverse polarization �the shear-horizontal mode�. Numerical
examples are presented for periodic Al/W multilayered structures with a Ag cavity layer and GaAs/AlAs SLs
with an Al0.8Ga0.2As layer. Finite-difference time-domain calculations for phonon packet propagation are also
conducted to directly illustrate the existence of the confined cavity modes and also to confirm the validity of
our formulation.
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I. INTRODUCTION

The effects of inhomogeneities on the propagation of
phonons and acoustic waves in periodic, elastic multilayered
structures or superlattices �SLs� have recently been studied
extensively. In particular, the presence and characteristics of
localized phonons at the surface of semi-infinite SLs have
been studied theoretically with the isotropic approximation1,2

and also by including elastic anisotropy.3 Experimental stud-
ies with the picosecond ultrasonic technique4 and Raman
scattering have revealed the existence of localized acoustic
surface modes in both semiconducting and metallic SLs.5–8

Also the localized vibrations at the interface between a su-
perlattice and a substrate have been investigated by Djafari-
Rouhani and co-workers.9,10 All these localized modes asso-
ciated with the inhomogeneities that destroy the perfect
periodicity of a system appear inside the band gaps of the
bulk modes. Possible applications of these surface and inter-
face “guided modes” to signal-processing devices have been
discussed by Murdoch.11

Another interesting inhomogeneity is induced by intro-
ducing a single or a few layers different from the constituent
layers of the host SL. It has been well established that even a
small amount of defects in a crystal lattice can radically alter
the frequencies of the normal modes of vibration as well as
the associated pattern of atomic displacement.12,13 Similar
effects are also expected to occur when a layer with different
thickness or of different material, i.e., a foreign layer �a cav-
ity layer�, is introduced in an otherwise perfect SL. More
specifically, vibrations localized at this embedded cell ap-
pear, in general, with eigenfrequencies inside the frequency
gaps of bulk phonons existing at the center, boundaries, and
even inside the folded Brillouin zone of the host
superlattice.14 We call such localized vibrations “cavity”
modes of phonons.

Recently, with Raman scattering experiments, Trigo et al.
demonstrated the existence of a confined acoustical vibration
in a GaAs/AlAs SL with an AlGaAs cavity layer.15,16 This
vibration was found in a zone-center frequency gap with a
complex SL wave number qz �we take the z axis along the

growth direction of the SL� and for the vanishing wave vec-
tor parallel to the layer interfaces k� = �kx ,ky�=0. The associ-
ated lattice displacement is, however, expected to be consid-
erably extended on either side of the cavity layer due to
small acoustic mismatch between the cavity and host layers.
The theoretical studies on the cavity phonons in SLs devel-
oped so far are mostly restricted to this case with k� =0.22,23

For these nonpropagating local modes, three kinds of acous-
tic vibrations are treated to be decoupled from each other
�valid in the isotropic approximation, for example� and ac-
cordingly the mathematical analysis is rather straightforward.

A more general and physically appealing case is that the
confined modes propagate along the layer interfaces, i.e.,
k��0, with their vibrational amplitudes localized in the cav-
ity cell and its neighborhood. We still call these propagating
confined modes the cavity phonons. These phonons are
analogous to the waveguide modes in two-dimensional
phononic crystals with a line defect.17,18 Hence, the existence
of propagating cavity phonons should prove that SLs with a
foreign layer can work as efficient planar waveguides for
phonons and ultrasound, and may have potential applications
to acoustic devices such as frequency and wave-vector selec-
tive filters, and the acoustic analog of channel drop
filters.19,20 Also the phonon-phonon and electron-phonon in-
teractions in the cavity layer should be highly enhanced due
to the strong confinement effects and the associated large
displacement amplitudes. Thus, the cavity phonons with k�

�0 are expected to play important roles in the transport of
thermal energy in SLs and multilayered structures.21

The purpose of the present paper is to formulate the
propagating cavity phonons in SLs. In the isotropic approxi-
mation we assume, we can set k� = �k� ,0�. In this case two
vibrational modes �longitudinal and transverse modes� polar-
ized inside the x-z plane �the sagittal plane� are coupled to
each other and possibly induce the cavity-phonon modes
which we call sagittal �SG� cavity modes, while the trans-
verse vibrations polarized in the y direction parallel to the
layer interfaces are decoupled from the former mode and
induce the cavity modes referred to as the shear-horizontal
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�SH� cavity modes. For the SG cavity mode in SLs we will
give explicit formulas which determine their eigenfrequen-
cies, or cavity branches, and the spatial profiles of the asso-
ciated lattice displacements. For the simpler SH cavity mode
the corresponding formulas are given by slightly modifying
the results of Ref. 3 for the nonpropagating �k� =0� mode.
So, only relevant notes for k��0 are presented in the Appen-
dix.

In the next section, we develop a mathematical formula-
tion for coupled longitudinal �L� and transverse �T� phonons
in periodic multilayered structures based on the transfer-
matrix and Green’s function methods. In Sec. III we apply
these methods to finding cavity phonon modes in SLs when
a foreign layer is introduced. Numerical examples are pre-
sented in Sec. IV for an Al/W multilayered structure with a
Ag cavity layer and for an AlAs/GaAs SL with an AlGaAs
cavity layer. Conclusions are given in Sec. V. In the Appen-
dix we give some notes for the SH cavity-phonon mode.

II. FORMULATION

A. Periodic multilayered structures and transfer matrix

We consider a periodic SL consisting of alternating A and
B layers that are stacked in the z direction with a flat inter-
faces parallel to the x-y plane. The thicknesses of the con-
stituent layers are dA and dB, respectively, and the unit period
is D=dA+dB. For the general case where A and B are aniso-
tropic materials all three modes of vibrations �one quasilon-
gitudinal and two quasitransverse modes� are coupled to
each other and the displacement vector UI,n and the stress
vector SI,n �the component of the stress tensor normal to the
interfaces� in the I-type layer �I=A ,B� of the nth period are
written as24

�UI,n�x,t�
SI,n�x,t�

� = �
j=1

6

aI,n
�j�� eI

�j�

�I
�j� �exp�ikI,z

�j�z�ei�k�·x�−�t�

� WI,n�z�ei�k�·x�−�t� �I = A,B� , �1�

where x= �x� ,z�= �x ,y ,z�, j is the index which discriminates
six waves �three pairs of counterpropagating waves� in a
layer, a is the amplitude, e is the unit polarization vector, �
is the stress vector whose components are defined by ��I

�j�	i
=cI,i3mnknem /k� with cI,ilmn the stiffness tensor �the summa-
tion convention over repeated indices is assumed�, k
= �k� ,kz�= �kx ,ky ,kz�= �k1 ,k2 ,k3� with kz=kI,z

�j� the wave vec-
tor, and � is the angular frequency. The wave numbers kI,z

�j�

�j=1–6�, which are complex in general, are determined by
solving the Christoffel equations

��I�
2�im − cI,ilmnklkn�em = 0 �i = 1,2,3� , �2�

for given k� �a real vector� and �, where � is the mass den-
sity. However, if A and B are isotropic materials the Christ-
offel equations Eq. �2� are factorized into two sets; one for
the pure T mode polarized in the y direction �the SH mode�,
and the other for the coupled L and T modes polarized inside
the x-z plane with x direction parallel to the wave vector k�

�the SG mode�. In the present study we assume this case and
the formulation is developed predominantly for the latter SG
mode. The results for the former SH mode are briefly noted
in the Appendix.

For the SG mode consisting of coupled L and T vibrations
the sum over j in Eq. �1� extends up to four �two pairs of
counterpropagating waves in a layer� instead of six and we
can explicitly write the four-component vector WA,n�z� in the
A layer as25,26

WA,n�z� = �̂A�̂A�z�An, �3�

where

�̂A =

sin �A

�L� cos �A
�T� sin �A

�L� − cos �A
�T�

cos �A
�L� − sin �A

�T� − cos �A
�L� − sin �A

�T�

2C44
A cos �A

�L� C44
A cos�2�A

�T��
sin �A

�T� − 2C44
A cos �A

�L� C44
A cos�2�A

�T��
sin �A

�T�

C11
A cos�2�A

�T��
sin �A

�L� − 2C44
A cos �A

�T� C11
A cos�2�A

�T��
sin �A

�L� 2C44
A cos �A

�T� � , �4�

�̂A�z� =

exp�ikA,z

�L�z	 0 0 0

0 exp�ikA,z
�T�z	 0 0

0 0 exp�− ikA,z
�L�z	 0

0 0 0 exp�− ikA,z
�T�z	

� , �5�
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and

An = �aA,n
�1� ,aA,n

�2� ,aA,n
�3� ,aA,n

�4� �t � �aA,n
�L� ,aA,n

�T� , ãA,n
�L� , ãA,n

�T� �t. �6�

In these equations �A
�L� and �A

�T� are the propagation angles in
the A layer measured from the normal of the interfaces. We
have also written �kA,z

�1� ,kA,z
�2� ,kA,z

�3� ,kA,z
�4��t��kA,z

�L� ,kA,z
�T� ,−kA,z

�L� ,
−kA,z

�T��t and the superscripts L and T represent the longitudinal
and transverse vibrations. The abbreviated subscript nota-
tions, e.g., C44

I =cI,1212, etc., have been used for the elastic
constants. The corresponding vector WB,n�z� in the B layer is
defined similarly.

Next we define the transfer matrix T̂n which relates WI,n
and WI,n+1 as

WA,n+1�nD� = T̂nWA,n��n − 1�D	 . �7�

For a perfect periodic system T̂n is independent of n, or T̂n

= T̂, and we find

WA,n+1�nD� = �T̂�nWA,1�0� . �8�

There exist similar equations with A replaced by B and the

explicit expression for T̂ is given by T̂= T̂BT̂A with

T̂I = �̂I�̂I�dI��̂I
−1 �I = A,B� . �9�

B. Green’s tensor in periodic superlattices

We try to find the lattice displacement UI,n at the layer
interfaces by introducing the Green’s tensor in periodic su-
perlattices. To save the indices we define WA,n+1�nD��wn

and hence

wn+1 = T̂nwn, �10�

where

wn = �Un

Sn
� , �11�

with Un�UA,n+1�nD�, etc., and

T̂n = �T̂n
�1� T̂n

�2�

T̂n
�3� T̂n

�4� � . �12�

In Eq. �12� T̂n
�i� �i=1–4� are 2	2 matrices.

Eliminating Sn from Eq. �10�, we obtain an equation that
relates the lattice displacements at the interfaces of adjacent
unit cells,

K̂nUn+1 + Ĵn−1Un−1 = �M̂n + N̂n−1�Un, �13�

where

K̂n = �T̂n
�2��−1, �14�

Ĵn = T̂n
�4��T̂n

�2��−1T̂n
�1� − T̂n

�3�, �15�

M̂n = �T̂n
�2��−1T̂n

�1�, �16�

N̂n = T̂n
�4��T̂n

�2��−1. �17�

In the perfect, periodic SL consisting of alternating A and B

layers, matrices K̂, Ĵ, M̂, and N̂ are independent of n and
hence on deleting this index Eq. �13� is formally written as

L̂nmUm = 0 , �18�

with

L̂nm = K̂�n+1,m + Ĵ�n−1,m − R̂�n,m �19�

and

R̂ = M̂ + N̂ . �20�

Now we introduce the Green’s function Ĝnm defined by

L̂nlĜlm = �n,mÎ , �21�

where Î is a unit matrix. In order to solve this equation, we

expand Ĝnm in a Fourier series,

Ĝnm = �
q

eiqxng̃m�q� , �22�

where xn=nD and the wave number q is restricted to
−
 /D�q�
 /D, i.e., the mini-Brillouin zone. Noting that

�n,m =
1

N0
�

q

eiq�xn−xm�, �23�

with N0 the number of periods, we obtain

g̃m�q� =
1

N0
�K̂eiqD + Ĵe−iqD − R̂�−1e−iqxm. �24�

Thus, by converting the sum over q into the integral over the
mini-Brillouin zone according to

1

N0
�

q

→
D

2

�

−
/D


/D

dq , �25�

the Green’s function �Eq. �22�	 is expressed as

Ĝnm =
D

2

�

−
/D


/D

�K̂eiqD + Ĵe−iqD − R̂�−1eiq�n−m�Ddq . �26�

From this equation we see that Ĝnm= Ĝn−m. The integral over
q can be done analytically. To see this we first write Eq. �26�
as

Ĝn =
1

2

�

−





d��K̂ei� + Ĵe−i� − R̂�−1ein� �27�

=
1

2

�

−





d�
1


�ei��
�̂�ei��ein�, �28�

where


�ei�� � det
K̂ei� + Ĵe−i� − R̂
 �29�
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=det� 2K11 cos � − R11 � cos � − R12 + i� sin �

− � cos � + R12 + i� sin � 2K22 cos � − R22
�

�30�

and

�̂�ei�� = �2K22 cos � − R22 − � cos � + R12

� cos � − R12 2K11 cos � − R11
�

− i� sin ��0 1

1 0
� , �31�

with �=K12−K21 and �=K12+K21. In deriving the expres-
sions of Eqs. �30� and �31�, we have used the following
equations deduced with the symmetry properties of the trans-

fer matrix T̂:

K̂ = �K11 K12

K21 K22
� , �32�

Ĵ = � K11 − K21

− K12 K22
� , �33�

R̂ = � R11 R12

− R12 R22
� . �34�

Here, it should be noted that 
�ei��=0 gives the dispersion
relations of the coupled L and T phonons in the perfect,
periodic superlattice. Hence, 
�ei�� is factorized as


�ei�� = �e−2i��ei� − z1��ei� − z2��ei� −
1

z1
��ei� −

1

z2
�
�35�

where ��det K̂ and z1 and z2 �also 1/z1 and 1/z2� are ei-

genvalues of the transfer matrix T̂. In a frequency band of the
coupled L and T phonons, at least either 
z1
=1 or 
z2
=1 is
satisfied, but inside the mutual frequency gaps of these
phonons two of the eigenvalues �we choose z1 and z2� have
modulus smaller than unity, or 
z1
�1 and 
z2
�1. We are
interested in the latter case because the eigenfrequencies of
the cavity modes are found inside those mutual frequency
gaps of the host superlattice.

Thus, the Green’s function is calculated to be

Ĝn =
1

2

��2K22 − �

� 2K11
�In

�1� − �R22 − R12

R12 R11
�In

�2�

+ �0 �

� 0
�In

�3�� , �36�

where In
�1�, In

�2�, and In
�3� are given by

In
�1� � �

−





d�
1


�ei��
cos � cos
n
� �37�

=



�

z1z2

�z1 − z2��z1z2 − 1�� z1
2 + 1

z1
2 − 1

z1

n
 −

z2
2 + 1

z2
2 − 1

z2

n
� , �38�

In
�2� � �

−





d�
1


�ei��
cos
n
� �39�

=
2


�

z1z2

�z1 − z2��z1z2 − 1�� z1

n
+1

z1
2 − 1

−
z2


n
+1

z2
2 − 1

� , �40�

In
�3� � �

−





d�
1


�ei��
sin � sin n� �41�

=−



�

z1z2

�z1 − z2��z1z2 − 1�
�z1


n
 − z2

n
� . �42�

Accordingly, the Green’s function Ĝn decreases exponen-
tially as 
n
 increases.

III. CAVITY PHONONS

We consider the structure with a cavity layer �C� of thick-
ness dC situated at the center �n=0� of the periodic multilay-
ers. In this case the relevant transfer matrices are

T̂n =�T̂C �n = 0� ,

T̂ �n � 0� ,
� �43�

and the equations governing the lattice displacements are

�K̂ + �K̂�n,0�Un+1 + �Ĵ + �Ĵ�n,1�Un−1

= �R̂ + ��M̂�n,0 + �N̂�n,1�	Un, �44�

where T̂C is the transfer matrix associated with the cavity
layer �Eq. �9� with I=C	 and

�K̂ = �T̂C
�2��−1 − K̂ , �45�

�Ĵ = �T̂C
�4��T̂C

�2��−1T̂C
�1� − T̂C

�3�	 − Ĵ , �46�

�M̂ = �T̂C
�2��−1T̂C

�1� − M̂ , �47�

�N̂ = T̂C
�4��T̂C

�2��−1 − N̂ . �48�

Next we introduce the matrix �L̂nm defined by

�L̂nm = �K̂�n,0�n,m−1 + �Ĵ�n,1�n,m+1 − ��M̂�n,0 + �N̂�n,1��n,m.

�49�

With this matrix, the equations of motion become

�L̂nm + �L̂nm�Um = ��n,m + Ĝnl�L̂lm�Um = 0 , �50�

where

�L̂ � ��L̂lm� = 
0̂ 0̂ 0̂

0̂ �l̂ 0̂

0̂ 0̂ 0̂
� , �51�
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Ĝ � �Ĝnm� = 
G̃11 Ĝ− G̃13

Ĝ+� ĜC Ĝ−�

G̃31 Ĝ+ G̃33

� , �52�

and the nonvanishing component �l̂ of �L̂nm consists of a
4	4 matrix given by

�l̂ = �− �M̂ �K̂

�Ĵ − �N̂
� . �53�

Also the elements of the Green’s tensors are

Ĝ− =

Ĝ1−N Ĝ−N

Ĝ2−N Ĝ1−N

] ]

Ĝ−2 Ĝ−3

Ĝ−1 Ĝ−2

� , �54�

Ĝ+ =

Ĝ2 Ĝ1

Ĝ3 Ĝ2

] ]

ĜN−1 ĜN−2

ĜN ĜN−1

� , �55�

and

ĜC = �Ĝ0 Ĝ−1

Ĝ1 Ĝ0

� . �56�

The other entries in Eq. �52� are irrelevant to the further
calculations and hence their expressions are not given here.
Finally, introducing the displacement vectors defined by

v � 
U−N+1

]

U−1
� , �57�

u � �U0

U1
� , �58�

w � 
U2

]

UN
� , �59�

the equations determining the SG cavity modes are summa-
rized as

v + Ĝ−�l̂u = 0 ,

�Î + ĜC�l̂�u = 0 ,

w + Ĝ+�l̂u = 0 . �60�

The eigenfrequencies �C of those cavity modes are obtained
as the solutions of the secular equation

det
Î + ĜC�l̂
 = 0. �61�

As we shall see in the next section, the eigenfrequencies
�C for a given k� are found inside the complete gaps of the
host superlattice, where 
z1�k� ,�C�
�1 and 
z2�k� ,�C�
�1
are satisfied simultaneously. In addition, from Eq. �60�, the
associated lattice displacements at �=�C are seen to de-
crease exponentially on either side of the cavity layer. These
are analogous to the effects of a defect introduced to perfect,
periodic lattices.12,13

IV. NUMERICAL EXAMPLES

A. Al/W superlattices with an Ag cavity layer

The first example we study is a metallic Al/W multilay-
ered structure �A=Al, B=W� which exhibits large frequency
gaps due to large acoustic mismatch between the constituents
aluminum and tungsten as tabulated in Table I. This structure
with a foreign layer inserted is expected to show strong cav-
ity effects for phonons. As a possible cavity layer we choose
silver �C=Ag� with the magnitudes of acoustic impedances
Zl and Zt in between those of aluminum and tungsten �see
also the Table I�.

Figure 1�a� illustrates the band structure of the periodic
Al/W superlattice with dAl=dW �unit period is D=dAl+dW�
together with the cavity branches originating from an embed-
ded Ag layer with dC=dAg=D /4 �the thickness is a half of
the host layers�. The cavity branches of the coupled L and T
modes �the SG modes� and also of the pure T modes �the SH
modes� are shown by the bold and thin lines, respectively. As
expected, the frequencies of the cavity modes are found in-
side the band gaps of the corresponding bulk modes. Here
we note that in the band regions of the coupled L and T
phonons �L-T band� in the original superlattice shown in Fig.
1�a� �also for a GaAs/AlAs SL shown below�, at least one of
two vibrational eigenfrequencies is real valued.

Figure 1�b� displays the profiles normal to the layer inter-
faces of the displacement components ux and uz of the SG

TABLE I. The numerical values employed for the mass density
� �in units of g cm−3�, bulk longitudinal and transverse sound ve-
locities vl and vt �in units of 105 cm s−1�, and acoustic impedances
Zl=�vl and Zt=�vt �in units of 105 g cm−2 s−1� tabulated for each
material.

I � vl vt Zl Zt

Al 2.73 6.37 3.09 17.41 8.45

W 19.32 5.21 2.88 100.6 55.6

Ag 10.64 3.74 1.78 39.8 18.9

GaAs 5.32 5.03 3.03 26.8 16.1

AlAs 3.76 5.98 3.60 22.5 13.5

Al0.8Ga0.2As 4.07 5.75 3.46 23.4 14.1
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cavity mode at the point marked by the open circle in Fig.
1�a� �at k�D=3 and �D /vt,Al=4.22�. We recognize that the
lattice displacements are well localized near the Ag cell but
their profiles are not symmetric because the present multilay-
ered system has an asymmetry under the inversion of z. In-
deed, for both ux and uz the largest amplitudes are found
inside the Al layer adjacent to the Ag layer, which is the
lightest element of the structure. Thus, we see as if the pair
of the layers composed of silver and its neighboring alumi-
num act as a cavity cell.

This suggest that more readily understandable results
should be obtained when the assumed structure is symmetric
with respect to the silver layer. Such a symmetric structure
can be realized, for example, if a pair of layers composed of
silver and aluminum with the thickness of the latter same as
the host layer dAl are inserted. In this case the Ag layer is

sandwiched in between Al layers and the relevant transfer
matrix for the cavity cell is T̂C= T̂AgT̂A=Al with T̂Ag the trans-
fer matrix for the Ag layer. Figure 2�a� illustrates the cavity
branches originated from the Ag layers with dC=dAg
=dAl/2=D /4 �the same thickness for the Ag layer as Fig. 1�.
Here we still use dC for the thickness of Ag layer. An inter-
esting result is the fact that there exists a cavity branch with
vanishing group velocity for a finite k�. Figures 2�b� and 2�c�
show how these cavity branches change as the thickness dAg
of the Ag layer is varied. As dAg is increased, the number of
the cavity branches is increased. This is because the frequen-
cies associated with the confined vibrational motions in the
normal direction become lowered as the cavity layer thick-
ness becomes larger and, at the same time, the intervals of
those “quantized” frequencies are decreased. In order to see
these results explicitly, we have marked in Figs. 2�a�–2�c�

FIG. 1. �a� Band structures and cavity mode
branches in the Al/W superlattice with dAl=dW.
The cavity layer is silver with thickness dAg

=dAl/2 sandwiched between WuAl unit cells
�the local structure is WuAluAguWuAl�.
Each band is discriminated according to the dark-
ness, i.e., the lightest band is the pure T �SH�
band, the second lightest band is the coupled L-T
�SG� band, and the darkest band is the overlap-
ping of both bands. The SG and SH cavity pho-
non branches are shown by the bold and thin
lines, respectively. �b� Displacement profiles at
the point marked by the open circle �k�D=3 and
�D /vt,Al=4.22�. Bold line is uz �normal to the
layer interfaces� and dotted line is −iux �parallel
to the layer interfaces� calculated with analytical
formulas.

FIG. 2. Band structures in the Al/W superlattice with dAl=dW the same as in Fig. 1�a� and cavity mode branches. The cavity layer is
silver and sandwiched between WuAl and AluW unit cells �the local structure is WuAluAguAluW�. The thickness of the the Ag
layer is dAg= �a�dAl/2, �b� dAl/4, and �c� dAl. The SG and SH cavity phonon branches are shown by the bold and thin lines, respectively. The
edges of the corresponding branches are marked by filled squares, circles, triangles, and open squares. In the FDTD simulations a frequency
distribution confined in two dot-dashed lines of �a� is assumed for the Fourier components of the external force f i �Eqs. �62�–�65� and �67�	.
In �a� the upper and lower dotted lines show the dispersion relations of the bulk transverse waves in aluminum and tungsten, respectively.
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the edges of the corresponding cavity branches.
Figure 3 displays the spatial profiles of the displacement

components of the SG cavity modes at the points A to C with
frequency �D /vt,Al=3.4 ��D /vt,Al=3.45 for the point A� in-
dicated in Fig. 2�a�. �The relative magnitudes of the displace-
ments in this figure are determined so that 
Cn=0
=1 with
Cn= �aC,n

�1� ,aC,n
�2� ,aC,n

�3� ,aC,n
�4� �t; cf., Eqs. �3� and �6�.	 The dis-

placement profiles exhibit the expected symmetries with re-
spect to the center of the Ag layer. Also we find that there
exists a phase difference of 
 /2 between the displacement
components ux and uz parallel to and normal to the inter-
faces, respectively. �We have assigned the phase so that uz
may be real and ux pure imaginary.� Hence, the particle mo-
tions associated with the cavity modes are elliptic as the
surface localized acoustic waves �Rayleigh waves� in a ho-
mogeneous half space.27

We see that at the points A and C, ux along the interface is
odd with respect to the center of the Ag layer but uz normal
to the interfaces is even. Interestingly, these properties for ux
and uz are interchanged at the point B. Thus, the motions of
the Ag layer at the points A and C are flexural and it is
dilatational at the point B. The lattice displacements at these
points are well localized �within two unit periods or so� on
either side of the Ag layer.

The displacement profiles at the point D shown in Fig. 4
exhibit another interesting behavior. Comparing with the lat-
tice displacements at the points A to C, they are quite ex-
tended due to the fact that this cavity mode frequency is
situated close to a bulk band. Here we note that the latter
bulk band is located below the T phonon branches of the
constituents materials �aluminum and tungsten� plotted by
the dotted lines in Fig. 2�a�. Accordingly, this extra fre-
quency band found in the Al/W superlattice originates from
the phonons localized at the interfaces, that is, both kA=Al,z

�j�

and kB=W,z
�j� �j=1,4�, are all complex numbers. Owing to the

finite thicknesses of the constituent layers, these localized
lattice displacements are extended over neighboring periods
and form a frequency band. The existence of this band has
already been recognized and it is called the Stoneley
band.2,28 Note that the phonons or acoustic waves localized
on either side of the layer interfaces are reduced to the Stone-
ley interface waves when the layer thicknesses become

infinite.29 The spatial amplitude profiles shown in Fig. 4 ex-
hibits the behaviors characteristic of the Stoneley wave at a
single interface of aluminum and tungsten as illustrated in
the inset. This Stoneley wave or Stoneley band is allowed to
exist in restricted regions in the space spanned by the ratios
of elastic constants C44

A /C44
B and mass densities �A /�B of the

constituent materials.30–32 No such localized interface mode
is found at the interface between bulk GaAs and AlAs.

In order to see the propagation of these cavity modes, we
have also made finite-difference time-domain �FDTD� simu-
lations for the time evolution of phonon packets consisting of
a narrow range of frequencies.33–35 In the FDTD scheme the
equations of motion for the lattice displacement

FIG. 3. Displacement profiles in the Al/W
multilayers with a Ag cavity layer �the same as
for Fig. 2�a�	. Bold lines are uz �normal to the
layer interfaces� and thin lines are −iux �parallel
to the layer interfaces� calculated with analytical
formulas for the points �a� A�k�D=1.44�, �b�
B�k�D=2.26�, and �c� C�k�D=3.33� shown in Fig.
2�a�. Open circles and dots are the profiles of uz

and −iux obtained by the FDTD calculations �the
profiles along the lines A�, B�, and C� in Fig. 5
below�. The boundaries of the Ag layer are indi-
cated by vertical dashed lines.

FIG. 4. Displacement profiles at the point D�k�D=4.43� in the
Al/W multilayers with a Ag cavity layer shown in Fig. 2�a�. Bold
line is uz �normal to the layer interfaces� and thin line is −iux �par-
allel to the layer interfaces� calculated with analytical formulas. The
dotted line is −iux obtained by FDTD simulations �the profiles
along the dashed line D� shown in Fig. 6�c� below	. The boundaries
of the Ag layer are indicated by vertical dashed lines. Inset shows
the calculated displacement profiles of the Stoneley interface wave
at the flat boundary of bulk aluminum and tungsten �distance z is
normalized by the wavelength ��.
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��z�üi − cilmn�z��l�num = ��z�f i�x = 0,z,t� �i = 1,2,3�
�62�

are solved numerically under suitable boundary conditions at
the layer interfaces, where ��z� �cilmn�z�	 takes either
�A�cA,ilmn� or �B�cB,ilmn� depending on the position z. The
external force f applied at x=0 has been chosen as

f1 = fx = ���z� + dAg/3� − ��z� − dAg/3�	sin�
� 40

3D
z� +

1

4
��

	 g�t� , �63�

f2 = fy = 0, �64�

f3 = fz = ���z� + dAg/3� − ��z� − dAg/3�	cos�
� 40

3D
z� +

1

4
��

	 g�t� , �65�

where z�=z−dC /2, ��z� is a unit step function, i.e., ��z�
=1 if z�0 and ��z�=0 if z�0, and a Gaussian profile in the
frequency space with its peak at �=�0 and a full width at
half maximum 
� has been assumed for g�t�. Explicitly,

g�t� = g0 exp�− �
��2�t − t0�2/4	sin��0�t − t0�	 , �66�

with g0 a constant.
Figures 5 and 6 exhibit the simulated results for the trans-

verse �uz� and the longitudinal �ux� components of phonon
packets. In the simulations we have chosen �0D /vt,Al=3.4
and 
�D /vt,Al=0.4 �Fig. 2�a�	 and the external force has
been given in a line of length 0.6dAg normal to the layer
interfaces at x=0 inside the Ag layer. The direction of the
force exerted is 45° rotated away from both the x and z axes
in the x-z plane. The assumed unit time step for the simula-
tion is 
t=D / �200vt,Al� and the maximum of the initial
packet is realized at x=z=0 at t= t0=2500
t=12.5D /vt,Al
after starting the simulation at t=0. Hence, t= t0 effectively
acts as the origin of the time domain.

Shortly after the excitation the waves in frequency bands
propagate in various directions with their characteristic
group velocities larger than those of cavity phonons �cf. Fig.
2�a�	. As time elapses we can recognize that the waves con-
fined in the vicinity of the Ag layer propagate ±x directions
along the layer interfaces with different speeds. Although the
majority of these cavity modes are well localized within
about ±2D from the Ag layer, some components of the
waves �possibly those on the branches close to the frequency
band of the host SL� spread outside this range.

With the spatial amplitude profiles �or with the magnitude
of wavelengths� and group velocities, it is possible to locate
the signals corresponding to the points A to D on the SG
cavity mode branches. Their center of mass positions are
labeled A� to D� in Figs. 5�c� and also in Fig. 6�b� for 
uz

and 
ux
, respectively. We can really see some prominent fea-
tures at the points A� to D� indicated. In Figs. 3�a�–3�c� we
have shown by open circles and dots the profiles of uz and
−iux obtained by the FDTD simulations along the dashed
lines A� to C� in Figs. 5�c� and 6�b�. Except for small struc-
tures, the coincidence with the profiles based on the analyti-

cal formulas is excellent at the points A and C including the
relative magnitude of uz / �−iux�. �Here the maximum values
of the displacements are scaled to the ones obtained by the
analytical formulas.�

However, this is not the case for the smaller component uz
at the point B �Fig. 3�b�	 and the point D �Fig. 4�, that is, the
FDTD simulations do not well reproduce the displacement
profiles calculated by the analytical formulas. This is possi-
bly due to the fact that the points B� and D� are close to each
other because the group velocities given by the slopes of the
branches in Fig. 2�a� at the points B and D have similar
magnitudes. So the displacement components at B� and D�
are overlapped to some extent and not completely separated
from each other. Also the point D is almost attached to the
bulk band �Stoneley band� and hence the associated lattice
displacement is extended considerably on either side of the

FIG. 5. �Color online� FDTD simulations for the phonon dis-
placement uz patterns in the x-z plane of the Al/W multilayers with
a Ag cavity layer �the same as for Fig. 2�a�	 at t= �a�12.5D /vt,Al, �b�
30D /vt,Al, and �c� 70D /vt,Al after the external force f with fx= fz

�Eqs. �63�–�65�	 is applied at x=0 and −dAg/3�z��dAg/3. The
darkness corresponds to 
uz
. The dashed lines labeled A� to D� in
�c� show the positions of the cavity modes corresponding to the
points A to D in Fig. 2�a�. They are estimated from the group
velocities �the slopes the dispersion curves� at those points on the
branches. The bottom part of �c� shows the displacement profile of
uz along the center of the cavity z�=0. The regions in between two
parallel horizontal lines are the cavity Ag layers.
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Ag layer as shown in Figs. 4–6. Thus, the small signal com-
ponents associated with the point D is not well resolved.

In order to enhance in the simulations the displacement
component ux at the point D, which is antisymmetric with
respect to z�=0�z=dAg/2�, we have chosen the external force
in the following form:

f1 = fx = ���z� + dAg/2� − ��z� − dAg/2�	

	sin�
� 40

3D
z� +

1

4
�� 	 g�t� , �67�

f2 = fy = 0, �68�

f3 = fz = 0. �69�

The simulated result at t=70D /vt,Al is shown in Fig. 6�c�.
The displacement profile ux along the line indicated D� is
shown in Fig. 4. A good coincidence is seen between the
FDTD and analytical results.

B. AlAs/GaAs superlattices with an AlGaAs cavity layer

The second example of a superlattice we study is a more
popular periodic AlAs/GaAs SL which exhibits rather small
frequency gaps for vibrational modes due to moderate acous-
tic impedance matching �Table I� between the constituent
semiconductors. Figure 7 depicts the band structures of both
the SG and SH modes in the AlAs/GaAs SL with dAlAs
=dGaAs together with the cavity branches. As a cavity layer
we have chosen Al0.8Ga0.2As with the thickness dAlGaAs one-
half of dGaAs. The structure assumed is again symmetric with
respect to the cavity later �the layers adjacent to AlGaAs are
GaAs�. As expected, the band gaps are much smaller than in
the case of Al/W superlattice and the dispersion curves of
the cavity modes do not show any characteristic behaviors
for the ranges of the frequency and wave number illustrated.

Figure 8 displays the displacement profiles for three
eigenfrequencies at the points marked A to C on the SG
cavity branches with the same k�D�k�D=4� as shown in Fig.

FIG. 6. �Color online� FDTD simulations for the phonon dis-
placement ux patterns in the x-z plane of the Al/W multilayers with
a Ag cavity layer �the same as for Fig. 2�a�	 at t= �a�12.5D /vt,Al and
�b� 70D /vt,Al. The external force applied for the simulations is the
same as for Fig. 5. The darkness corresponds to 
ux
. The dashed
lines labeled A� to D� in �b� show the positions of the cavity modes
corresponding to the points A to D in Fig. 2�a�. The bottom part of
�b� shows the displacement profile of ux along the center of the
cavity z�=0. �c� Similar profile of the displacement ux in the x-z
plane of the Al/W multilayers with a Ag cavity layer obtained
when the external force Eqs. �67�–�69� is given in the x direction to
enhance the excitation of the ux component antisymmetric with re-
spect to z�=0. The regions in between two parallel horizontal lines
are the cavity Ag layers.

FIG. 7. Band structures and cavity mode branches in the
AlAs/GaAs superlattice with dGaAs=dAlAs. The cavity layer is
Al0.8Ga0.2As with thickness dAlGaAs=dGaAs/2 sandwiched between
AlAsuGaAs and GaAsuAlAs unit cells �the local structure is
AlAsuGaAsuAlGaAsuGaAsuAlAs�. Each band is discrimi-
nated according to the darkness, i.e., the lightest band is the pure T
�SH� band, the second lightest band is the coupled L-T �SG� band,
and the darkest band is the overlapped band of both bands. The SG
and SH cavity phonon branches are shown by the bold and thin
lines, respectively.
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7. Comparing with the case of the cavity modes in the Al/W
superlattice with an Ag layer, the localization of the wave
amplitude near the cavity layer is considerably weak, though
it depends on the frequency. We note that the symmetries of
−iux and uz with respect to the cavity layer is interchanged
between the points B and C located inside the same fre-
quency gap.

V. CONCLUSIONS

We have theoretically studied the phonons confined in a
cavity layer embedded in an otherwise perfect, periodic SL.
We have given the analytical formulas for determining the
eigenfrequencies and displacement vectors of the cavity
phonons both for the coupled L-T �SG� and the pure trans-
verse �SH� phonons. According to these formulas, we can
find cavity phonon branches inside the frequency gaps of the
host superlattice as expected from the general theorem for
the vibrations of crystal lattices with a defect. The displace-
ment profiles calculated from our formulas coincide well
with those obtained numerically by solving the equations of
motion with the FDTD method. Phonons on the cavity
branches are confined in the vicinity of the cavity layer but
propagate along this layer with the group velocities deter-
mined by the slopes of their dispersion curves. This has also
been confirmed by the FDTD simulations for the time evo-
lutions of wave packet excited in the assumed system.

It is generally expected that the interactions of these cav-
ity phonons are highly enhanced compared with those of the
bulk phonons in the host SLs due to their large amplitudes
inside the cavity. Actually, the experiments done by Trigo et
al. show that the Raman signal due to cavity phonons is
much larger than the ones due to the extended phonons �the
so-called “phonon doublet”� just above and below the zone-
center gap where the cavity frequency exists.15,16 Thus, it
should be interesting to study if the electron-phonon interac-
tion and anharmonic phonon-phonon interaction, for in-
stance, of cavity phonons are really enhanced in comparison
with the ones for bulk phonons. This is an important subject
to be studied separately because these effects in semicon-
ducting and metallic multilayered structures can be observed

experimentally with picosecond ultrasonics techniques4 and
Raman scattering.36
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APPENDIX: SH CAVITY MODE

In this appendix, we give some notes on the correspond-
ing formulas for the SH cavity phonons �with pure transverse
polarization� which are decoupled from the SG cavity
phonons in the isotropic approximation. First we note that
for this single mode with k��0 the wave number kI,z in each
layer is given by kI,z= ��� /vI,t�2−k�

2	1/2 with I=A, B, and C.
The dispersion relation in superlattices becomes cos qD
=cos�kA,zdA�cos�kB,zdB�− �1/2��C44

A kA,z /C44
B kB,z

+C44
B kB,z /C44

A kA,z�sin�kA,zdA�sin�kB,zdB�, where q is the super-
lattice wave number. With these modifications the formulas
given in Ref. 3 for the nonpropagating cavity phonons with
k� =0 are still applied to the propagating SH cavity mode.

Those formulas for the SH cavity phonons are also ob-
tained straightforwardly from the results of the present work

if we regard �̂I and �̂I�z� as 2	2 matrices instead of 4	4
matrices. For example,

�̂A = � 1 1

C44
A − C44

A � , �A1�

�̂A�z� = �exp�ikA,zz� 0

0 exp�− ikA,zz�
� , �A2�

and

An = �aA,n
�1� ,aA,n

�2� �t � �aA,n, ãA,n�t. �A3�

Thus the transfer matrices T̂n
�1�– T̂n

�4� now become scalar
quantities. Then the formulations developed in Secs. II and
III are still valid for the SH mode.

FIG. 8. Displacement profiles of the SG cav-
ity mode in the AlAs/GaAs superlattice with an
Al0.8Ga0.2As cavity layer with the thickness one-
half of dGaAs �the same as for Fig. 7�. Solid lines
are uz �normal to the layer interfaces� and dotted
lines are −iux �parallel to the layer interfaces� cal-
culated with the analytical formula for the points
�a� A with �D /vt,GaAs=5.47, �b� B with
�D /vt,GaAs=7.19, and �c� C with �D /vt,GaAs

=7.59, on the dashed line at k�D=4 in Fig. 7. The
positions of the cavity layer are indicated by two
parallel vertical lines.
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