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We present compact analytical solutions for the energy eigenvalues, orthonormalized eigenfunctions, and the
gradient B drift velocity including the spin for a single electron �hole� in the quasi-two-dimensional case in a

magnetic field B� of constant direction with arbitrarily strong exponentially depending variation perpendicular
to the field direction. In the limit of weak inhomogeneities, the gradient B drift velocity agrees with the
classical expression, where the energy is substituted by the energy eigenvalues. Perfect agreement is found
with numerical results obtained earlier by other authors.
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The discovery of the integer quantum Hall effect by v.
Klitzing1 and subsequently of the fractional quantum Hall
effect2 stimulated a lot of experimental and theoretical works
concerning quasi-two-dimensional �2D� electrons in homog-

enous magnetic fields B� �a good overview about the quantum
Hall effects is given in Refs. 3–5�. In contrast to classical
plasmas, in the quantum case inhomogeneous magnetic fields
have hardly been considered, because homogenous �con-
stant� magnetic fields are necessary for the quantum Hall

effect. However, besides the quantum mechanical E� �B� drift

in constant E� and B� fields �cf., e.g., Refs. 3 and 4�, I regard
the quantum mechanical �B drift worthy to be mentioned. In
Ref. 6, the Schrödinger equation has been solved numeri-
cally for a single spinless 2D electron in a linearly varying
magnetic field B=B1y. The density of states and the �B drift
velocity have been numerically calculated for special cases.

Hofstetter et al.7 numerically computed the energy spec-
trum, the electron and the current density for 2D noninter-

acting electrons in a B� field with the shape B0+B1 ·y. In
several theoretical works, 2D electrons were investigated in

steplike �abruptly� changing B� fields having linear8–13 and
circular14–16 symmetry �magnetic �anti-� dots�. Furthermore,

a spatially periodic B� field was investigated quantum-
mechanically in Refs. 9 and 17 and quasiclassically in Refs.
18 and 19, respectively.

Müller and Dietrich20 studied numerically, the Pauli equa-
tion for the case of an infinitely long straight current fila-

ment, i.e., for B� = ��0I /2���1/��e�� �in cylindrical coordi-
nates, with I denoting the total current in the z direction�. For
further discussion see below.

The theoretical works6–17,20 have all in common to start
from the single-electron Schrödinger and Pauli equation, re-
spectively. Apart from the limiting case of very weak inho-

mogeneities of the B� field, the energy spectrum as well as
further physical entities like the drift velocity, the electron
and current density or the tunneling probability �in case of
magnetic barriers� have been calculated without exception
only numerically. We also mention that 2D electron systems
have been investigated in a number of experimental works
�cf., e.g., Ref. 21 and references cited in Ref. 13�.

In this paper, I report the completely analytical solution of

the Pauli equation for a single 2D electron �hole� in a mag-
netic field with shape

B�x� = B0e−�x �in the z direction� , �1�

taking into account the spin. Compact analytical expressions
are derived for the energy eigenvalues, eigenfunctions, and
the �B drift velocity.

A B� field with the local dependence �1� occurs, e.g., inside
the London penetration depth of a superconductor of first

kind with a homogenous B� field applied parallel to its �pla-
nar� surface. If a semiconductor heterostructure with a nar-
row quantum well is introduced into a narrow slit of such a
superconductor perpendicular to its surface, the magnetic
field �1� may be realized in a good approximation for 2D
electrons �holes�.

If for the vector potential the gauge

A� = �0,Ay,0� with Ay = Ay�x� = −
1

�
B0e−�x

is chosen, the Hamiltonian reads

Ĥ =
1

2m* �p̂x
2 + �p̂y − qAy�x��2� +

g*

2
�BB�x��z �2�

with the effective mass m*, the effective Landé factor g*, the
Bohr magneton �B=	�e� /2me �me and e the electron mass
and charge, respectively, and q= ± �e�� and the Pauli matrix

�z. Since Ĥ, p̂y, and �z mutually commute, the ansatz for the
wave function in coordinate space


�x,y� =
1

�Ly

eipy·y/	 · 
�x� �3�

�with py =	ky and the sample width Ly in the y direction�
leads to two separate Schrödinger equations

	−
	2

2m*

d2

dx2 +
1

2m*
py + q
1

�
B0e−�x�2

±
	�g*q�
2me

· B0e−�x

− E�
�x� = 0. �4�

From the velocity operator
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v̂y = vy�x� =
1

m*
py +
q

�
B0e−�x� �5�

may be seen that

py

q
� 0 and, thus, py = −

q

�q�
�py� �6�

must be valid, so that vy�x� can change the sign.
The dimensionless variables

� = ��x� 
�q�B0e−�x

	�2 , �7�

�0 
�py�
	�

=
�ky�
�


�q�B0e−�x0

	�2 =
1

��l�x0��2 �8�

are introduced, with the local magnetic length

l2�x0� =
	

�q�B�x0�
�9�

and the parameter

�S 
g*

4

m*

me
, �10�

resulting from the Zeeman energy. x0 is defined by Eq. �8�
implicitly in terms of �py�. Making use of

d
���x��
dx

=
�


��
·
��

�x
= − ��

d
���
d�

,

Eq. �4� is transformed into the new simple Schrödinger equa-
tion

� d2

d�2 +
1

�

d

d�
−

2

�2 +
2��0 ± �S�

�
− 1�
�x� = 0, �11�

with

2  �0
2 −

2m*

	2�2E . �12�

With the asymptotic solutions of �11� � and e−�, for �→0
and �→�, respectively, and the ansatz 
���=�e−�w��� the
equation

z
d2w�z�

dz2 + �2 + 1 − z�
dw�z�

dz
+ 
�0 ± �S −  −

1

2
�w�z� = 0

�13�

for w follows with z=2�. In order to have w�z� not destroy-
ing the asymptotic behavior

�0 ± �S − ± − 1
2 = n �14�

with n=0,1 ,2 , . . . must be fulfilled, as is well known, from
where, including �12�, the energy eigenvalues

En,�0

� =
	2�2

2m* 	�0
2 − ��0 ± �S − 
n +

1

2
��2�

= En,�py�
� = En,x0

� for sz = ±
1

2
�15�

and for w the confluent hypergeometric function w�2��
= 1F1�−n ,2+1,2�� follow as solutions. We suppress the
spin dependence of  in the notation of the wave function for
the sake of simplicity.

The total wave function in coordinate space reads, up to a
normalization constant C,


n,py
�x,y� =

1
�Ly

eipy·y/	C · ���x��e−��x�

�1F1�− n,2 + 1,2��x�� . �16�

Solely from the selfadjointness of Ĥ��� and from the
Schrödinger equation follows �cf. �11� in Ref. 22� for the
expectation value of v̂y,

�vy�n,py

� =
�En,�py�

�

�py
=

�En,�py�
�

��0

��0

��py�
��py�
�py

= vD,n,py

�

from where for the �B drift velocity

vD,n
� = −

�q�
q

	�

m*
n +
1

2
� �S� �17�

is derived, which is independent from x0 and �py�, respec-
tively, for the B field �1�.

Equations �15�–�17� contain the most important results of
this paper. Subsequently, these results shall be completed and
discussed. Taking into account Eqs. �8� and �9�, for the en-
ergy �15� may also be written

En,x0

� = 	�C�x0��1 − 1
2�2l2�x0��n + 1

2 � �S�� � �n + 1
2 � �S� ,

�18�

including the local cyclotron frequency

�C�x0� =
�q�
m*B�x0� . �19�

The degeneration of the energy concerning x0 or �py� is lifted,
as expected.

Using �17� for the drift velocity, further useful expressions
for the energy can be gained

En,x0

� = 	�C�x0�
n +
1

2
� �S� −

m*

2
�vD,n

� �2, �20�

En,x0

� = 	�C�x0��1 − �2l2�x0�
n +
1

2
� �S�� � 
n +

1

2
� �S�

+
m*

2
�vD,n

� �2. �21�

These expressions may directly compare to analogous ones

in case of the E� �B� drift.3,4 It can be seen very easily from
Eq. �18� that in the case
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1
2�2l2�x0��n + 1

2 � �S� � 1 �weak inhomogeneity�

�22�

the energy takes the form

En,x0

� � 	�C�x0��n + 1
2 � �S� . �23�

The condition �22� for the drift velocity �17� �note �=
−�B /B� yields

v�D,n
� =

�q�
q

B�

B
�

�B

B
�

x0

	

m*
n +
1

2
� �S�

�
1

q

B�

B
�

�B

B2 �
x0

En,x0

� . �24�

This expression corresponds to the classical guiding center
approximation, if the classical energy is plugged into �24�
�cf., e.g., Ref. 23�. A closer look towards the “potential”
energy in �4� yields further physical insights. It represents the
expression for the kinetic energy �m* /2�vy

2�x� in the present
problem. At the same time, this expression may be regarded
as a real potential energy of a strongly anharmonic one-
dimensional oscillator �where vD loses its meaning and �S
=0 must be set�.

From Eq. �4�, with �8�, �9�, and �19� one gets for the
potential energy

V�x� =
1

2m*
py +
q

�
B0e−�x�2

=
m*

2
�C

2 �x0��1 − e−��x−x0�

�
�2

=
1

2
	�C�x0��1 − e−�l�x0�

x−x0
l�x0�

�l�x0�
�2

. �25�

x0 and �py�, respectively, determine the zero point �“center”�
of the potential. This reveals that for small � a harmonic
potential and thus the familiar �local� Landau levels follow.

In order not to let a charge to escape towards x→�,

En,x0

� �
1

2

	�C�x0�
��l�x0��2 �26�

must be fulfilled, from where straightforwardly

 ± �S =
1

��l�x0��2 − 
n +
1

2
� �S� � 0 �27�

follows, which guarantees a correct asymptotic behavior of
the wave function for �→0.

The normalization condition reads with Eq. �16�

C2�
−�

+�

dx���x��2e−2��x��1F1�− n,2 + 1,2��x���2

= C2�
0

+� d�

��
�2e−2��1F1�− n,2 + 1,2���2 = 1. �28�

In the last expression, relation �=��x� after Eq. �7� has been
utilized.

Fortunately, the integrals in �28� have been analytically
calculated in the mathematical appendix �f� of Ref. 22.

Therefore, the orthonormalized eigenfunctions may be di-
rectly given


n,py
�x,y� =

1
�Ly

eipy·y/	 1
�l�x0�

� � ��2 + n + 1��l�x0�
��2 + 1���2���n + 1��1/2

�2��x��

� e−��x�
1F1�− n,2 + 1,2��x�� , �29�

with  according to Eq. �14� �note that  depends on the spin
orientation�, ��x� according to �7�, and py according to �6�.

In Figs. 1 and 2, the potential �25� is shown together with
the energy eigenvalues �18� and the normalized eigenfunc-
tions �29� for different values of �l�x0� and �S=0. The in-
creasing asymmetry of the potential with increasing �l�x0�
and the respective asymmetry of the eigenfunctions may be
clearly seen as well as the more weakly with n increasing
energy levels �which are gradually more strongly renormal-
ized due to the anharmonicity�.

FIG. 1. The potential V�x�, Eq. �25�, together with the energy
eigenvalues En,x0

, Eq. �18�, both in units of 	�C�x0� /2, and
the normalized eigenfunctions 
n,x0

�x� ,n=0, . . . ,10, Eq. �29� vs
x−x0 / l�x0� for �l�x0�=0.1 and for �S=0.

FIG. 2. The same as in Fig. 1 for �l�x0�=0.3 and �l�x0�=0.5
�inset�.
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Finally, the number of states with given n has to be con-
sidered. Since the Hamiltonian �2� �or �4�, respectively� is
independent of the y coordinate, dN=Ly�dpy� /h, or, with �8�
and �9� dN=Ly�dx0� /2�l2�x0�, for 0�x0�Lx is valid, i.e., the
local density of the centers x0 is determined by the local
magnetic length. For one state �with n given� the “territory”
2�l2�x0� is necessary �cf. the case B=const. in Ref. 3�.

If the initial data for the numerical calculations in Ref. 20
are taken as a basis, �l�x0�=2.57�10−5 follows. According
to that, extremely weak inhomogeneity is present. An asym-
metry of the wave function regarding x0 with V�x0�=0 is
therefore invisible by graphical means. For electrons in
vacuum, m*=me, g*=2 and, thus, �S= 1

2 is valid. In semicon-
ductors, on the other hand, �S�

1
2 is usually implemented.

With the initial data in Ref. 20 full numerical consistency
with �23� for the energy and with �24� for the drift velocity is
obtained.

To summarize, I found compact strictly analytical solu-
tions for the energy eigenvalues, the orthonormalized eigen-
functions and the �B drift velocity for electrons and holes,
taking account for the spin, in the quasi-two-dimensional

case for an arbitrarily strong exponentially depending B� field
�cf. Eq. �1��. In the limiting case of weak inhomogeneities
�cf. condition �22�� the possibility of a local description fol-
lowed, which in the classical case merges into the guiding
center approximation for the �B drift velocity. A comparison
with the special numerical results in Ref. 20 leads to total
consistency. The derived solutions simultaneously describe a
strongly anharmonic quantum mechanical oscillator in
closed form.

I appreciate the helpful discussions with E. Runge and R.
Öttking.
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