
Asymmetric exchange between electron spins in coupled semiconductor quantum dots

Ș. C. Bădescu,1 Y. B. Lyanda-Geller,1,2 and T. L. Reinecke1

1Naval Research Laboratory, Washington, DC 20375, USA
2Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA

�Received 18 July 2005; published 12 October 2005�

We obtain a microscopic description of the interaction between electron spins in bulk semiconductors and in
pairs of semiconductor quantum dots. Treating the k· p̂ band mixing and the Coulomb interaction on the same
footing, we obtain in the third order an asymmetric contribution to the exchange interaction arising from the
coupling between the spin of one electron and the relative orbital motion of the other. This contribution does
not depend on the inversion asymmetry of the crystal and does not conserve the total spin. We find that this
contribution is �10−3 of the isotropic exchange, and is of interest in quantum information. Detailed evaluations
of the asymmetric exchange are given for several quantum dot systems.
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Spins in quantum dots �QDs� are attractive candidates for
qubits in quantum information in part because of their long
coherence times.1 Controllable coupling between these spins
is an essential requirement for two qubit quantum gates, and
it has been the focus of much recent research.2–4 Typically
the spin-spin coupling is dominated by the symmetric ex-
change interaction J S1 ·S2, which arises from the Coulomb
interaction and the Pauli principle. The symmetry of this part
of the exchange with respect to spin permutation implies that
the total spin is conserved. This is important in gate opera-
tions, which involve pulsing J�t�.5

In general, spin-orbit coupling in solids also gives rise to
terms that are asymmetric between the spins, and which do
not conserve the total spin. These terms can cause loss of
fidelity in gate operations involving two spins. To date, the
asymmetric terms that have been discussed involve spin-
orbit coupling of individual electrons in the conduction
band.6,7 For systems with bulk inversion asymmetry, this
coupling has the Dresselhaus form.8,9 In addition, hetero-
structure asymmetry can introduce the so-called Rashba
coupling.10 These two couplings can give an additional inter-
action between the spins of the Dzyaloshinskii-Moryia �DM�
form �so · �S1�S2� /��so

2 +J2 �Refs. 11 and 12� where �so is
linear in the spin-orbit coupling strength.6,7 In general the
dephasing caused by contributions of the DM form cannot be
totally eliminated, but suggestions have been made for gate
pulse shaping that eliminate it to the first order.13

Here we give a different contribution to the spin-spin cou-
pling of two electrons in III–V semiconductors that does not
require either bulk inversion asymmetry or Rashba coupling.
It arises from the Coulomb interaction between two electrons
and from the conduction-valence band mixing. It is similar to
the exchange interaction between excitons.14 We describe
this asymmetric electron spin coupling in bulk materials, and
we make detailed evaluations for spins in several coupled
QD systems.

We use a 8�8 Kane Hamiltonian to represent the band
structure of III–V semiconductors,14 with a gap between an
s-like conduction band and p-like valence bands. The band
coupling in this Hamiltonian is obtained in the k· p̂ effective
mass perturbation theory, where p̂ is the relevant momentum

operator. The standard parameters in this approach are the
band gap Eg, the energy of the split-off band �, and the
valence-conduction band coupling P= �� /m0��S�p̂x�X�, where
�S� and �X� are the Bloch states of the conduction and valence
bands.15

We consider two electrons of relative coordinate r=r1
−r2 in a semiconductor of dielectric permittivity �. The un-
perturbed two-particle Hamiltonian in the conduction band is
H�0�= �p̂1

2+ p̂2
2� /2m0. The two band mixing terms k1 · p̂1 ,

k2 · p̂2, and the Coulomb interaction UC=e2 /�r between the
electrons are treated on equal footing. The leading part of the
spin-dependent interaction arises in third order from first or-
der contributions of UC and of each of the band mixing terms
k1 · p̂1 , k2 · p̂2. The spin-dependent part of the Coulomb in-
teraction arises from the coupling between the electron spins
and their relative motion and is:

Hs
�3� = −

e2

�

2P2

3Eg
2

��2Eg + ��
�Eg + ��2

� ��r � p̂1� · S1 − �r � p̂2� · S2	/�2r3. �1�

The coefficient of the square bracket in Eq. �1� is the cou-
pling constant, which we will call C. For GaAs C
=5.7 meV nm3, and for InAs C=10 meV nm3. The remain-
ing spin-independent terms in this order of the theory con-
tribute to the isotropic exchange J. These include a “local
contact” term of the form

Hc
�3� = −

4�e2P2

3�

�Eg + ��2 + Eg
2

Eg
2�Eg + ��2 ��r� . �2�

Coupling terms similar to Hs
�3� and Hc

�3� are known for two
electrons in the free space16 where they arise from electron-
positron band mixing and Coulomb interaction. In the
present case the effect is stronger because the energy gap Eg
between electrons and holes in a crystal is much smaller than
the energy gap m0c2 between electrons and positrons. Also,
the symmetry of interaction Hs

�3� �Eq. �1�	 is different from
that between electrons in free space16 because the valence
bands 	8 and 	7 have a symmetry different from the s sym-
metry of positrons.
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We note that for itinerant electrons the interaction Hs
�3�

�Eq. �1�	 flips a spin in an electron-electron collision, provid-
ing a mechanism for the relaxation of spin polarization in
addition to other known mechanisms.17 We evaluated the
spin dephasing time for a two-dimensional �2D� electron gas
in GaAs quantum wells and found that it is of the order
�1 ns for He temperature and of the order �1 ps for room
temperatures. This suggests that the interaction Hs

�3� can be
important in spin transport in low-dimensional structures,
such as quantum wells.18

Here we will primarily address systems with spins on two
centers, such as two QDs or two charged donors, where Hs

�3�

gives rise to a DM coupling. The two electrons can be in a
singlet state with total spin S=0 or in a triplet state with total
spin S=1. Hs

�3� has nonzero matrix elements between states
of different total spin. We take the lowest singlet and triplet
states to be separated by an exchange energy J. Then in the
Hilbert space of these two states the Hamiltonian can be
written in the form

H̃ = J S1 · S2 + i� · �S1 − S2� , �3�

where i�=−C /�2�S0��r /r3��p1�T0� is the matrix element
between the lowest orbital singlet �S0� and the triplet �T0�. A
block diagonal form equivalent to Eq. �3� can be obtained by
an orthogonal transformation in spin space, giving the so
called “twisted spin representation”19

H̃ = J cos 
 S1 · S2 + 2J
sin



2
�2

�n · S1��n · S2�

+ J sin 
 n · �S1 � S2� , �4�

where the spin-0 and spin-1 states are mixed by the operator
exp�i�
 /2�n· �S1−S2�	, with n=� /� and 
=arctan�� /J�. In
Eq. �4� the first two terms are the symmetric isotropic and
the symmetric anisotropic Heisenberg terms. The last term is
the asymmetric exchange now in the DM form � · �S1

�S2� /��2+J2. The contributions from the Dresselhaus and
Rashba couplings to the anisotropic and asymmetric ex-
change were given in the form of Eq. �4� in Ref. 6.

We consider the lowest single-particle states ��±� from the
two confining centers. In the absence of spin-orbit coupling
the two-particle wave functions can be written as products of
orbital states and spin states. The axial vector � is nonzero
only for inversion-asymmetric confining potentials. For such
systems we take into account the possibility that both elec-
trons occupy the same site, and therefore we use the Hund-
Mulliken description of the two-particle orbital states.4 We
obtain the ground state by diagonalizing analytically the tun-
nelling and the Coulomb and local contact interactions. We
then focus on the Hilbert space determined by the lowest
singlet �S=0� and triplet states �S=1� in which the Hamil-
tonian is given by Eq. �3�. The importance of the resulting
DM asymmetric exchange depends on the ratio tan 
=� /J
between the coefficients of the third and the first terms in Eq.
�4�.

Consider first the ratio � /J for electrons confined by two
vertically coupled QDs, such as to those in InAs/GaAs
systems.20 These dots generally have different sizes and can

have shape asymmetries as well.21 The conduction band off-
set between GaAs and InAs �U0�0.7 eV� is larger than the
quantization energy in the lateral direction ����20 meV�
by more than an order of magnitude. This allows us to de-
couple the vertical and lateral degrees of freedom. We de-
scribe these dots by the potential offsets along the growth
axis z and parabolic potentials in lateral directions x and y,
which in general can be anisotropic. These lateral directions
are independent of the crystal axes. The potentials and wave
functions then can be written straightforwardly.22,23 Thus, the
asymmetry studied here results from differences in the lateral
sizes and shapes of the QDs.

The dependence of the ratio � /J of the asymmetric ex-
change to the symmetric exchange on the separation d be-
tween the two cylindrical dots with a fixed lateral offset b is
shown in Fig. 1�a�. Its dependence on the lateral offset b for
two dots at a fixed d is shown in Fig. 1�b�. The insets of Figs.
1�a� and 1�b� show sketches of the lateral and vertical views
of two cylindrical dots with vectors b , d pointing from the
smaller dot to the larger one. The vector � is oriented in the
direction b�d, and for small differences �a=a+−a− be-
tween the dot radii a±, it is proportional to �a. It follows
from Eq. �1� that for two cylindrical dots of equal sizes, � /J
vanishes because the system has a center of inversion �d is
not defined�. For any two cylindrical dots without a lateral
offset, � /J also vanishes because the ground state has cylin-
drical symmetry �b�d=0�. In each of these figures there are
two regions of behavior: �i� For small size differences �a
�the left sides of the peaks� � /J increases roughly propor-
tional to d in Fig. 1�a� and roughly proportional to b in Fig.
1�b� until it reaches �3.5�10−3; in this region the two elec-
trons are distributed almost symmetrically between the dots.
�ii� For larger values of �a �right sides of the peaks�, � /J
first increases with d to a small maximum and then decreases
�Fig. 1�a�	, and similarly with b Fig. 1�b�	. In this second
region both electrons tend to occupy preferentially the larger
dot, where the Coulomb energy is overcome by the differ-
ence between single-particle energies of the two dots.

In order to study shape asymmetry, we consider two ver-
tically coupled dots with deviations from cylindrical symme-
try. In Fig. 2 we give results for two identical elliptical dots
that are rotated by � /2 with respect to one another, as shown
in the inset, with an offset b=4 nm. The dots of equal sizes
have equal energies, which leads to an equal distribution of
two electrons on them. The ratio � /J reaches substantial val-
ues ��10−3� as a function of the separation d and has a
relatively weak dependence on the angle 
 between the axes
of the dots. In this case � arises from the shape asymmetry.
The coupling depends on the angle 
 between the relative
position vector and the principal axes �for cylindrical dots, �
changes direction but is constant in magnitude�. The orienta-
tion of � is given by b�d. In the case where the axes of the
dots are parallel �a−,x=a+,x ,a−,y =a+,y�, the asymmetric ex-
change is zero �the system then has an inversion center at
�b /2 ,d /2�	. In cases when the dots are different in size and
not cylindrical, � /J is even larger. For example, for a cylin-
drical dot with a−=5 nm coupled with an elliptical dot with
a+,x=4 nm, a+,y =6.25 nm, the maxima of � /J are �3.5
�10−3 for all 
.
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We have calculated the contribution to the asymmetric
exchange for these structures from the bulk Dresselhaus cou-
pling Hso

D = i
so
D �x��y

2−�z
2�S� /� �plus cyclic permutations of

cartesian indices�. The coupling constant 
so
D is 47 meV nm3

for GaAs, and for InAs it is of the order of 100 meV nm3. In
Fig. 1�c� the contribution �D /J from the Dresselhaus cou-
pling to the asymmetric exchange is compared with the
asymmetric exchange � /J for a size difference �a
=0.22 nm.24–26 We see that the asymmetric contribution � /J
presented here is larger for intermediate separations d, a re-
gion of particular interest for implementations for quantum

information. As the difference in the dot sizes increases, � /J
becomes larger relative to �D /J, and as the size difference
decreases, �D /J becomes larger.

We have also considered laterally coupled QDs. To obtain
a representation of the barrier between the QDs we use
inverted-Gaussian potentials,27 and we use again the material
parameters for InAs. The wave functions are obtained
variationally.28 In Fig. 3 we give results for two elliptical
dots of equal sizes rotated with respect to each other by � /2.
In this case the anisotropic exchange � /J arises from the
shape asymmetry. From the operator r��1 in Eq. �1�, the
asymmetric exchange � has a nonzero component only along
the growth axis, and the dependence of the modulus � /J is
symmetric with respect to 
=� /4. In Fig. 3 once again � /J
reaches a maximum of �10−3. In cases when the Dres-
selhaus25 and Rashba26 couplings have equal coupling con-
stants, their contribution is small for 
=� /4 and then the
total asymmetric exchange is dominated by � /J.

FIG. 1. �Color online� �a� Dependence of the asymmetric ex-
change � /J on the separation d along the growth axes between two
cylindrical vertically coupled dots with a lateral offset b=4 nm, for
a smaller dot size a−=5 nm and differences between radii of dots
�a=a+−a−� �5,6	 nm. �b� dependence of asymmetric exchange
on the lateral offset b at a separation d=10 nm for a−=5 nm and
varying �a. The insets in ��a�/�b�	 are lateral/vertical views of the
geometry. �c� Asymmetric exchange � /J obtained here �solid line�
compared with the asymmetric exchange �D /J from Dresselhaus
coupling �dashed line� as a function of separation d, for �a
=0.22 nm, a−=5 nm, and b=4 nm.

FIG. 2. �Color online� Dependence of modulus of asymmetric
exchange � /J on angle 
 between the axes of two elliptical verti-
cally coupled dots of equal major and minor axes a−,x=a+,y

=3.5 nm, a−,y =a+,x=6.5 nm, at b=4 nm. The inset gives a projec-
tion of the dot contours on a plane perpendicular to the growth axis,
using the harmonic potential parameters to represent the dot sizes.

FIG. 3. �Color online� Dependence of the modulus of the asym-
metric exchange � /J on angle 
 between the axes of two elliptical
laterally coupled dots of equal potential sizes A−,x=A+,y =6 nm and
A−,y =A+,x=9 nm. The inset shows the two QDs that lie in the same
plane, seen along the growth axis, using the Gaussian potential
parameters to define their sizes.
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In summary, we derived an asymmetric contribution to the
exchange interaction between two electrons in III–V semi-
conductors that arises from the Coulomb interaction and the
band mixing and which does not require inversion asymme-
try. For asymmetric coupled semiconductor QDs, this contri-
bution depends on the geometry and is typically 10−3 of the
isotropic exchange J. The asymmetric exchange results in
mixing states of different total spin and in loss of fidelity in
quantum gates. The magnitude of the exchange obtained here

would require corrections in gate pulsing in order to avoid
dephasing.4,5 This interaction also can play a role in the re-
laxation and dephasing of spin in transport processes in low-
dimensional structures.
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