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We study temporal behavior of a quantum system under a slow external perturbation, which drives the
system across a second-order quantum phase transition. It is shown that despite the conventional adiabaticity
conditions are always violated near the critical point, the number of created excitations still goes to zero in the
limit of infinitesimally slow variation of the tuning parameter. It scales with the adiabaticity parameter as a
power related to the critical exponents z and � characterizing the phase transition. We support general argu-
ments by direct calculations for the Boson Hubbard and the transverse field Ising models.
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Quantum phase transitions have attracted a lot of theoret-
ical and experimental attention in recent decades, see for
example Ref. 1. They are driven entirely by quantum fluc-
tuations and occur at zero temperature. In this paper, we will
be interested in second-order transitions, which are charac-
terized by universal properties near the critical point. Usually
these properties can be revealed experimentally by measur-
ing various correlation functions. Since the relaxation time in
most of conventional condensed matter systems is relatively
short, only equilibrium or steady-state regimes are experi-
mentally relevant. On the other hand recent progress in the
realization of ultracold atomic gases2 made it possible to
study experimentally both equilibrium and strongly out of
equilibrium properties of the interacting quantum systems.
Thus observation of the superfluid-to-insulator transition3 re-
lied on the reversibility of the phase coherence after the sys-
tem was slowly driven to the insulating state and then back.
In the same experiment, another resonant feature was ob-
served if the Mott insulator is a subject to an external linear
potential of a particular strength. This feature was later inter-
preted later as an Ising-type quantum phase transition be-
tween normal and dipolar states.4 The other big advantage of
atomic systems is that the parameters governing the transi-
tion can be tuned continuously during a single experiment,
so that, for example, it is possible to cross a quantum critical
point in a real time.

Let us consider now a specific situation, where some sys-
tem was initially in the ground state. Then a tuning param-
eter was slowly changed to drive it through a critical point.
From general principles, we know that the system should
remain in the ground state as long as it is protected by the
gap from the excitations. On the other hand, the gap vanishes
right at the critical point so the adiabaticity conditions can
never be satisfied in the vicinity of the phase transition. The
slower the parameter changes the more time the system
spends near the critical point, but on the other hand the less
the interval where the adiabaticity is violated. The competi-
tion between these two processes determines the total
amount of excitations in the system. Here, we show that the
number of excited states decreases as a power law of the
tuning rate. Because of the universality and scaling, below a
certain dimension, which we identify later, this power is de-
termined by the critical exponents z and � characterizing the
transition. So measuring the number of excitations as a func-

tion of the tuning rate one can obtain the information about
the critical properties of the phase transition. We give a gen-
eral argument for the particular scaling form and consider
two specific examples of phase transitions occurring within
Boson Hubbard- and transverse field Ising models, which
confirm this scaling.

Let us start from a general formalism. We assume that the
system is described by some Hamiltonian H���, which de-
pends on the external parameter �. Without loss of generality
�=0 corresponds to the phase boundary, so that ��0 and
��0 describe different phases of the system. Let the set of
�many-body� functions �r��� represent the eigenbasis of the
Hamiltonian H. The wave function of the system can be
always expanded in this basis:

� = �
p

ap�t��p��� . �1�

We assume that � slowly changes in time: ��t�=�t, where �
is the adiabaticity parameter and we took linear dependence
on time for the sake of convenience. Then, substituting Eq.
�1� into Schrödinger equation, we find:

i
dap

dt
+ i��

q

aq�t��p�
d

d�
�q� = �p���ap�t� , �2�

where �p��� is the eigenfrequency of the Hamiltonian H���.
It is convenient to perform a unitary transformation:

ap�t� = ãp�t�e−i�t�p���t��dt = ãp���e−i/����p���d�. �3�

Combining Eqs. �2� and �3�, we derive:

dãp

d�
= − �

q

ãq����p�
d

d�
�q�ei/�����p����−�q�����d��. �4�

If before the evolution the system was in the ground state �0�
then a single term dominates the sum in Eq. �4�. The relative
number of the excited states is thus given by

nex � �
p

� 	

−	

	

d��p�
d

d�
�0�ei/�����p����−�0�����d��	2

, �5�

where the prime over the sum implies that the summation is
taken only over the excited states. It is important to empha-
size that across the second-order phase transition, which we
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consider in this paper, the basis wave functions change con-
tinuously with �.

Let us assume that we deal with a uniform d-dimensional
system. This assumption is not necessary, but it is the case
for the most known systems undergoing a quantum phase
transition. We also assume that there is a single branch of
excitations characterized by the gap 
 and some dispersion.
Since both 
 and � become zero at the phase boundary then,
near the critical point, we must have 
� ���z� �1� with z and
� being critical exponents. In the momentum space �5� re-
duces to:

nex �
 ddk

�2��d	

−	

	

d��k�
d

d�
�0�ei/�����k����−�0�����d��	2

.

�6�

From general scaling arguments, we can write:

�k − �0 = 
F�
/kz� = �z�F̃��z�/kz� , �7�

where F�F̃� is some undefined function satisfying F�x�
�1/x for large x, and z is the dynamic critical exponent.
Similarly, we can argue that

�k�
�

�

�0� =

1

kzG�
/kz� ⇒ �k�
�

��
�0� =

�z�−1

kz G̃��z�/kz� , �8�

where G�G̃� is another scaling function satisfying G�0�
=const. Having these scaling forms in mind, we can do the
following substitutions in Eq. �6�: �=k1/�
, k=��/z�+1�. It is
easy to see that if the momentum integral in Eq. �6� can be
extended to infinity then:

nex = C�d�/�z�+1�, �9�

where C is a nonuniversal constant which depends on the
details of the transition. The condition allowing to send the
upper cutoff to infinity is d�dc=2z�z�+1�, where dc is the
upper critical dimension for this problem. Note that � and z
can depend on d themselves. For d�dc, the main contribu-
tion to the excitations comes from the high momentum
states. In this case, nex would still vanish at �→0, but the
universality will disappear as excitations with high momenta
�kz�
� will dominate the transitions. The result �9� is quite
remarkable, it shows that if �→0 and � is a finite number
greater then zero, the transitions to the excited states are
suppressed and the adiabatic limit still holds. We want to
emphasize, the adiabaticity is understood in a sense that the
density, not the total number, of excitations is much smaller
than one. Strictly speaking in the true adiabatic limit, there
should be no excitations and the system must remain in the
ground state. However to achieve this, it is necessary to scale
� as inverse power of the system size,5 which is virtually
impossible to do in large systems. There are two limits �
→0 and �→	 in Eq. �9� which require special attention.
The first one is trivial since it corresponds to the absence of
the phase transition since the gap always remains finite ex-
cept for a very narrow interval around �=0. Indeed, a more
careful analysis shows that the constant C in Eq. �9� is pro-
portional to �.2 The opposite limit �→	 is more interesting
since it corresponds to, e.g., Kosterlits–Thouless �KT�

transition,6 which has many realizations in 1+1 dimensional
quantum systems. Thus, if the precise scaling form is 


�e−b/�r
then

nex � �
d
z ln�r+1��d−2z�/rz��−1� . �10�

This expression acquires extra logarithmic corrections as
compared to �9�. In particular, for the KT transition r=1/2
and z=1 so that Eq. �10� reduces to

nex
KT � �d ln3�d−2���−1� . �11�

There are no logarithmic corrections in two dimensions.
However, the only physically relevant case where the KT
transition can occur in a quantum system at zero temperature
corresponds to d=1.

Qualitatively, one can interpret Eq. �9� in a simple way.
The transitions to the excited states occur when the adiaba-
ticity conditions break down, i.e., when d ln 
 /dt�
. From
this, one immediately finds that the time interval when the
transitions take place scales as: t
�−z�/z�+1. The typical gap
at this time scale is


 
 ��t�z� 
 �z�/z�+1, �12�

which amounts to the available phase space �
kd

d/z


�d�/z�+1. Now, if we use the anzats that d
�k�� /�
�0� is a
scale independent quantity �see Eq. �8��, then we immedi-
ately come to the conclusion that this phase space determines
the number of excited states nex so that we come to Eq. �9�.
This simple derivation above, in fact, does not rely on the
spatial homogeneity of the system. The only information we
need is the density of states of excitations ���� at the energy
scale determined by Eq. �12�. So, in a general case instead of
Eq. �9�, we get:

nex � �z�/z�+1���z�/z�+1� . �13�

Notice that Eq. �9� contains only two critical exponents � and
z. So measuring the dependence nex��� and knowing one of
the exponents, say z, one can immediately deduce other.

Let us apply these ideas to the superfluid-to-insulator tran-
sition in a system of interacting bosons in a d-dimensional
lattice at commensurate filling.1,7 To describe the excitations
near the critical point, we adopt a mean-field Hamiltonian
derived by Altman and Auerbach in Refs. 8 and 9:

H = 2dJN�
k
��2u cos � − cos 2� + �k cos2 ��b1,k

† b1,k

−
1 − �k

2
cos2 ��b1,k

† b1,−k
† + b1,kb1,−k�

+ �2u cos2 �

2
+ sin2 � − cos2 �

2
+ �k cos2 �

2
�b2,k

† b2,k

+
1 − �k

2
cos2 �

2
�b2,k

† b2,−k
† + b2,kb2,−k�� . �14�

Here, J is the tunneling constant, N is the mean number of
bosons per site, which we assume to be a large integer for the
sake of simplicity, �k=1/2d��1−eik�, � is the mean field
angle characterizing the phase. In particular �=0 corre-
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sponds to the Mott phase, while in the superfluid regime
cos ��u. The dimensionless interaction u�U / �4JdN� is de-
fined so that the transition occurs at u=1.

In the Mott side of the transition, u�1, both branches are
degenerate and the Hamiltonian �14� can be readily diago-
nalized via the Bogoliubov’s transformation:

�m,k = cosh �m,kbm,k − sinh �m,kbm,−k
† , �15�

where it becomes

H = �
m,k

�m,k�m,k
† �m,k. �16�

The eigenfrequencies �m,k and the angle �m,k read:

�1,2,k = 4dJNu�u − 1

u
+

�k

u
� 4dJN�� + �k, �17�

tanh 2�1,2,k = ±
1 − �k

2� + 1 + �k
, �18�

We have chosen �=u−1 to be the parameter governing the
phase transition. Given Hamiltonian �16� and transforma-
tions �15� it is easy to write down the ground-state wave
function:

�0� = �
m,k

cosh �m,ketanh �m,kbm,k
† bm,−k

†
�Vac� , �19�

where �Vac� is the state with no b particles. It is a simple
exercise to check that �p�� /���0� is non zero only when two
particles with opposite momenta are excited, i.e.,

�p� � �m,k,− k� = bm,k
† bm,−k

† �0� . �20�

Then, it can be verified that

�m,k,− k�
�

��
�0� = �

1

2

1 − �k

�1 + ���� + �k�
� �

1

2�� + �k�
,

�21�

where we used the approximation that both � and �k are
small near the phase transition. Note that Eq. �21� satisfies
the general scaling �8� with the exponent �=1/2, in the same
way the dispersion relation �17� agrees with Eq. �7�.

A similar analysis can be performed on the superfluid
side. The Hamiltonian �14� now gives two branches corre-
sponding to the amplitude and the phase modes:

�1,k � 4dJN�− � + �k, �2,k � 4dJN��k, �22�

which are characterized by the following angles of the trans-
formation �15�:

tanh 2�1,k �
1 − �k + 2�

1 + �k
, tanh 2�2,k �

2 − 2�k + �

2 + 2�k + �
.

�23�

Note that the parameter � is negative on the superfluid side.
The matrix elements for these two modes are:

�1,k,− k�
�

��
�0� � −

1

2��k − ��
, �2,k,− k�

�

��
�0� �

1

4
.

�24�

The excitations of the phase modes are suppressed as com-
pared to the amplitude ones. This can be also expected on the
physical grounds, i.e., by changing the parameter � or
equivalently u we change the mass or the gap of the ampli-
tude mode thus exciting it, however, there is no such a cou-
pling mechanism for the phase mode. Clearly, the total num-
ber of the excited phase oscillations is not determined by the
properties of the critical point and thus is not universal. This
number scales as nex��d, i.e., vanishes much faster with �
than the number of excitations to the gapped mode. Besides,
a typical experiment would use the phase contrast as a mea-
sure of superfluidity,3,10 which is not strongly affected by low
momentum phase excitations. Keeping this in mind, we cal-
culate explicitly only the number of particle pairs lost to the
mode 1, which is gapped on both sides of the transition.
Experimentally, this number can be detected by getting first
from the superfluid to the Mott insulator and then returning
back to the superfluid regime and measuring the loss of the
phase contrast, or by measuring the number of created
particle-hole pairs in the insulating state. Performing the in-
tegration in Eq. �6� we find that in one, two, and three di-
mensions, the number of excitations is

nex
1D � 0.348� �

JN
�1/3

, nex
2D � 0.059� �

JN
�2/3

,

nex
3D � 0.010� �

JN
� , �25�

respectively. We note that since �=1/2 within this meanfield
treatment and z=1, the upper critical dimension is 2z�z�
+1�=3 so the scaling �9� is valid in one and two dimensions.
However, this model has an additional symmetry, giving the
same prefactors of the gap and wave function dependence on
� in both superfluid and insulating phases �compare Eq. �17�
with Eqs. �22� and �21� with �24��. This symmetry shifts the
upper critical dimension to d=4, so the results remain uni-
versal in all three spatial dimensions. As anticipated, expres-
sions �25� are consistent with Eq. �9�.

The correct description of the superfluid-to-insulator tran-
sition gives exponents different from the mean-field values
used above. The commensurate transition lies in the univer-
sality class of the XY model in the d+1 dimensions with z
=1 and �=0.5 for d=3, ��0.67 for d=2,11 and �=	 in d
=1 �Ref. 6� �more precisely, the universality class in the
latter case is of the KT transition with 
�exp�−b /����. So
that for these special points Eq. �9� reduces to

nex
1D �

�

ln3��−1�
, nex

2D � �0.80, nex
3D � � . �26�

In a generic point of the superfluid-insulator transition corre-
sponding to the noncommensurate filling z�=17 and since
z�1, the upper critical dimension dc is always larger than 3.
So Eq. �9� reduces to: nex��d/2�. Thus measuring nex���, it is
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possible to observe the exponent �. Unfortunately except for
3D, where �=1/2 and hence nex��3/4, the precise value of �
�and z� is not fixed but rather depends on the point where the
transition occurs.12

Another example we consider here is the transverse field
Ising model,1 which is described by the Hamiltonian

HI = − �
j

g� j
x + � j

z� j+1
z , �27�

where �x and �z are the Pauli matrices. The dimensionless
coupling constant g drives the system through a critical
point, which occurs at gc=1 �Ref. 1� and which is character-
ized by the critical exponents z=�=1. Using the Jordan–
Wigner transformation, one can show that Eq. �27� maps to
the model of free spinless fermions with the Hamiltonian

HI = − �
j

cj
†cj+1 + cj+1

† cj + cj
†cj+1

† + cj+1cj − 2gcj
†cj ,

�28�

which in turn can be diagonalized by the Bogoliubov’s trans-
formation:

ck = cos��k/2��k + i sin��k/2��−k
† . �29�

Here, ck is the Fourier transform of cj and the angle �k is
given by1

tan �k =
sin�ka�

cos�ka� − g
. �30�

In the diagonal form, the Hamiltonian �28� reads

HI = �
k

�k�k
†�k, �31�

where �k=2�1+g2−2g cos k. The ground-state wave func-
tion, which is the vacuum of Eq. �31� reads

��� = �
k

�cos��k/2� + i sin��k/2�ck
†c−k

† ��0� , �32�

where �0� is the state with no c-fermions. The excited states
have the form of �k1

† �k2
† . . .�kn

† ���. The natural choice of the

tuning parameter � is �=g−1 which is proportional to the
energy gap 
. It is straightforward to verify that

�

��
��� =

i

2�
k

��k

�g
�k

†�−k
† ��� =

i

2�
k

sin k

1 + g2 − 2g cos k
�k

†�−k
† ��� ,

�33�

which again corresponds to two particle excitations. This ex-
pression is consistent with Eq. �8� with G�0�= i /2. Now us-
ing Eq. �6�, we immediately find:

nex � 0.18�� , �34�

which agrees with the general formula �9� given that d=�
=z=1.

In conclusion, we showed that if the system, originally in
the ground state, is slowly driven through a quantum critical
point, the number of excited states per unit volume goes to
zero as a power law of the tuning rate. The exponent is
universal and is determined by the critical properties of the
transition if the dimension is smaller then dcr=2z�z�+1�. We
provided some general arguments and performed explicit
calculations for the superfluid-to-insulator transition within
the Boson Hubbard model and for the quantum phase tran-
sition in the transverse field Ising model.

Recently, two other papers appeared, which addressed a
similar issue of the number of created defects for a specific
case of a transverse field Ising model.13,14 In particular, the
authors got the same scaling as in Eq. �34� but with a slightly
smaller numerical prefactor. The discrepancy comes from a
more accurate treatment of transition probabilities within the
Landau–Zener formalism.15
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