
Transverse tunneling current through guanine traps in DNA

Vadim Apalkov1,2 and Tapash Chakraborty1,*
1Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada R3T 2N2

2Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA
�Received 3 August 2005; revised manuscript received 28 September 2005; published 28 October 2005�

The current-voltage dependence of the transverse tunneling current through the electron or hole traps in
DNA is investigated. The hopping of the charge between the sites of the trap and the charge-phonon coupling
results in a staircase structure of the I-V curve. For typical parameters of the DNA molecule, the energy
characteristics of a DNA trap can be extracted from the I-V dependence, viz., for a small gate voltage the
phonon frequency, and for a large gate voltage the hopping integral can be found from the positions of the steps
in the I-V curve. Formation of the polaronic state also results in the redistribution of the tunneling current
between the different sites of the traps.
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For the past several years intense research on electron �or
hole� migration through DNA has established that these mol-
ecules are capable of transporting charges over a distance of
at least a few nanometers.1–4 This is primarily achieved by
oxidation of guanines �G�, which generates a guanine radical
cation. Guanine has the lowest oxidation potential of the
common DNA bases5 and therefore a guanine radical cation
can only oxidize another G. Stacked Gs such as GG, or a
GGG, having much lower ionization potential than that of an
isolated G, are known to act as hole traps.6 Since accumula-
tion of holes at G sequences usually leads to deleterious
effects, including mutations,2,7 charge migration through
DNA may have important biological consequences. Elec-
tronic properties of both electron and hole traps depend cru-
cially on the charge dynamics inside the trapping spots.
Therefore, it is very important to extract the parameters that
characterize such dynamics. Here we show how the energy
characteristics of a DNA trap can be extracted from the cur-
rent �I�-voltage �V� dependence of the transverse tunneling
current through the electron or hole traps. Hopping of the
charge between the sites of the trap and the charge-phonon
coupling results in a staircase structure of the I-V curve. For
a small gate voltage, the phonon frequency, and for a large
gate voltage, the hopping integral, can be found from the
positions of the steps in the I-V curve. Formation of the
polaronic state also results in the redistribution of the tunnel-
ing current between the different sites of the traps.

Since our interest is in the local properties of DNA traps,
transport in the direction perpendicular to the backbone axis
�transverse transport8� is important. In this case, if the elec-
trodes have a relatively small width, tunneling occurs
through a single DNA nucleotide base. The saturated �un-
structured� tunneling current then depends on the particular
type of nucleotide base.8 This fact can be used to discover
the sequence of DNA by scanning it with conducting probes.
We demonstrate here that not only the saturated value of the
tunneling current but also the structure of the I-V curves can
provide important information on the properties of the DNA,
in particular about the trapping spots. This is because the
tunneling current through the system is determined by the
density of states �DOS� of the system. For a finite system the

DOS has peaks corresponding to discrete energy levels.
These peaks will result in a staircase structure of the tunnel-
ing current as a function of the applied voltage whenever
the Fermi levels align with a new state of the system and
thereby open an additional channel for tunneling. Therefore,
from the staircase structure of the I-V curve, one can learn
about the energy spectra of the system. For DNA, the trap-
ping spots consist of a finite number of base pairs. Hopping
between the base pairs within the traps determines the energy
spectra of the spots. In addition to the energy scale due to
hopping, there is also an energy scale due to the electron-
phonon �or hole-phonon� interaction. Finally, for DNA trap-
ping spots, the I-V dependence has two types of staircase
structure: one due to hopping and the other due to the
phonons. We have explored the interplay between these two
effects.

The tunneling transport through a single molecule or a
quantum dot with electron-phonon coupling has been exten-
sively studied in the literature.9–12 The main outcome of
these works is the staircase structure of I-V curves due to
phonon sidebands. The heights of the steps in this structure
depend on the strength of the electron-phonon interactions,
temperature, and on the equilibrium condition of the
electron-phonon system. These studies were mainly re-
stricted to a molecule with a single electron energy level,
although a general approach to a many-level system is also
formulated.11

The DNA trap can be considered as a system of a few
molecules �base pairs� with hopping between them and the
electron-phonon coupling. Then in the I-V curves we should
observe the interplay between the staircase structure due to
hopping between the molecules and due to the phonon side-
bands. Since the tunneling occurs only through a single base
pair the I-V structure should also depend on the position of
the base pair through which the tunneling current is mea-
sured. Here we consider only the hole traps and the tunneling
current of holes, but the analysis is also valid for electron
traps and electron transport. Whether it is a hole transport or
electron transport depends on the gate potential, i.e., on the
position of the chemical potential at zero source-drain volt-
age Vsd.

We disregard below the effects related to a Coulomb
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blockade13 or to a double occupancy of the DNA traps, as-
suming that the repulsion between the holes is strong
enough, although for some range of parameter of the traps
the bipolaronic effect may become strong and a two-hole
system can have lower energy than a single-hole system.14

For a single hole in the trap, the Hamiltonian of the trap and
the electrodes consists of three parts: �i� the trap Hamil-
tonian, which includes a tight-binding hole part with hopping
between the nearest base pairs—the Holstein’s phonon
Hamiltonian with diagonal hole-phonon interaction,15 �ii� the
Hamiltonian of two leads, left �L� and right �R�, and �iii� the
Hamiltonian corresponding to tunneling between the leads
and DNA traps

H = Htrap + Hleads + Ht, �1�

where

Htrap = �
i=1

Nt

�ai
†ai − t�

i

�ai
†ai+1 + h.c.�

+ ���
i

bi
†bi + ��

i

ai
†ai�bi

† + bi� , �2�

Hleads = �
k,�=L,R

�kd�,k
† d�,k, �3�

Ht = − t0 �
�=L,R,k

�ai0
† d�,k + h.c.� , �4�

where ai is the annihilation operator of the hole on site �base
pair� i, � is the on-site energy of the hole in the trap �the
same for all base pairs within the trap and determined by the
gate voltage or doping of DNA�, bi is the annihilation opera-
tor of a phonon on site i, t is the hopping integral between
the nearest base pairs, � is the phonon frequency, � is hole-
phonon coupling constant, and d�,k is the annihilation opera-
tor of a hole in the lead �=L ,R with momentum k. The
index i=1, . . . ,Nt in Eq. �2� labels the sites �base pairs� in the
trap and Nt is their total number. Tunneling from the leads to
the trap occurs only to the site i0 with the tunneling ampli-
tude t0. In the hole-phonon part of the DNA Hamiltonian
Htrap, we include only the optical phonons16 with diagonal
hole-phonon interaction.

We describe the process of tunneling through the trap as a
sequential tunneling.17 In the weak lead-trap coupling regime
the tunneling Hamiltonian Ht can be considered as a pertur-
bation that introduce the transitions between the states of the
trap Hamiltonian, Htrap. We denote the eigenstates of the trap
Hamiltonian without coupling to the leads as �0,m� with en-
ergy E0,m for the trap without any holes, and �1,n� with the
energy E1,n for trap with a single hole. In the weak lead-trap
coupling limit the master equation for the density matrix of
the trap reduces to the rate equation10 for probability P0,m to
occupy the state �0,m� and probability P1,n to occupy the
state �1,n�,

dP1,n

dt
= �

m,�=L,R
W�,mn

0→1 P0,m − �
m,�=L,R

W�,nm
1→0 P1,n

−
1

��P1,n − P1,n
eq �

n�

P1,n�	 , �5�

dP0,m

dt
= �

n,�=L,R
W�,nm

1→0 P1,n − �
n,�=L,R

W�,mn
0→1 P0,m

−
1

��P0,m − P0,m
eq �

m�

P0,m�	 . �6�

The distributions P1,n
eq and P0,m

eq are the corresponding equi-
librium distributions with temperature T, P1,n

eq

=exp�−E1,n /kBT� /�n� exp�−E1,n� /kBT� and P0,m
eq

=exp�−E0,m /kBT� /�m� exp�−E0,m� /kBT�. Here � is the relax-
ation time that is assumed to be same with and without a
hole in the trap. The transition rate W�,nm

1→0 is the rate of hole
tunneling from the state �1,n� of the trap to the �=L ,R lead
leaving the trap in the state �0,m�. Similarly, the rate W�,mn

0→1 is
the rate of hole tunneling from the lead � to the state �1,n� of
the trap, while originally the trap was in the state �0,m�.
These rates can be found from Fermi’s golden rule

W�,nm
1→0 = �0f��E1,n − E0,m��
0,m�ai0

�1,n��2, �7�

W�,mn
0→1 = �0�1 − f��E1,n − E0,m���
0,m�ai0

�1,n��2, �8�

where �0=2	t0
 /� and 
 is the density of states in the leads,
which is assumed to be the same in the L and R leads, and
f���� is the Fermi function of the lead � with a chemical
potential ��.

For the stationary case the time derivatives of P1,n and
P0,m are zero, and Eqs. �5� and �6� becomes the system of
linear equations with condition of normalization �nP1,n
+�mP0,m=1. Then the stationary current can be calculated as

FIG. 1. Current vs the source-drain voltage shown for two base
pairs in the trap �Nt=2� and different values of phonon frequency
and hole-phonon interaction strength: �a� �=0.1, =0.5; �b� �
=0.1, =1.0; �c� �=0.2, =0.5; �d� �=0.2, =1.0. The solid line
corresponds to �=1.3t while the dotted line is for �=2.7t.
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I = �
n,m

�P0,mWL,mn
0→1 − P1,nWL,nm

1→0� . �9�

We have calculated the current �9� numerically as a function
of Vsd for different values of on-site energy, �, which can be
changed by the gate voltage or by doping. By varying Vsd we
are keeping the on-site energy � the same and vary the
chemical potentials of leads as �L=Vsd /2 and �R=−Vsd /2.

To determine the tunneling current we first calculate the
energy spectra of the DNA Hamiltonian �Eq. �2�� without
holes and with a single hole in the trap. The Htrap then is just
the Hamiltonian of free phonons at each site of the trap. With
a single hole we make the system finite by introducing limi-
tations on the total number of phonons18 �inph,i�10, where
nph,i is the number of phonons on site i. The eigenfunctions
and eigenvalues of Htrap can then be found numerically and
the corresponding transition rates Eqs. �7� and �8� can be
calculated. Finally, we solve the system of linear Eqs. �5� and
�6� for a given bias voltage, and substitute this solution into
Eq. �9� to find the stationary tunneling current.

There are five dimensionless parameters that determine
the tunneling current I at a given temperature: the nonadia-
baticity parameter19 �=�� / t, with a typical value of
�0.01–0.5 for DNA,20 the canonical hole-phonon coupling
constant19 =�2 / �2��t�, which is �0.2–1 for DNA,21 di-
mensionless bias voltage Vsd / t, on-site energy � / t, and the
ratio of the relaxation time and the tunneling time ��0.

The calculations have been performed for Nt=2 and Nt
=3, i.e., for two and three base pairs in the trap. The example
of such a system could be the guanine hole traps: GG and
GGG spots surrounded by adenines. In all the calculations
we kept the ratio of relaxation and tunneling time equal to 1
���0=1�, i.e., the hole-phonon system in the trap is not in the
equilibrium. Different values of ��0, ranging from ��0�1
�equilibrium case� to ��0�1 �disequilibrium case� do not
modify qualitatively the behavior of the I-V curve. To detect
the phonon steps in the I-V curve the temperature should be

less than the phonon frequency and so we keep the tempera-
ture equal to 0.01t, which for t=0.1 eV is around 10 K.

In Fig. 1 our results are shown for two base pairs �sites� in
the trap. The tunneling occurs through one of the sites, i0
=1. For the uncoupled hole-phonon system the I-V depen-
dence has two steps corresponding to two single hole energy
levels. The distance between the steps is �Vsd=4t. For a
small hole-phonon coupling constant =0.5 �Figs. 1�a� and
1�c�� the additional structures of width �Vsd��� due to the
phonon sidebands appear only at the first step and the second
step can still be clearly distinguished. At the same time for a
large gate voltage �large on-site energy ��, the phonon steps
are suppressed and the I-V structure becomes similar to that
of a zero-coupling strength, which is shown in Figs. 1�a� and
1�c� by dotted lines. For a strong hole-phonon interaction
�=1� the phonon steps suppress the steps due to intersite
hopping within the trap �Figs. 1�b� and 1�d��. This suppres-
sion becomes stronger for a larger nonadiabaticity �, which
is illustrated in Figs. 1�b� and 1�d� by a solid line for �
=0.1 and �=0.2. With increasing gate voltage the phonon
steps disappear and the I-V curve shows a clear two-step
structure. The suppression of phonon steps is not an artifact
of specific choice of the parameter ��0. We have found that
this effect exists for all values of the relaxation time. The
origin of the suppression can be much easier to understand in
the regime of a very fast relaxation. Hence we explain the
suppression of phonon steps in the case when the relaxation
time is much shorter than the tunneling time. In this case, the
hole-phonon system will be in equilibrium before each step
of tunneling process occurs. At low temperatures this means
that the system will be at its ground state, i.e., without any
phonons if there are no holes in the trap or in the polaronic
state when there is a single hole. Then tunneling from the L
lead will be tunneling to the state without any phonons.
Therefore this process will probe only single hole states,
which results in a two-step structure due to hole hopping.
Tunneling to the R lead is from the ground state of the
coupled hole-phonon system and so this tunneling will result
in the phonon steps in the I-V dependence. With increasing

FIG. 2. Current vs the source-drain voltage shown for three base
pairs in the trap �Nt=3� and �=0.2, but for different tunneling
points i0 and different values of hole-phonon interaction strength:
�a� i0=1: =0.5 and �=1.7t �solid�, �=3.0t �dashed�, =0 and �
=1.7t �dotted�; �b� i0=2: =0.5 and �=1.7t �solid�, �=3.0t
�dashed�, and =0, �=1.7t �dotted�; �c� i0=1: =1 and �=1.7t
�solid�, �=3.0t �dashed�, �d� i0=2: =1 and �=1.7t �solid�, �
=3.0t �dashed�.

FIG. 3. �a� The average number of holes and �b� the average
number of phonons for a single hole system in a GGG trap are
shown as a function of the base index. Dots and triangles corre-
sponds to hole-phonon interaction strength =1.0 and 0.5 eV,
respectively.
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gate voltage or on-site energy the number of channels con-
tributing to the tunneling to the R lead is increased. Finally at
large enough gate voltage this tunneling current becomes
saturated with suppression of phonon steps in the I-V struc-
ture. From Fig. 1 we conclude that for typical parameters of
the DNA structure, the hopping integral between the sites
within the DNA traps and phonon frequency that determine
the energetics of the hole-phonon trap system, can be found
from dependence of the tunneling current on Vsd. From a
small gate voltage the phonon frequency can be found from
the I-V curve, while for a larger gate voltage the hopping
integral can be obtained.

The I-V curve should show even richer structures for a
larger number of sites in the trap. In Fig. 2 the current as a
function of bias voltage is shown for Nt=3 sites. In this case
tunneling is possible through the sites i0=1 and i0=2. For
uncoupled hole-phonon systems the I-V curve shows three
steps for i0=1 �dotted line in Fig. 2�a��, and two steps for
i0=2 �dotted line in Fig. 2�b��. This means that for i0=2 only
two states have nonzero amplitude at i=2 and contribute to
the tunneling current. The finite hole-phonon coupling results
in two effects: the phonon steps in the I-V dependence simi-
lar to two-site trap �Fig. 1�, and the polaronic effect that
redistributes the hole density along the trap and increases or
decreases the tunneling current.

For small hole-phonon coupling �=0.5� the phonon steps

are seen only at the first hopping step �Figs. 2�a� and 2�b�
�solid lines��. The separation between the steps is the phonon
frequency. Similar to Fig. 1, an increase of the gate voltage
�on-site energy� suppresses the phonon steps and the I-V
curve becomes similar in structure to the uncoupled case
�Figs. 2�a� and 2�b� �dashed lines��. For a larger hole-phonon
coupling �=1� the steps due to hole hopping almost com-
pletely disappear for i0=1 �Fig. 2�c�, solid line�, but some
structure is still visible for i0=2 �Fig. 2�d�, solid line�. For a
larger gate voltage the steps due to the hopping overcome the
phonon effects.

The polaronic effects due to hole-phonon coupling can be
clearly seen in Fig. 2. With increasing hole-phonon interac-
tion the hole states become more localized at the center of
the trap �see Fig. 3�, which results in an increase of the
current for tunneling through the central site of the trap i0
=2 �see Figs. 2�b� and 2�d��, and decrease of the current
through i0=1 �see Figs. 2�a� and 2�c��. In addition to changes
to the tunneling current, the polaronic effect also modifies
the structure of the I-V curve. This can be seen in Fig. 2�a�,
where with increasing hole-phonon interaction the third step
due to the hole hopping disappears.
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