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We study the mixed valence transition �Tv�80 K� in EuNi2�Si0.2Ge0.8�2 using Eu 3d-4f x-ray absorption
spectroscopy �XAS� and resonant photoemission spectroscopy �RESPES�. The Eu2+ and Eu3+ main peaks show
a giant resonance and the spectral features match very well with atomic multiplet calculations. The spectra
show dramatic temperature �T� dependent changes over large energies ��10 eV� in RESPES and XAS. The
observed nonintegral mean valencies of �2.35±0.03 �T=120 K� and �2.70±0.03 �T=40 K� indicate homo-
geneous mixed valence above and below Tv. The redistribution between Eu2+4f7+ �spd�0 and Eu3+4f6

+ �spd�1 states is attributed to a hybridization change coupled to a Kondo-like volume collapse.
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An important issue of enduring interest in f-electron sys-
tems that exhibit mixed-valence �MV� transitions and the
related Kondo effect is the role of purely ioniclike states
compared to delocalized or hybridized states.1–5 For ex-
ample, in SmS, which exhibits a pressure-dependent MV
transition,6 the relevant ionic states are Sm2+4f6 and Sm3+4f5

states. It is clear that such a transition requires the role of the
5d electrons of Sm, or more generally the �spd� electrons of
the conduction band.1 The necessary condition of charge bal-
ance for SmS would indicate that the transition involves
Sm2+4f6 and the Sm3+4f5+ �spd�1 electron configurations.
The MV transition then occurs between two stable states,
each defined by relative contributions of the 4fn and 4fn−1

+ �spd�1 configurations. Each state can be a homogeneous
MV state having the same nonintegral valence at each site,
due to a quantum-mechanical mixing of the relevant
configurations.7 In contrast, a static or inhomogeneous MV
state is one in which electron configurations are different at
different sites, representing one specific electron configura-
tion at a site. While the MVs in f-electron systems are often
homogeneous, there are exceptions.1,8

Many f-electron systems exhibit a MV transition induced
by temperature �T�, magnetic field, and/or pressure. These
include the �-� transition in Ce metal,1 the pressure-induced
transitions in SmS,6 and TmTe,9 the T-dependent transitions
in YbInCu4,10 Tm-monochalcogenides,11 as well as Eu-based
intermetallics, EuPd2Si2,12 Eu�Pd1−xAux�2Si2,13 and
EuNi2�Si1−xGex�2.14 Among T-induced transitions, the Eu
systems exhibit the largest change in valency,
�v�0.3–0.5.12–14 Of these, EuNi2�Si1−xGex�2 has been ex-
tensively studied to show T-,14,15 magnetic-field-,15 and
pressure-16 induced valence transitions. By tuning
composition �x in EuNi2�Si1−xGex�2�, the transition is ob-
served to be first-order-like for compositions close to x
=0.8, with a hysterisis as a function of T, pressure, and mag-
netic field.15–17 The MV transition in EuNi2�Si0.2Ge0.8�2 has
thus been investigated across the critical T �Tv� of �80 K

by magnetic susceptibility, high-energy bulk-sensitive Eu
L-edge x-ray absorption spectroscopy �XAS�, and x-ray dif-
fraction to show that the transition is accompanied by a
Kondo-like volume collapse across Tv.14–17

XAS and resonant photoemission spectroscopy �RESPES�
are important techniques for studying the electronic structure
�ES� of f-electron systems.18–20 In XAS applied to a solid, a
core electron of a particular site or element is excited to an
empty state, and hence it probes site-specific angular mo-
mentum projected unoccupied states of a solid.21 RESPES is
a complementary technique that probes the resonantly en-
hanced partial occupied density of states �DOS� of a solid.20

These techniques provide important insights into the physical
properties of strongly correlated materials, including MV,
Kondo effect, heavy fermion behavior, etc. However, recent
studies using ultraviolet photoemission spectroscopy �PES�
of MV systems revealed modifications of the surface ES
compared to the bulk.22–24 While signatures of T-dependent
MV are observed, the mean valence estimated from these
measurements is incompatible with bulk thermodynamic
studies. Significantly, the important role of hard-x-ray �HX:
h��3–8 keV� PES in general,25–31 as well as soft-x-ray
�SX: h��1–1.5 keV� PES �Ref. 22� and RESPES �Refs. 32
and 33� of f-electron systems, has been reiterated for study-
ing bulk character ES.

In this work, we study the T dependence of the MV tran-
sition in EuNi2�Si0.2Ge0.8�2 using XAS and RESPES across
the Eu 3d-4f threshold. We observe a giant resonance of
Eu2+ and Eu3+ main peaks and dramatic T-dependent
changes in the XAS and RESPES data. The mean valence
estimated from the data is consistent with bulk-sensitive re-
sults, indicating nonintegral homogeneous mean valencies of
2.35±0.03 �above Tv� and 2.70±0.03 �below Tv�. The XAS
data are analyzed using atomic multiplet calculations for
Eu2+ and Eu3+ states. The RESPES valence-band spectra as a
function of energy are also consistent with atomic calcula-
tions. The T-dependent transition redistributes occupancies

PHYSICAL REVIEW B 72, 161101�R� �2005�

RAPID COMMUNICATIONS

1098-0121/2005/72�16�/161101�4�/$23.00 ©2005 The American Physical Society161101-1

http://dx.doi.org/10.1103/PhysRevB.72.161101


of Eu2+4f7+ �spd�0 and Eu3+4f6+ �spd�1 configurations, at-
tributed to a hybridization change coupled to a Kondo-like
volume collapse.

EuNi2�Si0.2Ge0.8�2 polycrystalline samples were prepared
by melting stoichiometric amounts of constituent elements in
an argon furnace.15 EuNi2�Si0.2Ge0.8�2 was characterized to
exhibit Tv�80 K by magnetic susceptibility. The sample
was single phase with the ThCr2Si2-type structure, as con-
firmed by x-ray diffraction. The Eu 3d-4f XAS and RESPES
experiments were performed at SX undulator beam line
BL17SU of SPring-8 using a grazing incidence monochro-
mator. The XAS measurements were carried out by record-
ing sample drain current as a function of photon energy. The
RESPES experiments used a hemispherical high energy-
resolution electron analyzer, SCIENTA SES-2002. The total
energy resolution at the 3d-4f threshold was about 300 meV
and the vacuum was 4�10−8 Pa. A clean surface was
obtained by fracturing at 40 K. The measurements were per-
formed for several fractured samples at 120 K and 40 K in a
T cycle to confirm reproducibility of T-dependent changes.

Figures 1�a� and 1�b� show the Eu 3d-4f XAS
�M4,5-edge� spectra of EuNi2�Si0.2Ge0.8�2 obtained at a
sample T of 120 K �above Tv� and 40 K �below Tv�, respec-
tively. The spectra show multiple peak structures and the
intensities of the peaks show large changes over a large en-
ergy range ��10 eV in the M5 region�, as a function of T. In
order to identify the character of the various features, we
calculated the Eu 3d-4f XAS spectra and compared them
with experimental results, as shown in Fig. 1. The calcula-
tions are atomic mutiplet calculations for the Eu2+ and Eu3+

free ions.34 The Slater integrals and spin-orbit coupling con-
stants are calculated by the Hartree-Fock method with rela-
tivistic corrections. As usual, the Slater integrals are reduced
to 80%.34 The Eu2+ and Eu3+ discrete energy states are plot-
ted as a bar diagram in Fig. 1�c�. The discrete energy states
were broadened by a Gaussian for the experimental resolu-
tion and by a Lorentzian to represent the lifetime broadening.

The calculated spectra �Figs. 1�a� and 1�b�� show a very
good match with all the divalent and trivalent multiplet fea-
tures, confirming that intra-atomic multiplet effects account
for the observed features. The spectral intensities required to
match the experiment indicate nonintegral homogeneous
mean valencies of 2.35±0.03 at 120 K, which changes to
2.70±0.03 at 40 K. These values match with the mean va-
lence estimated from bulk-sensitive L-edge XAS �Ref. 14�
and HX-PES of Eu 3d core levels,35 which showed a mean
valence change from �2.40 at 120 K to �2.75 at 40 K. An
important point to note is that the lowest unoccupied states
with significant intensity for Eu2+ and Eu3+ configurations
are close in energy and constitute the feature labeled 1
shaded region. This seems, at first glance, quite surprising
because the Eu2+ and Eu3+ features are well-separated in the
core levels35 and valence band �discussed below� due to the
strong on-site Coulomb correlations in the f states �Uf f

�5 eV�. However, in the atomic multiplet approximation for
XAS, if we consider the 3d-4f excitations to be dominated
by Uf f and the core-hole attraction Ufc, the 3d-4f excitation
energy difference between Eu2+ and Eu3+ is obtained to be
Uf f-Ufc. Since Uf f �1.2Ufc, it suggests that a lower-energy
scale, such as hybridization between f and conduction-band
�spd� states, can play a major role in the MV transition.

Figure 2 shows the Eu 3d-4f valence-band RESPES ob-
tained at T=120 and 40 K for energies labeled 0–4 in Fig. 1
�corresponding to incident photon energies of h�
=1121.0 eV �off-resonance�, 1125.7 eV, 1128.2 eV,
1130.2 eV, and 1133.9 eV�. All the spectra are normalized to
the Ge 3d shallow core levels, which do not change shape as
a function of T and incident photon energy, as shown in the
inset for the off-resonant spectra over a larger energy scale

FIG. 1. �Color online� Comparison of the Eu 3d-4f XAS experi-
mental spectra with calculated spectra at �a� T=120 K and �b�
40 K. The spectral intensities change strongly across Tv�80 K,
over large energy scales. The spectra are derived from intra-atomic
multiplet excitations of Eu2+ and Eu3+ ions by broadening the dis-
crete energy states ��c��. FIG. 2. �Color online� The T-dependent Eu 3d-4f RESPES

spectra at incident photon energies marked 0–4 in Fig. 1. The inset
shows the normalization procedure using off-resonance �off-res0�
spectra. The resonant features originate from the partial 4f DOS of
Eu2+ and Eu3+ ions. Note the absence of T dependence in the Eu2+

surface state at 1.7 eV BE �on-res2�.
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�0–35 eV�. In the off-reasonant spectra, the feature at 0.8 eV
binding energy �BE� is the bulk Eu2+ 4f state, and the feature
at 1.5 eV BE, composed of the Ni 3d and the surface Eu2+ 4f
states, has higher intensity.24,36 This results in effectively
masking the T-dependent changes in off-resonant spectra as
the Eu2+ 4f state does not participate in the MV
transition.24,37 In contrast, the on-resonant spectra at energies
on-res1-4 show dramatic changes in spectral features and
intensity as a function of T and incident photon energy. We
discuss all the spectral features and peak assignments using
atomic multiplet calculations for the RESPES data at the
energies on-res1-4, shown in Fig. 3.

The spectra at the photon energy on-res1 are enhanced for
the bulk Eu2+ feature at 0.8 eV and the surface feature at
1.7 eV BE �Fig. 2�. The bulk feature shows a further clear
enhancement at 120 K compared to 40 K, while the surface
Eu2+ feature shows negligible change in spectral intensity
with T. Weak features between 6 and 8 eV BE indicate
T-dependent changes between 120 and 40 K �Fig. 3�a��, with
strongly reduced intensity at 120 K. The atomic mutiplet cal-
culations �dotted lines, Fig. 3�a�� confirm the Eu2+ character
of the feature at 0.8 eV and the Eu3+ character between 6 and
8 eV with very weak features at higher energies.

At the energy on-res2, the Eu2+ features are strongly en-
hanced, as this energy corresponds to the main peak of Eu2+

character in XAS �Fig. 1�. It is a giant resonant enhancement
because the intensity increase at the bulk Eu2+ peak is �140
times compared to the off-resonance data at 120 K.38 At this
energy, the features between 6 and 8 eV BE, which originate
in Eu3+ states, also show a clear T dependence: the spectral
intensity nearly vanishes at 120 K but is observed at 40 K.

This observation confirms that the T dependence is due to
intrinsic mixed valency changes and not due to oxidation at
high T, as oxidation would lead to an increase in Eu triva-
lency at 120 K. The calculations match the bulk Eu2+ and
Eu3+ features.

On increasing the energy to on-res3, the Eu3+ features are
strongly enhanced with a simultaneous reduction of the Eu2+

features. This energy being the main peak of Eu3+-derived
states in XAS, the weaker Eu3+ multiplets are also signifi-
cantly enhanced up to a BE of nearly 12 eV �Figs. 2 and
3�c��. The Eu3+ main peak also shows a giant resonance:
�100 times increase compared to off-resonance at 40 K. The
strong T-dependent changes in the Eu3+ features show that a
small energy change in terms of reducing T from
120 to 40 K ��T�10 meV� redistributes electronic states up
to 12 eV BE in the valence band. This shows the delicate
energy balance driving the MV transition. Interestingly,
while the calculations match the Eu2+- and Eu3+-derived
features as obtained at lower energies, a new feature is ob-
tained between the main Eu2+ and Eu3+ features �Fig. 3�c��.
This is seen as a weak tail between 3 and 6 eV, i.e., at BEs
lower than the main Eu3+ peak. This is assigned to the inter-
mediate spin-flip satellites, as is known from earlier work.39

The spin-flip states �4f5↑,1↓� lie between the �4f6↑� and �4f5↑�
photoemission final states of Eu2+ and Eu3+ initial states,
respectively,39 and also exhibit T dependence.24,36 At the en-
ergy on-res4, an overall reduction of the spectral intensities
of the Eu2+ and Eu3+ is observed, and the features are in
agreement with the calculations �Fig. 3�d��. The Eu2+ surface
state, which was nearly absent at on-res3 energy, is again
recovered as a weak feature.

It has been shown that �v, the observed change in va-
lency with T, is consistent with T-dependent magnetic sus-
ceptibility and valency change as calculated using the inter-
configuration fluctuation �ICF� model for Eu compounds,7,13

including EuNi2�Si1−xGex�2 for x=0.75 and 0.8 �Refs. 14 and
15, respectively�. The estimated value of energy separation
between Eu3+ and Eu2+ for EuNi2�Si0.2Ge0.8�2 is about
770–830 K in the ICF model giving a �v�0.4 between 120
and 40 K, consistent with present experiments. A linear cor-
relation between T-dependent isomer shift with composition
and T-dependent mean valence as obtained by L-edge XAS
�Ref. 14� is also consistent with our result. Hence, the intrin-
sic ES of a strongly correlated f-electron system undergoing
a MV transition as a function of T can be measured by
3d-4f XAS and RESPES. The energy-dependent RESPES
reveal the partial 4f DOS in the valence band. It is surprising
that the 3d-4f XAS and RESPES data can all be explained
with atomic multiplet calculations, above and below Tv, be-
cause it cannot explain the MV transition. Since the MV
transition is coupled to a Kondo-like volume collapse in the
low-T phase, as is known from diffraction studies,14,17 the
volume collapse must increase hybridization between the
ionic f states and the conduction-band �spd� states. The
change in occupancies is attributed to changes in hybridiza-
tion above and below Tv.

In conclusion, the Eu 3d-4f XAS and RESPES spectra of
EuNi2�Si0.2Ge0.8�2 at 120 K and 40 K, across the MV transi-
tion at Tv�80 K, are consistent with bulk-sensitive measure

FIG. 3. �Color online� Comparison of the Eu 3d-4f RESPES
experimental spectra with atomic multiplet calculations at incident
photon energies from on-res1 to on-res4, at 40 K �left panel� and
120 K �right panel�.
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ments. The experimental spectra correspond nicely with cal-
culated spectra for the Eu2+ and Eu3+ free ion configurations
in an atomic model. The mean valence was estimated to be
�2.35±0.03 at 120 K and �2.70±0.03 at 40 K. The redis-
tribution between Eu2+4f7+ �spd�0 and Eu3+4f6+ �spd�1

states is attributed to a hybridization change coupled to a

Kondo-like volume collapse. Eu 3d-4f XAS is very useful
for studying the bulk intrinsic ES of strongly correlated rare-
earth compounds undergoing a MV transition.
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