Structure and electronic properties of $Al_{13}X$ (X=F, Cl, Br, and I) clusters

Jaehoon Jung, Jong Chan Kim, and Young-Kyu Han*

Computational Chemistry Laboratory, Corporate R&D, LG Chem, Ltd. Research Park, Daejeon 305-380, Korea

(Received 28 June 2005; revised manuscript received 29 August 2005; published 28 October 2005)

Theoretical electronic structure studies on the neutral $Al_{13}X$ (X=F, Cl, Br, and I) clusters have been carried out using a gradient-corrected density functional approach. A low-symmetry (ontop: C_s) isomer is found to be the most stable for the $Al_{13}X$ clusters. The shape of the Al_{13} moieties in the C_s isomers is significantly distorted from the highly symmetric icosahedral structure and is similar to the Al_{13} cationic structure. The binding energy between Al_{13} and the halogen atoms increases as X goes from I (2.96 eV) to F (5.79 eV). Population analysis shows that the bonding of Al_{13} to the halogen atoms is predominantly ionic. We found that there is a linear relationship between the binding energy of $Al_{13}-X$ and the electronegativity of X. From the calculated binding energies and highest occupied molecular orbital–lowest unoccupied molecular orbital gaps, we conclude that the $Al_{13}X$ clusters are kinetically and thermodynamically stable. The structure of $Al_{13}X^-$ clusters is highly symmetric (ontop: C_{5v}), implying that the cluster's extra electron is localized in the Al_{13} moiety.

DOI: 10.1103/PhysRevB.72.155439

PACS number(s): 36.40.-c

I. INTRODUCTION

Cluster physics has been a subject of intense research activity in recent years, because of such potential technological applications as fabrication of materials with desired properties.¹⁻⁵ Atomic metal clusters have dramatically different physical and chemical properties from the bulk, which is described by band theory, because of the high surface-areato-volume ratio and the large energy gap near the highest occupied molecular orbital (HOMO). In particular, those clusters with a particular number of valence electrons show enhanced stability against dissociation. These clusters are termed "magic" clusters. The stability of such clusters is governed by two important factors: electronic and geometric shell closure. The spherical jellium model predicts that clusters with 2, 8, 20, 40,... valence electrons have higher stability because of the closure of electronic shells.⁶⁻⁸ For example, Al13 has 40 electrons and can satisfy closure of the 2p shell. The precipitous drop in the mass-ion peak intensity after Al₁₃⁻ indicates that it is a very stable cluster.⁹

One of the important aspects of cluster science is the interaction of clusters with other atoms—*superatom-atom interaction*¹⁰—in determining their stability, as well as their catalytic properties. A pure Al₁₃ cluster is a 39-electron system, short by just one electron of forming a closed-shell configuration. For this reason, many researchers have studied ways of doping Al₁₃ in order to form highly stable closedshell clusters such as Al₁₃M, where M is a monovalent atom such as an alkali^{11–18} or coinage^{19–21} metal.

On the other hand, Al_{13} is known to bind strongly with a hydrogen atom^{5,22–27} or an iodine atom,²⁸ and the $Al_{13}H$ (Ref. 29) and $Al_{13}I$ (Refs. 31 and 32) clusters are highly stable and abundant, as observed experimentally. In contrast to $Al_{13}M$ (*M*=alkali metals), there is a transfer of charge from the Al_{13} cluster to the hydrogen atom^{26,27} or the iodine atom.^{28,31} The Al_{13} moiety of $Al_{13}M$ retains icosahedral (or decahedral) geometry, which is due to charge transfer from *M* to Al_{13} . Han and Jung²⁸ reported that a low-symmetry structure (ontop: C_s) is the most stable form for $Al_{13}I$ clusters, while its anion is highly symmetric. Density functional theory (DFT) calculations²⁸ show that the C_s -ontop Al₁₃I isomer is more stable than the high-symmetry (bridge: C_{2v}) isomer by 0.2–0.4 eV. Bergeron *et al.*³¹ reported, however, that the C_s -ontop isomer is very slightly unstable relative to the C_{2v} -bridge isomer, although the authors did not specify the relative energy. Recently, Bergeron *et al.*¹⁰ presented experimental evidence for the formation of a class of polyhalide molecules by replacing an I atom in traditional polyiodides

FIG. 1. (Color online) PBE optimized structures of (a) cationic, (b) neutral, and (c) anionic Al_{13} clusters. The relative energies are given in eV.

FIG. 2. (Color online) PBE optimized structures of $Al_{13}X$ (X=F, Cl, Br, and I). The bond distances between halogen atom and its neighboring Al atom are given in Å.

with an Al_{13} cluster. Hence, there is a growing interest in Al_{13} clusters with attached electronegative atoms.^{10,30} To the best of our knowledge, there has been no attempt to study the binding of Al_{13} with all the halogen atoms in a systematic way.

In the present study, we have performed very extensive DFT calculations for the various low-lying $Al_{13}X$ (X=F, Cl, Br, and I) cluster isomers. Several questions are of interest: (1) Does the structure of Al_{13} undergo significant modification as the halogen atoms are attached?, (2) How does the binding energy change as one goes from Al_{13} -I to Al_{13} -F?, (3) Does the binding between Al_{13} and X originate because of charge transfer?, and (4) How does the structure change as an electron enters the $Al_{13}X$ clusters?

II. COMPUTATION DETAILS

Kohn-Sham DFT calculations were performed with the gradient-corrected exchange-correlation functional proposed by Perdew, Burke, and Ernzerhof (PBE).³² The correlation-consistent triple- ζ (cc-pVTZ) (Ref. 33) basis set was used. Scalar relativistic effects were treated with the energy-consistent small-core (25 valence electrons) pseudopotentials for the heavy halogen atoms, Br and I.³⁴ All of the vibrational frequencies have been calculated using the analytic second derivative evaluation of the energy to judge whether the structure is a local minimum or not. Natural population analysis (NPA) (Ref. 35) calculations were performed to estimate quantitatively the charge transfer from Al₁₃ to *X*. All the calculations were carried out with the GAUSSIAN03 program.³⁶

III. RESULTS AND DISCUSSION

We considered nine low-lying structures of Al_{13} with a halogen atom on a bridge, hollow, or ontop site as the initial

structures in the geometry optimization. The Al₁₃ structures were adopted from the low-lying structures of Al₁₃⁺ and Al₁₃⁻, as well as Al₁₃. Geometry optimizations were performed starting from a total of 150 initial structures—39 ontop, 68 bridge, and 43 hollow forms—at the PBE level of theory. One, two, and three Al atoms bind with the X atom for the ontop, bridge, and hollow structures, respectively. The PBE optimized structures of Al₁₃⁺, Al₁₃, and Al₁₃⁻ considered here were determined along with the relative energies (Fig. 1). It is known that the ground-state structures of Al₁₃⁺, Al₁₃, and Al₁₃⁻ are $C_s(I)$,^{27,37} D_{3d} (slightly Jahn-Teller distorted icosahedron),^{22,26,27} and I_h ,^{26,27,38} respectively. It should be noted that the shapes of the two stable Al₁₃⁺ clusters are significantly distorted from the highly symmetric icosahedral structure.

We display the structures and relative energies for eight low-lying isomers-five ontop, two bridge, and one hollow forms—of $Al_{13}X$ clusters in Fig. 2. The binding energy, relative energy, HOMO-LUMO gap (where LUMO denotes lowest unoccupied molecular orbital), number of imaginary frequencies, and natural populations of X[Q(X)] are summarized in Table I. It is worth noting that only the C_s -ontop structures are local minima, whereas the bridge and hollow isomers are saddle points in the potential energy surface, and the C_s -ontop(I) isomer is the most stable for all the Al₁₃X clusters. The relative energy between C_s -ontop(I) and Icobridge $(C_{2\nu})$ isomers increases as the charge transfer from Al₁₃ to X increases, i.e., 0.17 and 0.57 eV for X=I and F, respectively. The Al₁₃ moieties of C_s -ontop(I) and C_s -ontop(II) isomers are similar to the first $C_s(I)$ and second $C_s(II)$ stable isomers of the Al_{13}^{+} clusters, respectively. We mention that the reported ground-state structures for Al13Cl and $Al_{13}I$ in Ref. 31 correspond to the C_s -ontop(II) and Icobridge isomers in this work, respectively.

TABLE I. Binding energy, relative energy, HOMO–LUMO (HL) gap, number of imaginary frequencies (NIMAG), and natural populations of X [Q(X)] for various possible isomers of Al₁₃X (X=F, Cl, Br, and I). All energies are given in eV.

		C_s -ontop(I)	C_s -ontop(II)	C_s -ontop(III)	C_s -ontop(IV)	Ico-ontop	Ico-bridge	Dec-bridge	Ico-hollow
Binding	Al ₁₃ F	5.785	5.581	5.519	5.465	5.256	5.211	5.181	4.803
Energy	Al ₁₃ Cl	4.099	3.907	3.787	3.736	3.626	3.655	3.550	3.451
	Al ₁₃ Br	3.533	3.354	3.211	3.160	3.088	3.208	3.079	3.070
	Al ₁₃ I	2.956	2.804	2.615	2.562	2.560	2.786	2.626	2.711
Relative	Al ₁₃ F	0.000	0.204	0.266	0.319	0.529	0.574	0.603	0.982
Energy	Al ₁₃ Cl	0.000	0.192	0.312	0.363	0.472	0.444	0.549	0.648
	Al ₁₃ Br	0.000	0.179	0.322	0.373	0.444	0.325	0.454	0.463
	Al ₁₃ I	0.000	0.152	0.342	0.395	0.397	0.170	0.330	0.246
HL Gap	Al ₁₃ F	1.525	1.486	1.105	1.108	0.512	0.965	0.998	1.166
	Al ₁₃ Cl	1.524	1.493	1.097	1.108	0.580	1.151	1.173	1.276
	Al ₁₃ Br	1.521	1.432	1.090	1.106	0.584	1.148	1.191	1.271
	Al ₁₃ I	1.512	1.413	1.076	1.102	0.603	1.187	1.255	1.313
NIMAG	Al ₁₃ F	0	0	0	0	2	2	2	2
	Al ₁₃ Cl	0	0	0	0	2	1	2	2
	Al ₁₃ Br	0	0	0	0	2	1	2	2
	Al ₁₃ I	0	0	0	0	2	1	2	2
<i>Q</i> (<i>X</i>)	Al ₁₃ F	-0.698	-0.701	-0.706	-0.707	-0.688	-0.715	-0.720	-0.720
	Al ₁₃ Cl	-0.476	-0.466	-0.484	-0.482	-0.439	-0.427	-0.431	-0.445
	Al ₁₃ Br	-0.391	-0.370	-0.399	-0.396	-0.339	-0.310	-0.324	-0.328
	Al ₁₃ I	-0.263	-0.226	-0.272	-0.270	-0.190	-0.130	-0.148	-0.148

The bond strength between the Al₁₃ cluster and halogen atoms significantly increases as X goes from I (2.96 eV) to F (5.79 eV), namely, the binding is stronger as the electronegativity of the attached atom is larger. It is worth noting that the bond strength of $Al_{13}-X$ is large, considering the PBE binding energies (2.39-2.78 eV) for the experimentally observed Al₁₃Li, Al₁₃Na, Al₁₃K, Al₁₃Cs,¹⁸ Al₁₃Cu,²⁰ and Al₁₃H.²⁷ The large binding energies can be explained by strong Al-X bindings. Table II shows the binding energies, bond lengths, and NPA results for AlX (X=F, Cl, Br, and I) molecules. The calculated results are in good agreement with the experimental³⁹ values. The binding energy of $Al_{13}X$ has a trend very similar to AlX with systematically lower absolute values by about 1.0 eV. Such discrepancies can be ascribed to the different electronegativities of atom (Al) and superatom (Al₁₃). According to our calculations, the electronegativities of Al and Al_{13} are 3.14 and 4.67 eV, respectively, obtained as one-half of the sum of the ionization potential and the electron affinity.40

To understand the electronic structure of $Al_{13}X$ and its influence on the binding energy of X to Al_{13} , we studied the NPA charge of the X atom, Q(X). The Q(X) values are -0.70e, -0.48e, -0.39e, and -0.26e for the clusters containing X=F, Cl, Br, and I, respectively. The bonding nature of $Al_{13}X$ could be characterized as ionic, i.e., $Al_{13}^{\delta^+} - X^{\delta^-}$. From this point of view, we can obviously understand that the most stable structure of $Al_{13}X$ is C_s -ontop(I), having a similar Al_{13} moiety to the most stable $C_s(I)Al_{13}^+$ structure. In Fig. 3, we show a plot of the binding energy versus electronegativity of X for both the AlX molecules and the $Al_{13}X$ clusters. There is a linear relationship between the binding energy and electronegativity of X for both cases, strongly supporting the ionic bonding character.

We also calculated the HOMO–LUMO gaps of the Al₁₃X clusters (Table I), in order to estimate the kinetic stability. The energy difference between HOMO and the LUMO has been used as an index for kinetic stability.⁴¹ A large HOMO–LUMO gap implies high kinetic stability and low chemical reactivity because it is energetically unfavorable to add electrons to a high-lying LUMO or to extract electrons from a low-lying HOMO. It is worth noting that the C_s -ontop(I) isomer, with HOMO–LUMO gaps of about 1.52 eV, would be kinetically as well as thermodynamically more stable than the high-symmetry forms. The reported PBE HOMO–LUMO gaps are in the range of 1.53–1.83 eV for Al₁₃M [M=H,²⁷ Li, Na, K,^{15,17} and Cu (Ref. 20)]. By comparing the binding energy and HOMO–LUMO gap, we may conclude that the Al₁₃X clusters have a kinetic and thermodynamic

TABLE II. Binding energy (BE), bond length (BL), and natural populations of X [Q(X)] for AlX (X=F, Cl, Br, and I). The experimental data are included in the parentheses (Reference 39, the D₀ values).

	BE (eV)	BL (Å)	Q(X)
AlF	7.009 (6.89)	1.696 (1.654)	-0.802
AlCl	5.211 (5.12)	2.173 (2.130)	-0.676
AlBr	4.632 (4.43)	2.339 (2.295)	-0.624
AlI	3.999 (3.77)	2.574 (2.537)	-0.542

FIG. 3. Binding energy vs electronegativity of halogen atom for AlX (X=F, Cl, Br, I) and Al₁₃X: the solid symbols $[F(\bullet), Cl(\nabla), Br(\blacksquare), and I(\bullet)]$ and the line are from data obtained for AlX, and the open symbols $[F(\bigcirc), Cl(\bigtriangledown), Br(\square), and I(\diamond)]$ and the dotted line are from data obtained for Al₁₃X. The solid and dotted lines are determined via linear regression.

stability with respect to the experimentally known clusters. Although only the $Al_{13}I$ anion has so far been observed, our results suggest that the other $Al_{13}X$ clusters might be synthesizable.³⁰

Let us now turn to the structure and electronic properties of $Al_{13}X^{-}$ clusters. Table III shows the binding energy, HOMO–LUMO gap, and natural charge Q(X). The geometry optimization was performed using the initial geometries of the eight neutral $Al_{13}X$ clusters (Fig. 2). The highly symmetric *Ico*-ontop (C_{5v}) isomer is the most stable in the Al₁₃X⁻ clusters. Such high symmetry originates from the fact that the extra electron is localized on the Al₁₃ moiety for the $Al_{13}X^{-}$ clusters.³⁰ The C_s -ontop(III) and C_s -ontop(IV) isomers are also found to be local minima but to be less stable than the *Ico*-ontop isomer by more than 0.5 eV. The amount of extra electron entering the Al_{13} moiety is close to 1.0, regardless of the halogen atoms; -0.99e, -0.96e, -0.95e, -0.94e for X=F, Cl, Br, and I, respectively. It is worth noting that the extra electron is entirely localized on the Al₁₃ moiety for all the $Al_{13}X^{-}$ clusters, which leads to very similar adiabatic electron affinities of $Al_{13}X$; 2.74, 2.76, 2.78, and 2.80 eV for F, Cl, Br, and I, respectively. The halogen atoms are more weakly bound in the closed-shell Al₁₃⁻ than in the open-shell Al₁₃ cluster, where the binding energies of $Al_{13}X^{-1}$ are systematically lower than those of $Al_{13}X$ by about 0.5 eV.

TABLE III. Binding energy, HOMO–LUMO (HL) gap, and natural populations of X[Q(X)] for Al₁₃ X^- (X=F, Cl, Br, and I). All energies are given in eV.

	Binding energy	HL gap	Q(X)
Al ₁₃ F ⁻	5.193	1.677	-0.713
Al ₁₃ Cl ⁻	3.526	1.624	-0.512
Al ₁₃ Br ⁻	2.974	1.610	-0.438
Al ₁₃ I ⁻	2.426	1.580	-0.328

It is known that different functionals predict different ground states for Al₁₃H.²⁷ We repeated the DFT calculations using the B3LYP (Becke's three-parameter hybrid exchange⁴² with the nonlocal correlation of Lee-Yang-Parr⁴³) functional to verify the PBE results for neutral and anionic $Al_{13}X$ (X=F, Cl, Br, and I) clusters. Overall, the B3LYP method provides very similar results to the PBE values. We note that the B3LYP calculations greatly favor the C_s -ontop(I) isomers relative to the high-symmetry isomers for the $Al_{13}X$ clusters, while the *Ico*-ontop isomer is still the ground-state structure for the $Al_{13}X^{-}$ clusters. The relative energies of *Ico*-bridge with respect to C_s -ontop(I) at the B3LYP level are 0.92, 0.91, 0.82, and 0.70 eV for X=F, Cl, Br, and I, respectively. This is not surprising, because the C_s structure is the most stable isomer for neutral Al₁₃ at the B3LYP level of theory.²⁷

IV. CONCLUSIONS

To summarize, we have investigated the structure and electronic properties of $Al_{13}X$ (X=F, Cl, Br, and I) clusters. A low-symmetry C_s -ontop(I) isomer is found to be the most stable for the $Al_{13}X$ clusters, where the shape of the Al_{13} moiety in the $Al_{13}X$ cluster is significantly distorted from icosahedral and is similar to Al₁₃ cationic structures. This result is due to charge transfer from Al₁₃ to the electronegative halogen atoms. The bond strength between the Al₁₃ cluster and halogen atoms significantly increases as X goes from I to F. We found a linear relationship between the bond strength and the electronegativity of X, which suggests that the bonding nature of $Al_{13}X$ is predominantly ionic, i.e., $Al_{13}^{\delta^+} - X^{\delta^-}$. The large binding energy and HOMO-LUMO gap of $Al_{13}X$ show that these clusters would be stable both kinetically and thermodynamically. $Al_{13}X^-$ (X=F, Cl, Br, and I) shows the highly symmetric *Ico*-ontop (C_{5v}) structure, where the cluster's extra electron is entirely localized on the Al₁₃ moiety. A systematic experimental study of the electronic structure, binding energy, and electron affinity of $Al_{13}X$ (X=F, Cl, Br, and I) would be very useful.

- ¹S. N. Khanna and P. Jena, Phys. Rev. Lett. **69**, 1664 (1992).
- ²S. N. Khanna and P. Jena, Phys. Rev. B **51**, 13705 (1995).

- ⁴F. Liu, M. Mostoller, T. Kaplan, S. N. Khanna, and P. Jena, Chem. Phys. Lett. **248**, 213 (1996).
- ⁵F. Duque, A. Mañanes, L. M. Molina, M. J. López, and J. A. Alonso, Int. J. Quantum Chem. 86, 226 (2002).

^{*}Email address: ykhan@lgchem.com

³S. N. Khanna and P. Jena, Chem. Phys. Lett. **219**, 479 (1994).

- ⁶W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen, Phys. Rev. Lett. **52**, 2141 (1984).
- ⁷X. Li, H. Wu, X.-B. Wang, and L.-S. Wang, Phys. Rev. Lett. **81**, 1909 (1998).
- ⁸J. A. Alonso, Chem. Rev. (Washington, D.C.) **100**, 637 (2000).
- ⁹R. E. Leuchtner, A. C. Harms, and A. W. Castleman, Jr., J. Chem. Phys. **94**, 1093 (1991).
- ¹⁰D. E. Bergeron, P. J. Roach, A. W. Castleman, Jr., N. O. Jones, and S. N. Khanna, Science **307**, 231 (2005).
- ¹¹A. Nakajima, K. Hoshino, T. Naganuma, Y. Sone, and K. Kaya, J. Chem. Phys. **95**, 7061 (1991).
- ¹²K. Hoshino, K. Watanabe, Y. Konishi, T. Taguwa, A. Nakajima, and K. Kaya, Chem. Phys. Lett. **231**, 499 (1994).
- ¹³O. C. Thomas, W.-J. Zheng, T. P. Lippa, S.-J. Xu, S. A. Lyapustina, and K. H. Bowen, Jr., J. Chem. Phys. **114**, 9895 (2001).
- ¹⁴C. Majumder, G. P. Das, S. K. Kulshrestha, V. Shah, and D. G. Kanhere, Chem. Phys. Lett. **261**, 515 (1996).
- ¹⁵V. Kumar, Phys. Rev. B **57**, 8827 (1998).
- ¹⁶B. K. Rao, S. N. Khanna, and P. Jena, Phys. Rev. B **62**, 4666 (2000).
- ¹⁷S. N. Khanna, B. K. Rao, and P. Jena, Phys. Rev. B 65, 125105 (2002).
- ¹⁸C. Ashman, S. N. Khanna, and M. R. Pederson, Phys. Rev. B 66, 193408 (2002).
- ¹⁹O. C. Thomas, W. Zheng, and K. H. Bowen, Jr., J. Chem. Phys. 114, 5514 (2001).
- ²⁰S. N. Khanna, C. Ashman, B. K. Rao, and P. Jena, J. Chem. Phys. 114, 9792 (2001).
- ²¹R. R. Zope and T. Baruah, Phys. Rev. A **64**, 053202 (2001).
- ²²H. Kawamura, V. Kumar, Q. Sun, and Y. Kawazoe, Phys. Rev. B 65, 045406 (2001).
- ²³S. N. Khanna and P. Jena, Chem. Phys. Lett. **218**, 383 (1994).
- ²⁴F. Duque, L. M. Molina, M. J. López, A. Mañanes, and J. A. Alonso, Eur. Phys. J. D **16**, 285 (2001).
- ²⁵ H. Kawamura, V. Kumar, Q. Sun, and Y. Kawazoe, Mater. Trans., JIM **42**, 2175 (2001).
- ²⁶A. Mañanes, F. Duque, F. Méndez, M. J. López, and J. A. Alonso, J. Chem. Phys. **119**, 5128 (2003).
- ²⁷Y.-K. Han, J. Jung, and K. H. Kim, J. Chem. Phys. **122**, 124319 (2005).
- ²⁸Y.-K. Han and J. Jung, J. Chem. Phys. **121**, 8500 (2004).
- ²⁹S. Burkart, N. Blessing, B. Klipp, J. Müller, G. Ganteför, and G. Seifert, Chem. Phys. Lett. **301**, 546 (1999).
- ³⁰D. E. Bergeron, A. W. Castleman, Jr., T. Morisato, and S. N.

Khanna, Science 304, 84 (2004).

- ³¹D. E. Bergeron, A. W. Castleman, Jr., T. Morisato, and S. N. Khanna, J. Chem. Phys. **121**, 10456 (2004).
- ³²J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- ³³D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. **98**, 1358 (1993).
- ³⁴K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg, J. Chem. Phys. **119**, 11 113 (2003).
- ³⁵A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys. 83, 735 (1985).
- ³⁶M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, GAUSSIAN 03, Revision B.03 (Gaussian, Inc., Pittsburgh, PA, 2003).
- ³⁷Q. Sun, Q. Wang, J. Z. Yu, T. M. Briere, and Y. Kawazoe, Phys. Rev. A **64**, 053203 (2001).
- ³⁸O. Dolgounitcheva, V. G. Zakrzewski, and J. V. Ortiz, J. Chem. Phys. **111**, 10762 (1999).
- ³⁹K. P. Huber and G. Herzberg, *Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules* (Van Nostrand Reinhold, New York, 1979).
- ⁴⁰R. G. Parr and W. Yang, *Density Functional Theory of Atoms and Molecules* (Oxford University Press, Oxford, 1989).
- ⁴¹F. D. Profit and P. Geerlings, Chem. Rev. (Washington, D.C.) 101, 1451 (2001).
- ⁴²A. D. Becke, J. Chem. Phys. **98**, 5648 (1993).
- ⁴³C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B **37**, 785 (1988).