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A surface integral eigenvalue based technique for the direct calculation of resonance values of the permit-
tivity of nanoparticles, and hence resonance frequencies, is discussed. General physical properties of electro-
static �plasmon� resonances are presented. Strong orthogonality properties of resonance modes, a two-
dimensional phenomenon of “twin” spectrum and explicit estimates of resonance frequencies in terms of
geometrical characteristics of convex nanoparticles are reported. Second-order corrections for resonance values
of the dielectric permittivity are derived. Tunability and optical controllability of plasmon resonances in
semiconductor nanoparticles are discussed and, as a digression, a plausible plasmon resonance mechanism for
nucleation and formation of ball lightning is outlined. An efficient numerical algorithm for the calculation of
resonance frequencies is developed and illustrated by extensive computational results that are compared with
theoretical results and available experimental data.
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I. INTRODUCTION

It is known that nanoscale particles can exhibit resonance
behavior at certain frequencies for which the particle permit-
tivity is negative and the free-space wavelength is large in
comparison with particle dimensions. The latter condition
clearly suggests that these resonances are electrostatic in na-
ture. They appear at specific negative values of the dielectric
permittivity for which source-free electrostatic fields may ex-
ist. This is, in essence, the physical mechanism of these reso-
nances. For nanoscale metallic particles, these resonances
occur in the optical frequency range and they result in pow-
erful localized sources of light that are useful in scanning
near-field optical microscopy,1,2 nanolithography,3 and in
biosensor applications.4,5 It is also believed6 that strong local
electromagnetic fields associated with these resonances may
play an important role in surface enhanced Raman
scattering.7–9 Furthermore, it is anticipated that these reso-
nances may be instrumental in the emerging field of nano-
photonics where resonant nanoparticles will be used to guide
and switch light at the nanoscale.10–13 In this way, these reso-
nances may pave the way to all-optical computing where
information transmission and processing occur entirely at the
optical level. Finally, the utilization of resonant nanoparticles
may also dramatically reduce the physical bit size for the
next generation of optical data storage disks.14,15 It is impor-
tant to stress that electrostatic �plasmon� resonances in me-
tallic colloidal particles are intrinsically nanoscale phenom-
ena, because the two resonance conditions �negative
dielectric permittivity and large free-space wavelength in
comparison with particle dimensions� can be simultaneously
and naturally realized only at the nanoscale.

Resonances in metallic nanoparticles are often found ex-
perimentally �or numerically� by using a “trial-and-error”
method, i.e., by probing metallic nanoparticles of complex
shapes with radiation of various frequencies.16–19 Direct cal-
culations of resonance values of dielectric permittivity, and
the corresponding frequencies of electromagnetic radiations,
are clearly preferable. This can be accomplished by formu-
lating the problem of electrostatic �plasmon� resonances as
an eigenvalue problem for specific surface integral equa-
tions. This was first accomplished by Ouyang and Isaacson20

and was then extended in subsequent publications.21–24 The
purpose of this paper is the further development of the
boundary integral technique for direct calculations of reso-
nance frequencies as well as the analysis of unique physical
features of electrostatic resonances. In the paper, the study of
strong orthogonality properties of resonance modes is carried
out. These orthogonality properties are physically important
for the selection of resonance modes that can be coupled to
incident electromagnetic radiation. A two-dimensional phe-
nomenon of “twin” spectra and explicit estimates of reso-
nance frequencies in terms of geometrical properties of con-
vex nanoparticles are established. Second-order corrections
for resonance values of dielectric permittivities for nanopar-
ticles of arbitrary shapes are derived by employing the
boundary integral equation method. The techniques for the
tuning of these resonances to desirable frequencies are pre-
sented, and electrostatic �plasmon� resonances in semicon-
ductor nanoparticles where these resonances can be con-
trolled through optical manipulation of conduction electron
density are discussed. This direction of research is promising
for the development of all-optical nanotransistors. As a di-
gression, a plausible plasmon resonance mechanism for
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nucleation and formation of ball lightning is outlined. The
paper is concluded by the discussion of a numerical tech-
nique for the calculation of resonance frequencies and exten-
sive computational results are then presented and compared
with known theoretical results and available experimental
data.

II. ELECTROSTATIC APPROXIMATION. PLASMON
RESONANCES AS AN EIGENVALUE PROBLEM

In our discussion of resonances in metallic nanoparticles
we shall follow the traditional approach where all losses are
first neglected �as in the case of metallic resonance cavities,
for instance� and resonance frequencies are found for lossless
systems as frequencies for which source-free electromagnetic
fields may exist. In our case, this approach leads to the con-
sideration of resonances in the electrostatic limit where all
radiation losses are first neglected. This traditional approach
clearly reveals the physical nature of resonances in nanopar-
ticles as electrostatic resonances. It is worthwhile to mention
here that in literature these resonances are usually called
“plasmons.” We believe that the term “electrostatic reso-
nances” is more appropriate. Indeed, since these resonances
occur at frequencies for which free-space wavelengths are
large in comparison with nanoparticle dimensions, time-
harmonic electromagnetic fields within the nanoparticles and
around them vary almost with the same phase. As a result, at
any instant of time these fields look like electrostatic fields.
When the dielectric permittivity of metallic nanoparticles is
negative, the uniqueness theorem of electrostatics is not
valid. For this reason, source-free electrostatic fields may
appear for certain negative values of dielectric permittivities,
which is the manifestation of resonances. The frequencies
corresponding to the above negative values of permittivity
are the resonance frequencies. It is clear from the previous
discussion that electrostatic resonances may occur only in
particles whose media exhibit dispersion, that is when per-
mittivity is a function of frequency, and its real part assumes
negative value for some range of frequencies. For metals,
this frequency range is below the plasma frequencies, but at
sufficiently high frequencies for collisions to be unimportant.
For good conductors such as silver and gold, plasma fre-
quencies are in the visible frequency range, and this explains
why silver and gold nanoparticles are usually employed for
the observation of electrostatics �plasmon� resonances.

To start the discussion, consider a dielectric object of ar-
bitrary shape with permittivity �+��� �Fig. 1�. We are inter-
ested in negative values of �+��� for which a source-free
electromagnetic field may exist. To find such permittivities,
we shall write Maxwell equations in terms of the vectors

e = �0
1/2E, h = �0

1/2H �1�

and spatial coordinates scaled by the diameter d of the ob-
ject. This leads to the following boundary value problem:

� � e+ = − i�h+, � � h+ = i
�+

�0
�e+, �2�

� · e+ = 0, � · h+ = 0, �3�

� � e− = − i�h−, � � h− = i�e−, �4�

� · e− = 0, � · h− = 0, �5�

n � �e+ − e−� = 0, n � �h+ − h−� = 0, �6�

n · � �+

�0
e+ − e−� = 0, n · �h+ − h−� = 0, �7�

where superscripts “�” and “�” are used for physical quan-
tities inside �V+� and outside �V−� the dielectric object, re-
spectively, n is a outward unit normal to S, and

� = ���0�0d . �8�

In the case when the free-space wavelength is large in com-
parison with the object dimension, � can be treated as a
small parameter and source-free solution of the boundary
value problem �2�–�7� and permittivities �+ at which they
occur can be expanded in terms of �:

e± = e0
± + �e1

± + �2e2
± + ¯ , �9�

h± = h0
± + �h1

± + �2h2
± + ¯ , �10�

�+ = �+
�0� + ��+

�1� + �2�+
�2� + ¯ . �11�

By substituting formulas �9�–�11� into Eqs. �2�–�5� as well as
boundary conditions �6� and �7� and equating terms of equal
powers of �, we obtain the boundary value problems for ek

±

and hk
±. For zero-order terms, these boundary value problems

can be written in terms of E0
±=�0

−1/2e0
± and H0

±=�0
−1/2h0

± as
follows:

� � E0
± = 0, � · E0

± = 0, �12�

n � �E0
+ − E0

−� = 0, n · � �+
�0�

�0
E0

+ − E0
−� = 0, �13�

and

� � H0
± = 0, � · H0

± = 0, �14�

FIG. 1. The dielectric nanoparticle bounded by surface S.
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n � �H0
+ − H0

−� = 0, n · �H0
+ − H0

−� = 0. �15�

Boundary value problems for higher-order terms as well as
high-order corrections for �+ are discussed in Sec. IV.

It is apparent that

H0
± = 0. �16�

The electric potential � can be introduced for a source-free
electric field E0 and this potential satisfies the following
boundary value problem:

�2�+ = 0 in V+, �2�− = 0 in V−, �17�

�+ = �−, �+
�0���+

�n
= �0

��−

�n
on S , �18�

and zero boundary conditions at infinity. It is apparent that
potential � can be represented as an electric potential of
single layer of electric charges 	 distributed over the bound-
ary S of the particle

��Q� =
1

4
�0
�

S

	�M�
rMQ

dSM . �19�

In other words, a single layer of electric charges on S may
create the same electric field in the free space as the source-
free electric field that may exist in the presence of the dielec-
tric particle with negative permittivity. It is clear that this
potential satisfies equations �17� and the first boundary con-
dition in Eq. �18�. Next, we recall that the normal compo-
nents of electric field of surface electric charges are given by
the formulas25,26

n�Q� · E0
±�Q� = �

	�Q�
2�0

+
1

4
�0
�

S

	�M�
rMQ · nQ

rMQ
3 dSM .

�20�

The physical origin of formulas �20� is easy to understand.
Indeed, the normal components of electric field are discon-
tinuous across the charged surface because the field created
by the elementary surface charge at point Q has opposite
directions with respect to the outward normal nQ. As a result
of symmetry, this discontinuity is equally split �for smooth
charged surfaces� between the normal components inside and
outside S. By substituting formulas �20� into the second
boundary condition �13� �or Eq. �18��, after simple transfor-
mations we arrive at the following homogeneous boundary
integral equation:

	�Q� =
�

2

�

S

	�M�
rMQ · nQ

rMQ
3 dSM , �21�

where

� =
�+

�0���� − �0

�+
�0���� + �0

. �22�

Thus, source-free electric fields may exist only for such val-
ues of permittivity �+

�0� that the integral equation �21� has
nonzero solutions. In other words, in order to find the reso-
nance values of �+

�0� �and the corresponding resonance fre-

quencies� as well as resonance modes, the eigenvalues and
eigenfunctions of the integral equation �21� must be com-
puted. The integral equation �21� for the analysis of plasmon
resonances was first introduced by Ouyang and Isaacson,20

while similar inhomogeneous surface integral equations for
the calculation of electrostatic and magnetostatic fields as
well as scattering problems23 were previously and exten-
sively used in publications.27,28

For particles of complex shapes the resonance frequencies
and resonance modes can be found through the numerical
solution of integral equation �21�. If the boundary S of the
particle is not smooth, then 	�M� may have singularities at
the corners and the edges of S that may negatively affect the
accuracy of numerical computations. In this situation, the
dual formulation can be employed which is of interest in its
own right. In this formulation, the electric displacement field
D0 is introduced instead of electric field E0. It is easy to see
that the potential  for the displacement field �D0=−�� is
the solution of the following boundary value problem:

�2+ = 0 in V+, �2− = 0 in V−, �23�

�+

�n
=

�−

�n
,

+

�+���
=

−

�0
on S , �24�

where zero boundary condition at infinity is tacitly implied.
Potential  can be represented as an electric potential of

double layer of electrical charges �dipoles� of density ��M�
distributed over the boundary S of the particle:

�Q� =
1

4

�

S

��M�
rQM · nM

rQM
3 dSM . �25�

In other words, a double layer of electric charges on S
may create the same electric displacement field D0 in free
space as the source-free displacement field that may exist in
the presence of dielectric particle with negative permittivity.
It is clear that double-layer potential �25� satisfies the equa-
tions in Eq. �23� and the first boundary condition in Eq. �24�.
Next, we recall that the boundary values of double-layer po-
tential �25� are given by the formulas25,26

±�Q� = ±
��Q�

2
+

1

4

�

S

��M�
rQM · nM

rQM
3 dSM . �26�

By substituting formulas �26� into the second boundary con-
dition in Eq. �24�, after simple transformation we arrive at
the following homogeneous boundary integral equation for
��M�:

��Q� =
�

2

�

S

��M�
rQM · nM

rQM
3 dSM , �27�

where � is given by formula �22�. It is apparent that the
boundary integral equation �27� is adjoint to the integral
equation �21�. For this reason, it has the same spectrum �as
expected on the physical grounds�. The dipole density ��M�
is proportional to the discontinuity of double-layer potential
across S and, consequently, it is finite even for nonsmooth
boundaries S. This is the advantage of integral equation �27�
for numerical computations with nonsmooth boundaries S.
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The presented discussion can be easily extended to the
analysis of electrostatic �plasmon� resonances of several par-
ticles located in proximity to one another. In this case S in
integral equations �21� and �27� must be construed as the
union of boundaries of all dielectric particles, while 	�M�
�and ��M�� are defined on this union.

In applications, nanoparticles are located on dielectric
substrates �see Fig. 2�. In this case, the integral equation �21�
can be modified as follows:

	�Q� =
�

2

�

S

	�M�n�Q� · �Q�G�Q,M��dSM , �28�

where � is given by formula �22�, while G�M ,Q� is the
Green function defined by the formula

G�Q,M� =
1

rMQ
−

� − �0

� + �0

1

rM�Q
. �29�

Here, � is the permittivity of the substrate and M� is the

image of M with respect to the substrate plane S̃.
It is worthwhile to mention that there exists in

literature29,30 another eigenvalue-type approach to plasmon
resonance analysis in which the boundary value problem
�17� and �18� is simply construed as a generalized differen-
tial eigenvalue problem. From the computational point of
view, the eigenvalue approach based on integral equations
�21� and �27� is more efficient. Indeed, discretizations of sur-
face integral equations �21� and �27� result in the classical
�standard� matrix eigenvalue problem, which is not the case
for the generalized differential eigenvalue problem. In addi-
tion, well-known difficulties appear in discretization of the
boundary value problem �17� and �18� in the entire space,
while no such difficulties encountered in discretizations of
surface integral equations �21� and �27�.

III. GENERAL PROPERTIES OF RESONANCES

The kernels in integral equations �21�, �27�, and �28� have
weak �integrable in the usual sense� singularities. For this
reason, the integral operators in the above integral equations
are compact. This implies that the plasmon spectrum is dis-

crete despite the infinite region of field distribution.
It has been demonstrated25,26 that the spectrum of integral

equation �21� has the following properties: for any shape of S
all eigenvalues are real, �=1 is an eigenvalue, and for all
other eigenvalues 	�	�1. It is apparent from Eq. �22� that the
eigenvalue �=1 corresponds to the case of �+

�0�→�, and the
respective eigenfunction 	�M� can be construed as the dis-
tribution of surface electric charges over the boundary S of a
conductor V+. This eigenvalue is irrelevant as far as the dis-
cussion of electrostatic �plasmon� resonances is concerned.
All other eigenvalues correspond to source-free �resonance�
configurations of electrostatic fields and, according to Eq.
�22�, these configurations may exist �as expected� only for
negative values of �+

�0�. After these negative resonance values
of �+

�0� are found through the solution of integral equation
�21�, the appropriate dispersion relation can be employed to
find the corresponding resonance frequencies. When losses
are not neglected, actual permittivities are complex-valued
functions of frequency �. These permittivities may assume
real resonance values �+

�0� only for complex resonance fre-
quencies.

It is instructive to note that the “plasmon” eigenfunctions
of integral equation �21� have the property

�
S

	�M�dSM = 0. �30�

Indeed, by integrating both sides of Eq. �21� with respect to
Q and by using the facts that

�
S

rMQ · nQ

rMQ
3 dSQ = 2
 �31�

and ��1 for plasmon resonances, we arrive at Eq. �30�.
It is apparent that the mathematical structure of integral

equation �21� is invariant with respect to the scaling of S, i.e.,
the scaling of the dimensions of the particle. This leads to the
unique property of electrostatic �plasmon� resonances: reso-
nance frequencies depend on particle shape but they are scale
invariant with respect to particle dimensions, provided that
they remain appreciably smaller than the free-space wave-
length.

A. Strong orthogonality of plasmon modes
and excitation conditions

The integral operator in Eq. �21� is not Hermitian �not
self-adjoint�, because the kernel of this equation is not sym-
metric. For this reason, the eigenfunctions 	i�M� and 	k�M�
corresponding to different eigenvalues �i and �k are not or-
thogonal on S in the usual sense. Nevertheless, it can be
shown that electric fields E0i and E0k corresponding to eigen-
functions 	i�M� and 	k�M� satisfy the following strong or-
thogonality conditions:



V±

E0i · E0kdV = 0. �32�

The peculiar feature of the above strong orthogonality con-
ditions is that they hold separately in regions V+ and V−. The

FIG. 2. Nanoparticles on substrate. The “dash particle” is the
mirror image of the actual particle on the substrate �see formula
�23��.
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orthogonality conditions of eigenfunctions in the entire space
was previously found in Refs. 20 and 30. The proof of the
above strong orthogonality conditions proceeds as follows.
By using formulas �20�, the integral equation �21� for the
eigenfunction 	k�M� can be written in the form

n · �E0k
− − E0k

+ � = �kn · �E0k
− + E0k

+ � . �33�

By multiplying both sides of formula �33� by electric poten-
tial �i created by charges 	i�M� and integrating over S, we
obtain

��k − 1��
S

�iE0k
− · ndS = − ��k + 1��

S

�iE0k
+ · ndS . �34�

Now, by using the divergence theorem and the facts that
� ·E0k

± =0 and E0i=−��i, we arrive at

��k − 1�

V−

E0i
− · E0k

− dV = ��k + 1�

V+

E0i
+ · E0k

+ dV . �35�

By considering the integral equation �21� for the eigenfunc-
tion 	i�M� and by repeating the same line of reasoning as in
the derivation of formula �34�, we arrive at

��i − 1�

V−

E0k
− · E0i

− dV = ��i + 1�

V+

E0k
+ · E0i

+ dV . �36�

Since �k��i, the orthogonality conditions �32� follow from
formulas �35� and �36�.

The orthogonality conditions �32� can be instrumental in
the analysis of the coupling of a specific resonance mode to
incident electromagnetic fields. Indeed, by expanding the in-
cident field in V+ into series with respect to resonance modes
E0k

+ , it can be shown that only resonance modes with nonzero
expansion coefficients can be coupled to the incident radia-
tion. The demonstration proceeds as follows. First, it can be
remarked that eigenfunctions 	i�M� and �i�M� of adjoint
equations �21� and �27� form two biorthogonal sets

�	k,� j� = �
S

	k�M�� j�M�dSM = �kj , �37�

where �kj is the Kronecker delta. Then, it is easy to see that
in the presence of an incident field E�i�, Eq. �21� is modified
as follows:

	�Q� −
�

2

�

S

	�M�
rMQ · nQ

rMQ
3 dSM = 2�0�n · E�i��Q� .

�38�

Next, by expanding 	�Q� and n ·E�i��Q� in terms of 	k and
by using formulas �21� and �37�, we derive the following
expression for the solution of integral equation �38�:

	�Q� = 2�0�
k

�k

�k − �
�n · E�i�,�k�	k�Q� . �39�

It is clear from Eq. �39� that the solution of integral equation
�38� blows up as � approaches �k, which is the manifestation
of electrostatic �plasmon� resonances at the frequencies cor-

responding to �k. It is also apparent that these resonances
occur only if

�n · E�i�,�k� = �
S

�k�M�nM · E�i��M�dSM � 0. �40�

It can be inferred that �k�M� is proportional to the potential
�k

+�M� of the corresponding resonance mode on S. Conse-
quently,

�n · E�i�,�k� = ��
S

�k
+�M�nM · E�i��M�dSM

= − �

V+

E0k
+ �M� · E�i��M�dVM . �41�

By using formulas �39� and �41�, it can be concluded that
only plasmon resonance modes with nonzero coefficients in
the expansion of E�i� in V+ with respect to E0k

+ can be coupled
to the incident radiation. If the incident field is uniform in
V+, then only resonance modes with nonzero average values
of electric field components over V+ have nonzero expansion
coefficients and can be effectively excited. For instance, it
will be demonstrated below that for a sphere and for ellip-
soids there are resonance modes with uniform electric fields
in V+. This means that according to the strong orthogonality
condition in V+ only these “uniform” resonance modes will
be excited by uniform �within V+� incident radiation. The
condition of uniformity within V+ of the incident radiation is
quite natural due to the smallness of particle dimensions in
comparison with the free-space wavelength of the incident
radiation. For particles of complex shapes, many resonance
modes with appreciable average values of electric field com-
ponents over V+ may exist. All such modes will be well
coupled to the uniform incident radiation and can be excited
by such incident fields at the respective resonance frequen-
cies.

It can be shown that the average electric field over V+ is
proportional to the total electric dipole moment as computed
by using either the surface charge distribution 	 or the
double layer density �. Indeed, the x-component of electric
dipole moment can be expressed in terms of 	k as follows:

px
�k� = �

S

x	kdS . �42�

It is apparent that 	 is proportional to n ·E0k
+ . Consequently,

px
�k� = ��

S

xn · E0k
+ dS = �


V+
Ex0k

+ dV , �43�

which implies that

p�k� = �

V+

E0k
+ dV . �44�

Similarly,
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px
�k� = ��

S

�kax · ndS , �45�

where ax is a unit vector along the x axis. But �k is propor-
tional to �k

+. Consequently,

px
�k� = ��

S

�k
+ax · ndS = − �


V+
Ex0k

+ dV . �46�

Finally, we remark that the modes with a non-zero dipole
moment not only couple to a uniform applied field but also
are effective radiators of electromagnetic waves.

B. Twin spectra in two dimensions

For two-dimensional objects �i.e., nanowires�, the integral
equation �21� is modified as follows:

	�Q� =
�



�

S

	�M�
rMQ · nQ

rMQ
2 dSM , �47�

where S is now the boundary curve with line element dS, and
the potential is the logarithmic potential created by the line
charge with density 	.

It turns out that for two-dimensional problems an interest-
ing phenomena of twin spectra occurs where for any cross-
section shape �any S� the set of eigenvalues consists of posi-
tive �n

+ and negative �n
− numbers such that

�n
+ = − �n

−. �48�

The origin of twin spectrum can be traced to the fact that for
two-dimensional problems the stream function � for vector
field D can be introduced: D=a���, where a is the unit
vector normal to cross-sectional planes. Due to the property
�30�, the stream function is single valued. It is apparent that
this stream function is a solution of the following boundary
value problem:

�2�+ = 0 in V+, �2�− = 0 in V−, �49�

�+ = �−,
1

�+
�0�

��+

�n
=

1

�0

��−

�n
on S . �50�

This boundary value problem coincides with the boundary
value problem �17� and �18� for electric potential, when �+

�0�

is replaced by �0
2 /�+

�0�. This implies that electrostatic �plas-
mon� resonances simultaneously exist for reciprocal values
of relative dielectric permittivity. By using this fact and for-
mula �22�, we arrive at the twin spectrum relation �48�. As an
illustration, we mention that in the case of elliptic nanowires,
the following expression for the twin spectrum can be ana-
lytically derived:

�n
± = ± �a + b

a − b
�n

, �51�

where a and b are major and minor axes, respectively.

C. Eigenvalue estimates

For three-dimensional problems with convex boundary S,
the following estimate for eigenvalues � can be derived:

	�	 � c =
1

1 −
A

4
Rd

, �52�

where A is the area of S ,R is the maximum radius of the
curvature of S, and d is the diameter of V+. The derivation of
inequality �52� is based on the fact that for convex S the
kernel of integral equation �21� is positive and the following
estimate is valid:

rMQ · nQ

rMQ
3 �

1

2Rd
. �53�

Indeed, according to the Blaschke theorem31 for any point Q
the surface S is contained inside the sphere of radius R tan-
gential to S at Q �Fig. 3�. Consequently,

rMQ · nQ

rMQ
3 =

cos �

rMQ
2 �

cos �

rM�Q · rMQ
�

1

2Rd
. �54�

Now, the proof �52� proceeds as follows. According to the
property �30�, we find



S	

+
	�Q�dSQ = 


S	
−

		�Q�	dSQ =
1

2
�

S

		�Q�	dSQ, �55�

where S	
+ and S	

− are the parts of S for which 	�Q� is positive
and negative, respectively.

Consider first the case when ��0. Then from integral
equations �21� and �55� we obtain

�
S

		�Q�	dSQ = 2

S	

+
	�Q�dSQ

=
�



�

S

	�M��

S	

+

rMQ · nQ

rMQ
3 dSQ�dSM ,

�56�

where the last double integral is strictly positive. Next, by
using formulas �31�, �53�, �55�, and �56�, we derive:

FIG. 3. Geometric illustration of Blaschke’s theorem.
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�
S

		�Q�	dSQ =
�


�2


S	

+
	�M�dSM

− 

S	

+
	�M��


S	
−

rMQ · nQ

rMQ
3 dSQ�dSM

− 

S	

−
		�M�	�


S	
+

rMQ · nQ

rMQ
3 dSQ�dSM�

� ��1 −
A

4
Rd
��

S

		�M�	dSM . �57�

From the last inequality follows

� �
1

1 −
A

4
Rd

. �58�

In the case ��0, from integral equation �21� and formula
�55� we obtain

�
S

		�Q�	dSQ = − 2

S	

−
	�Q�dSQ

= −
�



�

S

	�M��

S	

−

rMQ · nQ

rMQ
3 dSQ�dSM .

�59�

Now, by using the same line of reasoning as in the derivation
of Eq. �58�, we arrive at the inequality

� � −
1

1 −
A

4
Rd

, �60�

which together with Eq. �58� is tantamount to inequality
�52�. By using inequality �52� and formula �22�, the follow-
ing upper and lower bounds for possible resonance values of
permittivity �+

�0���� can be obtained:

1 + c

1 − c
�

�+
�0����
�0

�
1 − c

1 + c
. �61�

For the common dispersion relation

�+
�0���� = �0�1 −

�p
2

�2� , �62�

the previous formula leads to the following upper and lower
bounds for resonance frequencies

c − 1

2c
�

�2

�p
2 �

c + 1

2c
, �63�

which suggests that the bandwidth for resonance frequencies
is smaller than �p /�c=�p

�1−A /4
Rd.
In the case of nanowires with convex boundaries, it can

be shown by using the same line of reasoning as before that
the following inequality for eigenvalues of integral equation
�47� is valid:

	�	 �
1

1 −
L

2
R

, �64�

where L is the length of the cross-sectional boundary, while
R is the maximum radius of its curvature. The last inequality
is isoperimetric in a sense that it is exact for nanowires of
circular cross sections for which electrostatic �plasmon� reso-
nances occur only for �+

�0����=−�0 which corresponds to �
=�.

D. Symmetry and spectrum

In the case when the boundary S is symmetric, certain
qualitative features of the electrostatic �plasmon� spectrum
can be predicted by using irreducible representations of the
symmetry group of the boundary S. For instance, the multi-
plicities of eigenvalues � of integral equation �21� are equal
to the dimensions of inequivalent irreducible representations
of the symmetry group of the boundary S. By using the irre-
ducible representations of the symmetry groups, selection
rules for plasmon modes with zero dipole moment can be
constructed. These plasmon modes cannot be excited by uni-
form �in V+� incident radiation. These rules can be explained
as follows. The dipole moment is a vector, and transforms
accordingly under rotations and reflections, so that it gener-
ates a representation of the symmetry group. This represen-
tation can be decomposed into a direct sum of irreducible
representations. Then only modes that are transformed by
these particular irreducible representations can have a non-
zero dipole moment.

Consider as an example a nanowire whose cross section is
an equilateral triangle. This triangle is invariant with respect
to the transformations of the group C3v.32 This group has
three inequivalent irreducible representations: two of dimen-
sion one and one of dimension two. This fact implies that the
spectrum is likely to consist only of simple and twofold de-
generate eigenvalues. It can also be shown that the dipole
moments of resonance modes corresponding to simple eigen-
values are equal to zero. This group theory prediction is con-
sistent with our numerical results obtained through numerical
solution of integral equation �47� and shown in Table I.

As another example, consider a spherical particle of unit
radius. In this case the kernel of integral equation �21� is
equal to 1/2rMQ. By using this fact, it is easy to demonstrate
that the spherical harmonics Ylm�� ,�� are the eigenfunctions
corresponding to the eigenvalue �l=2l+1. According to Eq.
�22�, the corresponding resonance values of permittivity are
�+l

�0�=−�0�1+1/ l�. Because of the scale invariance of eigen-
values �l, the same �+l

�0� are the resonance permittivity values
for a spherical nanoparticle of arbitrary radius provided that
the latter is much smaller than the free-space wavelength of
incident radiation. These resonance permittivity values are
consistent with the classical Mie theory.33 The three lowest
electrostatic �plasmon� modes are uniform in V+ and only
these modes can be excited by uniform �within V+� incident
radiation. It is apparent that the multiplicities of eigenvalues
�l are equal to 2l+1 and they coincide with the dimensions
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of irreducible representations of the rotation group, which is
the symmetry group of the sphere.

IV. FIRST- AND SECOND-ORDER CORRECTIONS

From formulas �2�–�7�, �9�–�11�, and �16�, we derive the
following boundary value problems for the first-order correc-
tions e1

±, �+
�1�, and h1

±, respectively:

� � e1
± = 0, � · e1

± = 0, �65�

n � �e1
+ − e1

−� = 0, n · � �+
�0�

�0
e1

+ − e1
−� = −

�+
�1�

�0
n · e0

+

�66�

and

� � h1
+ = i

�+
�0�

�0
e0

+, � � h1
− = ie0

−, � · h1
± = 0, �67�

n � �h1
+ − h1

−� = 0, n · �h1
+ − h1

−� = 0, �68�

where as before e0
±=�0

1/2E0
±.

The electric potential �1 of single layer of electric charges
	1 distributed over S can be introduced for the electric field
e1

± �see formula �19��. Then, by using formulas �20� and the
same reasoning as in the derivation of integral equation �21�,
we arrive at the following integral equation for 	1�M�:

	1�Q� −
�

2

�

S

	1�M�
rMQ · nQ

rMQ
3 dSM = �+

�1� 2�0

�+
�0� + �0

nQ · e0
+�Q� ,

�69�

where � is given by formula �22�.
It is clear that � is one of the eigenvalues of integral

equation �21�, because only for such � nonzero field e0 ex-
ists. Since � in Eq. �69� is an eigenvalue, a solution to Eq.
�69� exists only under the condition that the right-hand side
of Eq. �69� is orthogonal on S to a nonzero solution ��Q� of
the corresponding homogeneous adjoint equation �27� with
the same eigenvalue � �this is the so-called “normal solvabil-

ity condition”�. It is clear that nQ ·e0
+�Q� is proportional to

���+ /�n��Q�. By using the well-known properties of double-
layer potential,25,26 it can be shown that ��Q� is proportional
to �+�Q�. Consequently,

�
S

��Q�nQ · e0
+dSQ = ��

S

�+�Q�
��+

�n
�Q�dSQ

= ��
V+

	��+	2dV � 0. �70�

This means that the integral equation �69� is only solvable if

�+
�1� = 0. �71�

Thus, for any shape of nanoparticles the first order correction
for resonant values of dielectric permittivity is equal to zero.
As a result of Eq. �71�, integral equation �69� is reduced to a
homogeneous integral equation identical to Eq. �21�. This
implies that up to a scale 	�M� and 	1�M� as well as e0

± and
e1

± are identical. For this reason, it can be assumed that

e1
± = 0. �72�

Next, we proceed to the solution of boundary value problem
�67� and �68�. Terms i��+

�0� /�0�e0
+ and ie0

− in the first two
equations �67� can be interpreted as current sources and the
solution of boundary value problem �67� and �68� can be
written in the following integral form:

h1�Q� =
i�+

�0�

4
�0



V+

e0
+�M� � rMQ

rMQ
3 dVM

+
i

4




V−

e0
−�M� � rMQ

rMQ
3 dVM . �73�

The last expression can be appreciably simplified and re-
duced to an integral over the boundary S. Indeed, by using
the fact that ��e0

±=0 and by employing the “curl
theorem,”34 after simple transformations we arrive at

h1�Q� = −

i� �+
�0�

�0
− 1�

4

�

S

nM � e0�M�
rMQ

dSM . �74�

Now, we proceed to the discussion of second order correc-
tions for �+���. From formulas �2�–�7�, �9�–�11�, �71�, and
�72� we derive the following boundary value problems for
the second-order corrections e2

±, �+
�2�, and h2

±, respectively:

� � e2
± = − ih1

±, � · e2
± = 0, �75�

n � �e2
+ − e2

−� = 0, n · � �+
�0�

�0
e2

+ − e2
−� = −

�+
�2�

�0
n · e0

+

�76�

and

� � h2
± = 0, � · h2

± = 0, �77�

TABLE I. Numerical results for the equilateral triangle.

Eigenvalues ��� px py

1.0015 0.0000 0.0000

−2.4459 −0.1681 −0.3028

−2.4459 −0.3094 0.1556

2.4649 −0.0472 −0.6230

2.4649 −0.6244 0.0200

−4.3263 −0.0000 −0.0000

4.3809 −0.0000 −0.0000

−13.3646 −0.0421 0.0656

−13.3646 0.0628 0.0461

13.5374 −0.0267 0.0808

13.5374 0.0149 −0.0838
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n � �h2
+ − h2

−� = 0, n · �h2
+ − h2

−� = 0, �78�

It is apparent from Eqs. �77� and �78� that

h2
± = 0. �79�

We shall split the electric field e2
± into two components

e2
± = ẽ2

± + eM2
±, �80�

that satisfy the following boundary value problems, respec-
tively:

� � ẽ2 = − ih1, � · ẽ2 = 0, �81�

n � �ẽ2
+ − ẽ2

−� = 0, n · �ẽ2
+ − ẽ2

−� = 0 �82�

and

� � eM2
± = 0, � · eM2

± = 0, �83�

n � �eM2
+ − eM2

−� = 0,

n · � �+
�0�

�0
eM2

+ − eM2
−� = − n · � �+

�2�

�0
e0

+ + � �+
�0�

�0
− 1�ẽ2

+� . �84�

The solution of the boundary value problem �81� and �82� is

ẽ2�P� = −
i

4




R3

h1�Q� � rQP

rQP
3 dVQ. �85�

By substituting the expression �74� into the last formula and
by changing the order of integration, we arrive at

ẽ2�P� = −
� �+

�0�

�0
− 1�

16
2 �
S

�nM � e0�M��

� �

R3

rQP

rQP
3

1

rQM
dVQ�dSM . �86�

Consider the following vector function:

a�P,M� =
1

4
�0



R3

rQP

rQP
3

1

rQM
dVQ. �87�

It can be construed as an electric field at point P created by
electric charges of volume density 1/rQM. If we choose point
M as the coordinate origin, then this electric field is spheri-
cally symmetric and a�P ,M� can be computed by using the
Gauss law. The final result is given by the formula

a�P,M� =
rMP

2�0rMP
, �88�

which implies that



R3

rQP

rQP
3

1

rQM
dVQ = 2


rMP

rMP
. �89�

By substituting the last expression into formula �86�, we end
up with

ẽ2�P� = −
� �+

�0�

�0
− 1�

8

�

S

�nM � e0�M�� � rMP

rMP
dSM . �90�

Next, we proceed to the solution of the boundary value prob-
lem �83� and �84�. It is apparent that the electric potential �2
of single layer of electric charges 	2�M� distributed over S

can be introduced for the electric field ẽ̃2
±. Then, by using

formulas �20� and the same line of reasoning as in the deri-
vation of integral equation �21�, we obtain the following in-
tegral equation for 	2�M�:

	2�Q� −
�

2

�

S

	2�M�
rMQ · nQ

rMQ
3 dSM

=
2�0

2

�0 − �+
�0�n · � �+

�2�

�0
e0

+ + � �+
�0�

�0
− 1�ẽ2

+� , �91�

where as before � is given by formula �22� and is one of the
eigenvalues of integral equation �21�. Since � is an eigen-
value, a solution to Eq. �91� exists only under the condition
that the right-hand side of Eq. �91� is orthogonal on S to a
nonzero solution ��Q� of the corresponding homogeneous
adjoint equation �27�. This normal solvability condition leads
to the following expression for the second order correction
�+

�2� of resonant permittivity:

�+
�2� = −

�0� �+
�0�

�0
− 1��

S

��Q�nQ · ẽ2
+�Q�dSQ

�
S

��Q�nQ · e0
+�Q�dSQ

. �92�

Thus, the algorithm for computation of the second order cor-
rection �+

�2� can be stated as follows: first, integral equations
�21� and �27� are solved and for each eigenvalue the corre-
sponding �+

�0� and eigenfunction 	�M� and ��M� are found;
then, by using formula �90�, ẽ2

+ is computed on S; finally, by
employing expression �92�, the second-order corrections �+

�2�

to resonant permittivities �+
�0� can be calculated. According to

Eqs. �11� and �71�, the resonant permittivities are given by
the formula

�+ = �+
�0� + �2�+

�2�, �93�

where � is defined in Eq. �8�.
The computations outlined above can be performed ana-

lytically in the case of spherical nanoparticles. They are
straightforward but lengthy. The final result for the first three
�spatially uniform� modes is

�+ = − �2 +
3

5
�2��0 = − �2 +

12

5
�2�0�0a2��0, �94�

where a is the radius of spherical nanoparticle. The result
�94� is the same as obtained from the Mie theory.33
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V. TUNABILITY AND CONTROLLABILITY
OF RESONANCES

It is of interest to design nanoparticles that will resonate at
specified frequencies. This is the tuning problem. It turns out
that this problem can be solved by using ellipsoidal nanopar-
ticles. In other words, for any negative value of dielectric
permittivity �+

�0� an appropriate ellipsoidal nanoparticle can
be found that will resonate for this value of permittivity and,
consequently, for the corresponding value of frequency of
optical radiation. It is also interesting that, for ellipsoidal
nanoparticles, resonance permittivity values corresponding
to uniform source-free electric fields �electrostatic approxi-
mation� can be found without resorting to the solution of
integral equation �21�. To demonstrate this, consider an el-
lipsoidal particle subject to a spatially uniform applied elec-
tric field Eap. The electric field E+ inside the particles is the
superposition of the applied field and depolarizing field. The
latter can be expressed in terms of polarization vector and
depolarizing coefficients. This leads to the expression

E+ = Eap −
1

�0
N̂P , �95�

where P is the polarization vector, while N̂ is �for the appro-
priate choice of axes� a diagonal matrix of depolarizing co-
efficients. By using the relation

P = ��+
�0� − �0�E+, �96�

formula �95� can be transformed as follows:

E+ +
�+

�0� − �0

�0
N̂E+ = Eap. �97�

From Eq. �97� we find that the source-free and spatially uni-
form electric fields E+ inside the ellipsoidal nanoparticle
must satisfy the homogeneous equations

�Î +
�+

�0� − �0

�0
N̂�E+ = 0, �98�

where Î is the identity matrix. Nonzero solution of Eq. �98�
exist for such values of �+

�0� that the diagonal matrix Î

+ ���+
�0�−�0� /�0�N̂ is singular. It follows now that spatially

uniform in V+ electrostatic �plasmon� resonances may exist
only for the special values of permittivity of ellipsoidal nano-
particles given by the formula

�+i
�0� = �0�1 −

1

Ni
� �i = 1,2,3� , �99�

where Ni are diagonal entries of N̂.
It follows from the orthogonality conditions �32� that for

all other electrostatic �plasmon� resonance modes the mean
values of electric field components in V+ are equal to zero.
For this reason, all other resonance modes cannot be coupled
to spatially uniform incident radiation.

It is apparent from Eq. �99�, that for any negative value of
�+

�0���� an ellipsoidal nanoparticle of appropriate aspect ratio
�appropriate Ni� can be found that will resonate for this nega-
tive value of permittivity. Namely,

Ni =
�0

�0 − �+i
�0� . �100�

In the case of the dispersion relation �62�, the last assertion
means that any frequency ���p can be a resonance fre-
quency for an appropriate ellipsoidal nanoparticles. Finally,
from the dispersion relation �62�, formula �99�, and the well-
known condition iNi=1 it follows that


i

�i
2 = �p

2, �101�

where �i are the resonance frequencies “along” the main
axes.

It is worthwhile to mention that spherical nanoparticles
can also be used for tuning. For instance, by controlling the
gap between two spherical nanoparticles, tuning can be ac-
complished. This will be presented in the next section by
using numerical simulations based on integral equation �21�.

Next, we proceed to the brief discussion of tunability and
optical controllability of electrostatic �plasmon� resonances
in semiconductor nanoparticles. Semiconductors, like metals,
may exhibit dispersion of the dielectric permittivity and its
real part may assume negative values in the optical fre-
quency range below the plasma frequency �p.35 For the com-
mon dispersion relation �62�, the plasma frequency is given
by the formula

�p
2 =

nee
2

�0me
, �102�

where ne is the conduction electron density, while other no-
tations have their usual meaning.

The last formula clearly suggests that the dispersion rela-
tions �+��� and, consequently, plasmon resonances can be
controlled through manipulation of conduction electron den-
sity ne. In semiconductors, the manipulation of conduction
electron density can be accomplished by doping as well as
by optical and depletion means. Indeed, by appropriate dop-
ing of semiconductor nanoparticles, the wide range of con-
trollability of �p can be achieved and, in this way, the semi-
conductor nanoparticles can be tuned to resonate at desirable
frequencies. The optical controllability is especially attrac-
tive because it can be utilized for the development of nanos-
cale light switches and all-optical nanotransistors. In these
devices, one light beam can be used to generate conduction
electrons and, in this way, to drive semiconductor nanopar-
ticles into conditions when plasmon resonances can be ex-
cited by another light beam �see Fig. 4�. Such materials as
InSb may be especially attractive for the purpose of optical
controllability of plasmon resonances because of their direct
and small energy gap. An example of calculations of plas-
mon resonances in InSb nanoparticles is given in the next
section. If the light gating of plasmon resonances can be
realized, then semiconductors may well play a role in nano-
photonics similar to what they do in electronics.

We conclude this section with a brief discussion of a plau-
sible explanation of the phenomenon of ball lightning that is
based on electrostatic �plasmon� resonances. The enigmatic
natural phenomenon of ball lightning usually occurs after a

MAYERGOYZ, FREDKIN, AND ZHANG PHYSICAL REVIEW B 72, 155412 �2005�

155412-10



lightning strike that may lead to plasma formation and serve
as a source of considerable electromagnetic radiation.36,37 If
the frequency spectrum of this radiation is such that the di-
electric permittivity of the formed plasma is negative, then
electrostatic �plasmon� resonances may occur. The nucle-
ation of these resonances and the spatial growth of resonance
regions may be facilitated by the scale invariance of the reso-
nance frequencies. Electrostatic resonances may produce a
considerable localized accumulation of electromagnetic en-
ergy that may visually manifest itself as ball lightning. Thus,
the notion of electrostatic �plasmon� resonances may provide
plausible explanations for energy accumulation in the ball
lightning and its nucleation.

VI. NUMERICAL TECHNIQUE
AND COMPUTATIONAL RESULTS

Now we proceed to the discussion of an efficient numeri-
cal technique for the solution of integral equation �21�. To
this end, let us partition S into N small pieces �Sj and rewrite
integral equation �21� as follows:

	�Q� =
�

2


j=1

N 

�Sj

	�M�
rMQ · nQ

rMQ
3 dSM . �103�

Now, we integrate Eq. �103� over �Si:



�Si

	�Q�dSQ =
�

2


j=1

N 

�Sj

	�M��

�Si

rMQ · nQ

rMQ
dSQ�dSM

�i = 1,2, . . . ,N� . �104�

By introducing notations

�i�M� = 

�Si

rMQ · nQ

rMQ
3 dSQ, �105�

the last formula can be presented as follows:

TABLE II. Eigenvalues for a single nanosphere.

Mode
number

Computed
eigenvalues

Mie
theory

Mode
number

Computed
eigenvalues

Mie
theory

1 2.999191 3 21 9.038890 9

2 2.999193 3 22 9.049236 9

3 2.999194 3 23 9.049301 9

4 4.980130 5 24 9.049312 9

5 4.980130 5 25 10.86267 11

6 4.980148 5 26 10.86268 11

7 5.022817 5 27 10.86291 11

8 5.022828 5 28 10.94108 11

9 6.927911 7 29 10.94200 11

10 6.981790 7 30 11.03838 11

11 6.981884 7 31 11.03839 11

12 6.981885 7 32 11.03846 11

13 7.027287 7 33 11.06465 11

14 7.027289 7 34 11.06497 11

15 7.027393 7 35 11.06500 11

16 8.915480 9 36 12.75603 13

17 8.915606 9 37 12.84736 13

18 8.915633 9 38 12.84819 13

19 8.979679 9 39 12.84824 13

20 8.979774 9 40 12.93150 13

TABLE III. Eigenvalues for a single nanoellipsoid.

Mode
number

Computed
eigenvalues

Theoretical
values

Mode
number

Computed
eigenvalues

1 1.976541 1.9723 6 4.590262

2 3.335450 7 4.829570

3 4.080630 4.0507 8 5.645674

4 4.080692 4.0570 9 5.645746

5 4.590155 10 6.314742

FIG. 4. Optical control of plasmon resonances: beam 2 is used
for controlling of conduction electron density, while beam1 is used
for excitation of plasmon resonances.

FIG. 5. Mesh for nanosphere.
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�Si

	�Q�dSQ =
�

2


j=1

N 

�Sj

	�M��i�M�dSM . �106�

It is apparent that �i�M� is the solid angle which �Si sub-
tends at point M. By introducing new variables

Xi = 

�Si

	�Q�dSQ, �107�

integrals in the right-hand side of Eq. �106� can be approxi-
mated as follows:



�Sj

	�M��i�M�dSM � �i�Mj�Xj = �ijXj , �108�

where Mj is some middle point of partition �Sj. It is appar-
ent �on intuitive grounds� that approximation �108� is more
accurate than direct discretization of integral in Eq. �21�,
because solid angles �i�M� are smooth functions of M, while
the kernel of integral equation �21� is �weakly� singular. By
substituting formulas �107� and �108� into Eq. �106�, we ob-
tain

Xi =
�

2


j=1

N

�ijXj . �109�

Another advantage of discretization �109� is that the evalua-
tion of singular integrals in calculations of �ii can be com-
pletely avoided. Indeed, according to formulas �31� and
�105�, we find

�ii � 2
 − 
i=1,i�j

N

�ij . �110�

The numerical technique based on discretization �109� has
been software implemented and extensively tested. It has
proved to be remarkably accurate, even for calculations of
large eigenvalues. This technique is illustrated by the ex-
amples presented below.

The algorithm described above has been first tested for
spherical particles where exact analytical solutions are avail-
able �Mie theory33�. The mesh used in calculations is shown
in Fig. 5, while the results of numerical computations are
presented in Table II. It is apparent from this table that nu-
merical results are quite accurate even for appreciably high
mode orders. Next, the described algorithm has been tested
for ellipsoidal nanoparticles. The computational results are
presented in Table III for the case of ellipsoid of revolution

FIG. 6. Resonance wavelength for two nano-
spheres on substrate.

FIG. 7. Two nanospheres on substrate. FIG. 8. Ellipsoidal cylinders on substrate.
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with the main axis ratios 1:1:1.55. It is evident from this
Table that the computed eigenvalues compare quite well with
the exact �theoretical� eigenvalues �i=1/ �1−2Ni� for spa-
tially uniform modes �see formula �99��. It is also apparent
that for those modes i�1/�i� is very close to 1 as it must be.

Figure 6 presents the computational results for the reso-
nant free-space wavelength as a function of separation dis-
tance between two gold spherical nanoparticles located on a
dielectric substrate with �=2.25�0 for different values of ra-
dius ratio �see Fig. 7�. The dispersion relation for gold pub-
lished in Ref. 38 has been used in calculations. It is clear
from Fig. 6 that the separation between two spheres can be
effectively used for tuning of plasmon resonances to desir-
able frequencies. Figure 6 is an example of our numerous
computations performed for two and several nanospheres of
various radii and separation distances. These results are not
presented here due to the lack of space and will be published
elsewhere.

We have computed resonance wavelength for two short
gold cylinders of ellipsoidal cross sections placed on a di-
electric substrate �see Fig. 8�. Figure 9 presents the compu-
tational results for resonance wavelength as the function of
separation between cylinders for different values of axis
ratio.

Table IV presents the computational results for gold nano-
rings placed on a dielectric substrate. In this table, the com-
putational results for resonance wavelengths are compared
with those found experimentally �see Ref. 39�. The mesh
used in calculations is shown in Fig. 10. We have also com-
pared our numerical results with available experimental data
for the following two cases: a� a short gold cylinder of ellip-
soidal cross section �with long axis 130 nm, short axis
84 nm, height 30 nm� placed on a dielectric substrate and b�
a gold triangular nanoprism �with edge length 48 nm, height

TABLE IV. Comparison with experimental results �Ref. 39� for
gold nanoring.

Ring1 Ring2 Ring3

Outer radius of the ring �nm� 60 60 60

Height of the ring �nm� 40 40 40

Thickness of ring wall �nm� 14�2� 10�2� 9�2�
Experimental resonance �nm� 1000 1180 1350

Computational resonance �nm� 940 1102 1214

TABLE V. Comparison with experimental results �Refs. 40 and
41� for gold ellipsoidal cylinder and triangular prism.

Resonance
wavelength

Cylinder
�nm�

Prism
�nm�

Computational results 622 653

Experimental results 645 690

FIG. 9. Resonance wavelength for two ellipsoidal cylinders on
substrate.

FIG. 10. Mesh for nanoring.

FIG. 11. Triangular nanoprism.
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14 nm� �Fig. 11�. Table V presents the comparison between
our computational results and experimental data published in
references,40,41 respectively. The electrical field of the reso-
nance mode for gold triangle prism is shown in Fig. 12. In all
above computations, the dispersion relation for gold38 has
been used.

Finally, Fig. 13 presents simulation results of the extinc-
tion cross-section of a InSb nanosphere placed on a glass
substrate with permittivity 2.25�0. �The technique for com-
putations of extinction cross-sections is based on the solution
of inhomogeneous integral equations of the type �21� and
�27� and will be discussed elsewhere.� The intrinsic disper-
sion relation of InSb used in calculations was taken from
Ref. 35. It is apparent that the presented computational re-
sults compare quite well with known theoretical results and
are in a reasonably good agreement with the available ex-
perimental data.

VII. CONCLUSION

A boundary integral equation technique for the direct cal-
culation of resonance frequencies of nanoparticles of arbi-
trary shapes is discussed. In electrostatic approximation, this
technique is based on the solution of eigenvalue problem for
the specific boundary integral equation. General physical
properties of electrostatic �plasmon� resonances are studied
and strong orthogonality properties of resonance modes,
two-dimensional phenomena of “twin” spectrum and explicit
estimates of the resonance spectrum range in terms of geo-
metric characteristics of convex nanoparticles are reported.
Second-order corrections for resonance values of dielectric
permittivity in terms of free-space wavelength are derived by
using the mathematical machinery of boundary integral

FIG. 12. �Color� Electrical field of first two resonance modes for
triangular nanoprism.

FIG. 13. Computational extinction cross-
section of single InSb nanosphere placed on a
glass substrate ��=2.25�0�.
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equations. Tunability and optical controllability of plasmon
resonances in semiconductor nanoparticles are discussed
and, as a digression, a plausible explanation for nucleation
and formation of ball lightning based on electrostatic �plas-

mon� resonances is outlined. An efficient numerical algo-
rithm for the calculation of resonance frequencies is devel-
oped and illustrated by extensive computational results that
are compared with available experimental data.
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