PHYSICAL REVIEW B 72, 155407 (2005)

Kinetics of island density in thin film growth in the framework of statistical mechanics
of rigid disks

M. Tomellini
Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy

M. Fanfoni
Dipartimento di Fisica, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy

(Received 6 June 2005; published 11 October 2005)

The paper centers on the evaluation of the function n(©)=N(O)/N,, that is the normalized number of
islands as a function of coverage © €[0,1], given N, initial nucleation centers (dots) having any degree of
spatial correlation. A mean field approach has been employed: the islands have the same size at any coverage.

In particular, as far as the random distribution of dots is concerned, the problem has been solved by considering
the contribution of binary collisions between islands only. With regard to correlated dots, we generalize a
method previously applied to the random case only. In passing, we have made use of the exclusion probability
reported in [S. Torquato, B. Lu, and J. Rubinstein, Phys. Rev. A 41, 2059 (1990)], for determining the Kinetics
of surface coverage in the case of correlated dots, improving our previous calculation [M. Tomellini, M.

Fanfoni, and M. Volpe, Phys. Rev. B 62, 11300 (2000)].
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I. INTRODUCTION

For describing the evolution of thin film morphologies
several physical processes have to be considered, among oth-
ers the atom condensation and evaporation, the adatom sur-
face diffusion, the nucleation, and the island growth. During
the last decades significant advances have been done in mod-
eling, taking advantage of both analytical and numerical ap-
proaches, the inititial stage of film formation, namely the
nucleation and the growth processes in the low coverage
regime.'”> The methods range from the classical mean field
rate equations to the scaling theories which are found to be
suitable tools for describing both experimental and kinetic
Monte Carlo results.® In order to go beyond the early stage of
the growth, it is mandatory to tackle another physical pro-
cess, that is the collision among the growing clusters. In the
case of diffusionless clusters this process is actually linked to
the cluster growth only. As a consequence an island which is
in general a collection of connected clusters stems from one
or more nucleation events. As regards the film morphology
two mechanisms can be distinguished: the impingement and
the coalescence. In the former no redistribution of matter
among clusters occurs after a collisional event and the clus-
ters retain their individuality. Conversely, in the latter mecha-
nism redistribution of matter does occur with conservation of
both mass and shape.

The process of coalescence has been modeled, for the first
time, by Vincent,* who proposed an analytical solution for
the island density kinetics on the basis of the Poisson distri-
bution. Briscoe and Galvin developed a statistical theory for
island coalescence which is in good agreement with the be-
havior of the island density decays obtained by computer
simulations.> As far as the impingement mechanism is con-
cerned, it has been faced in a certain details in Ref. 6. Spe-
cifically, the exact solution for the normalized number den-
sity of islands, as a function of surface coverage n(O)
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=N(O)/N,, where N(O) is the number density of islands at
coverage O and Ny=N(0), has been determined in the form
of a series, the so-called collision series. This computation
holds in the case of Poissonian simultaneous nucleation and
in the entire range of the surface coverage (0<O© <1). By
means of Monte Carlo (MC) simulations it was also shown
that the first three terms well approximate the series.” It is
worth noting, in passing, that the continuum percolation
threshold in 2D is achieved at about ©=0.7.% Besides, at the
percolation threshold a certain number of isolated objects
exists as the MC simulations and the exact computation of
the first three terms of the collision series® witness. It is the
number density of these islands (whose size is finite) which
gives account of the small tail of the n(O) kinetics at large
coverages (0>0.7).

Coalescence and impingement mechanisms of 2D and 3D
islands have been extensively studied, through Monte Carlo
simulations, as a function of the nucleus shape.® This work
clearly demonstrates that, independently of the collision
mechanism governing the film formation, the n(0) kinetics
is, in fact, the same, in spite of the fact that in the time
domain the two mechanisms give rise to completely different
kinetics. As a consequence, the behavior of n(0) is expected
to be the same also in the intermediate cases, namely the
partial coalescence.® The universal behavior of the n(0) ki-
netics can be succesfully exploited for determining, from ex-
perimental data, the nucleation density at saturation. To this
end it is sufficient to measure island densities in the high
coverage regime (O >15% —20%), when islands are suffi-
ciently large and atomic resolution microscopy is not re-
quired. An application of this approach to the growth of both
diamond on Si substrate and quaterthiophene films on silica
substrate has been recently presented in Refs. 9 and 10.

Thanks to the universal behavior of the normalized island
density, n(©)=N(O)/N,, also the nonsimultaneous nucle-
ation case can be tackled. To this purpose one resorts to the
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classical mean field rate equations for both island and ada-
tom densities. These equations can be integrated provided
the rate coefficient for island collisions is evaluated.!! As a
matter of fact this coefficient is a function of n(0O).° The
universal behavior of this function, together with the key role
it plays in the rate equation approach to film growth, moti-
vated further analytical studies. Recently, on the ground of a
mean field approximation a semi-analytical approach has
been developed which leads to island density kinetics that is
in excellent agreement with the numerical simulation over
the whole range of coverage. The method leads to'?

(/4)V2 — 91/2)2
Wy(0) ’

where  the  function — Wy(©)=(In[1/(1-0)])"2[(1
—-0)%2+94¢ has to be evaluated numerically.

The models discussed so far refer to the case in which
nuclei are distributed at random throughout the whole sur-
face. However, in nucleation processes ruled by adatom dif-
fusion there exists a zone, around each nucleus, where the
nucleation rate is reduced.!' In other words, the nucleation
events do not occur at random on the entire surface and this
brings about the establishment of a degree of spatial correla-
tion among nuclei.

One of the motivations of the present article is therefore
the extension of the aforementioned analytical approach to
the more realistic case of spatially correlated nuclei. Like in
the random distribution of nuclei, also in this case rate equa-
tions can be employed to deal with nonsimultaneous nucle-
ation. In this instance it is worth noting that rate equations
are suitable for describing kinetic Monte Carlo results of
correlated nucleation.!> However, for want of theoretical
modeling, in Ref. 13 the n(O) function has been determined
numerically through Monte Carlo simulations (MC).'#

The paper is organized as follows. In the first section we
propose a novel analytical approach based on the statistical
mechanics of rigid disks, for the evaluation of the n(©) ki-
netics in the random case. The rate coefficient for island
collision is also computed, analytically. In the second section
the method presented in Ref. 12 will be employed to tackle
the impingement process in simultaneous nucleation of spa-
tially correlated nuclei.

n(@):( (1)

II. RESULTS AND DISCUSSION
A. Random distribution of nuclei

The following analytical approach for computing n(O) is
based on a mean field approximation, in the sense that at any
given coverage (time), all islands have the same shape and
appropriate size (disks in the case in point). This means that
we are actually dealing with a sort of coalescence mecha-
nism, yet, due to the universal behavior of the n(©) function,
the result of the computation can be applied to the impinge-
ment case as well. Collisions involving more than two is-
lands will be neglected.

Let us denote by dP the probability that an island is in-
volved in a binary collision. Since we are dealing with binary
collision the changing rate of the island number is just equal
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to the rate of “dimer” formation; this rate is equal to half the
rate at which an island undergoes a collision event. There-
fore the relation holds

dN 1

— =-—-dP, (2)

N 2
where N stands for the number density of islands. A simple
closure of Eq. (2) is achieved by setting dP
=27N(2R)d(2R), R being the radius of the islands, that is by
considering the radial distribution function of the disks to be
equal to one. For O=N7R?, to a first approximation one
receives dN/N=-2d0O or'3

n(0)=e29. (3)

As will soon be clear this is a poor description of n(O)
over the entire range of coverage; it describes the kinetics in
the low coverage regime only. In fact, in the limit O — 0 the
kinetics becomes n(0O) ~1-20 as already derived in Ref. 8.

The reason of this inaccuracy lies in the fact that the ra-
dial distribution function of a system of impenetrable disks is
not equal to one except in the limit of large particle separa-
tion. A more suitable choice of the probability for binary
collision is indispensable in order to model the island density
kinetics over the whole range of coverage. To this end the
results achieved on the thermodynamic system of rigid
spheres'®!8 can be properly exploited. In particular we will
make use of the results and the notation of Ref. 18.

E,(r) is the probability of finding a region of area 7r
centered at some arbitrary point empty of island centers;
E,(r) is the probability that given an island (its center) at
some arbitrary point, the region of area 77> encompassing
the central island is empty of island centers. The respective
density probability functions are attained by the derivatives
of the exclusion probabilities E,(r) and E,(r): H,(r)
=—0E,(r)/ dr and H,(r)=—0JE,(r)/ dr. The expression of the
exclusion probability E,(r), for a system of particles not nec-
essarely correlated through hard core potentials, has been
derived in Refs. 18 and 19.

On the ground of the definition of the exclusion probabil-
ity one gets dP=H ,(0)do, where 0=2R is the average value
of the island diameter. The rate equation for binary collision
then becomes

2

dN 1
W =— EHP(O')dO'. (4)
In the thermodynamic limit, “voids” and “islands” exclu-
sion probabilities are linked by the relationship'®
E,(r)
E (r)=—""—, (5)
" Ey(0)
which holds for r= . Equation (5) shows that for a system
of hard disks E,(0)=1. Furthermore, in the same limit®

80
mo=Pla-als(Z) o

where ay=(1+by0)/(1-0)%, a;=b,0/(1-6)2, and E,(x)
=exp{-O[4ay(x*~1)-8a,(x-1)]}.
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FIG. 1. Kinetics of island impingement as a function of surface
coverage in the case of simultaneous nucleation of randomly dis-
tributed nuclei. The Monte Carlo result and the analytical solution
[Eq. (8)] are shown as dots and full line, respectively. The solution
Eq. (11) is reported as a dashed line. The behavior of Eq. (3) is
displayed as open circles.

By using Eq. (6) in the Kinetic equation (4), we eventually
get
dN__21-40) o dO
No(1-0? 7 ()

™)

where dGzind(oz) is the increment of surface fraction
covered by islands, a=b,—b,, and 7.(O) is the characteristic
collision-time function. The definition of the time constant as
given by Eq. (7) is in fact required in order to treat the
nonsimultaneous nucleation by means of rate equations.?’!3
The integration of Eq. (7) can be performed analitically and
gives

_2(1—a)e>_ ®)

n(0)=(1-06)* exp( -6

The validity of our approach has been tested by using
Monte Carlo (MC) simulations of island density decays in
film growth ruled by the impingement mechanism.? In Fig. 1
Eq. (8) [for =0.564-0.128=0.436 (Ref. 20)] has been com-
pared to the MC simulation. Remarkably, the agreement be-
tween the simulation and the analytical result is excellent. In
any case also the kinetics for a=0.5-0=0.5 (Ref. 22) is in
very good agreement with the simulation (not shown).

Another analytical but less precise approach is based on
the exclusion probability already derived by us in Ref. 23.
By only retaining the Heaviside contribution in the radial
distribution function of hard disks and decoupling the mul-
tiple integral which gives the argument of the exponential of
the E,(r) function,?® we found

1
E,(r)= exp[— 71'Nr2(1 + EWN”ZX[O,U](")

1
+ EWN&X(G,OC)(]/)> :| > (9)

where y,4(x) is equal to one if x € A and is equal to zero if
x ¢ A. It is worth noting that this expression has been suc-
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cessfully employed for modeling the kinetics of the surface
coverage in the case of spatially correlated nucleation (see
the end of the paper and Ref. 23). From Eq. (9) on account of
Eq. (5) we get

9E,(Nlo
EU(U)

dln E,(r)
or

H,(0) =~

= 27TN0'<1 + ZNm%), (10)

o

that, once inserted in Eq. (4), yields the kinetics

n(0) = ¢~ 20+30%) (11)

As shown in Fig. 1 this kinetics is in a pretty good agreement
with the MC simulation over the entire range of coverage.”*
In the same figure is also displayed the behavior of the so-
lution Eq. (3). As appears, the modeling based on this last
approximation is inadequate for describing the kinetics in the
whole range of surface coverage; in fact it is in agreement
with the MC output only at the very beginning of the kinet-
ics.

B. Spatially correlated nuclei

The kinetics of island density in the case of Dirac delta
(or heterogeneous) correlated nucleation can be determined
by the same method as that employed in Ref. 12. Although
the exclusion probability computed in Ref. 19 allows, in
principle, to treat any kind of correlation, here it is intro-
duced in such a way that nucleation in a circular region of
radius R, around each nucleus is prevented.” It goes with-
out saying that during the growth the radius of the cluster can
exceed Rj. Let us introduce the extended surface, O,
=N,R?, where R stands for the nucleus radius and the quan-
tity ©"= 77'N0R§C as a measure of the correlation degree of the
system. The average value of the edge-to-edge distance
among islands is given in terms of the exclusion probability,
E,(x;0"), that is the probability that no nucleation centers
fall in a disk of radius x centered at an arbitrary surface
point. Strictly speaking this probability is exact in the case of
impingement while the mean field assumption outlined in
Sec. IT A implies a sort of coalescence. However, according
to the results of Ref. 8, n(O) is, in effect, the same for both
coalescence and impingement. This entitles us to use the
E,(x;0O") function; but, above all, the approach is corrobo-
rated by the results (see Fig. 2 below). The edge-to-edge
average distance is

2] E,(z+R;0")dz 2Rf E[R(1+&);0"d¢
_(Re*) _ 0 _ 0
- E,(R;0) —OR:0)

(12)

where in the last equation the identity E,(R;0")=1
—O(R;0O") has been exploited and é=z/R; clearly R+#0.
Therefore Eq. (12) reads
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FIG. 2. Kinetics of island impingement as a function of surface
coverage in the case of simultaneous nucleation of spatially corre-
lated nuclei. Symbols are the Monte Carlo results for a correlated
system according to the hard-core model for ©"=0.8. The semi-
analytical result is shown as a full line [Eq. (18)].

\’7TNO

7(0:;6%) =

with

61/2 ]
Wl(e;e*)=1 "OJ E,[R(1 + &);0"]dé. (14)
- 0

The average diameter of the island when the fraction of
covered surface is O and N is the island density reads

(&) >1/2’ (15)

Dﬁ@ﬁz(m

while the distance between the centers of the islands can be
written as

C

d0,0") = ——,
\VTN(O,07)

(16)

where C is a constant to be determined. Apparently,
d(©,6")=D(6,6")+2(6,0") (17)

and, since for O=0"/4, N=N,, from Eq. (17) the C constant

is easily determined as C=2W,(0"/4;0")+\O". Using Egs.

(13) and (15)—(17) we end up with
c-0” )2

which holds for © =0"/4. As anticipated, we perform the
computation of this kinetics by resorting to the exclusion
probability of Ref. 22 which holds for the hard core

n(0,0" =< (18)
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FIG. 3. Kinetics of surface coverage fraction as a function of the
extended surface, O,, for simultaneous nucleation of correlated nu-
clei according to the hard-core model. The Monte Carlo simulations
and the analytical results are shown as symbols and full lines, re-
spectively. Curves a, b, and ¢ refer to ©"=0.2, ©"=0.7, and O"
=1.5, respectively.

correlation.”® As far as this expression is concerned, it is
given by

/4
E,(x:y) = (1= yx*)x0,12)(x) + ( I- i)e"p{_ (1 —yy/4)2]

Y
<4x2—xy+5—1))([1/2,w)(x), (19)

where x=(0,/0")"?(1+£) and y=0". Inserting Eq. (19) in
Eq. (14), the numerical integration allows one to determine
the decay of the islands as shown in Fig. 2 together with the
MC simulation. The agreement is satisfactory.

Before concluding this paper, we take the occasion to ap-
ply the exclusion probability as derived in Ref. 20 to the
determination of the kinetics of surface coverage in the case
of Dirac delta spatially correlated nucleation. In our previous
article?® we evaluated the kinetics at hands by using Eq. (9)
for three values of O, namely 0.2, 0.7, and 1.5. Although
those results were quite satisfactory, they can be improved by
using the following exclusion probability,?

R e e .
Ev(ee;e ) = (1 - ee)X[O,Q*M) + <1 - T)exp|:_ T’y(e )

0, —— 6O
X<4§— \’e ee+ 7 - l>:|)([e*/4)w) (20)
where y(0%)=1/(1-0"/4)>. The results are displayed in Fig.

3 together with the MC kinetics which have been described
in Ref. 23.
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