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The third-harmonic generation �THG� in GaAs/AlGaAs cylindrical parabolic quantum wires with an applied
static-electric field is studied in detail. An analytic formula for the THG susceptibility in the model is obtained
by a compact density matrix approach and an iterative procedure. Finally, the calculated results show the
parabolic confinement potential and the applied electric field have great influence on the THG susceptibilities
in the system. Another important point is that the maximum THG susceptibility over 10−9 m2/V2 can be
obtained by optimizing the parabolic confinement potential and the applied electric field, which is over ten
orders of magnitude greater than in bulk GaAs. The contributors to the very giant three-order nonlinear include
the very large dipole transition matrixes and the triple resonant condition.
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I. INTRODUCTION

Recently nonlinear optical properties of low-dimensional
semiconductor systems such as quantum wells, quantum
dots, and other nanostructures have attracted much attention
in theoretical and applied physics sides.1–14 One reason is
that quantum confinement of carriers in the low-dimensional
system leads to the formation of discrete energy levels and
the drastic changes of physical and chemical properties such
as the novel nonlinear optical effects. Another reason is that
the nonlinear optical properties in the low-dimensional ma-
terials have the potential for device applications in laser
amplifiers,1 photodetectors,2 high-speed electro-optical
modulators,3 and so on.

With recent advances in material growth techniques, such
as atomic layer epitaxy, etc., the growth of single atomic
layers of good quality has become possible, which has al-
lowed potential profiles with reasonable shapes such as para-
bolic shapes and stepped shapes, etc. In 1983, Gurnick and
De Temple4 first discussed an asymmetric quantum well—
the Morse potential well, showing that the second-order non-
linearities are 10 to 100 times larger than in bulk materials.
The third-order nonlinear susceptibility, which is five orders
of magnitude greater than in bulk GaAs, has been measured
in coupled quantum wells by Sirtori et al.5 In 1989, Chuang
and Ahn6 studied optical transitions in a parabolic quantum
well with an applied electric field, and came to a conclusion
that the interband optical transitions in a parabolic quantum
well decrease with an increase in the electric field. In 1991,
Walrod and Auyang7 observed the large third-order optical
nonlinearity due to intersubband transitions in
AlGaAs/GaAs superlattices. In 1999, Sauvage and Boucaud8

studied the third-harmonic generation �THG� in InAs/GaAs
self-assembled quantum dots in both theoretical and experi-
mental cases, and they also obtained a very large THG coef-
ficient. Recently, Zhang and Xie9 have studied electric field
effect on the second-order nonlinear optical properties of
parabolic and semiparabolic quantum wells and shown that
the second-harmonic generation �SHG� susceptibility in the
semiparabolic quantum well is larger than that in the para-
bolic quantum well for the same effective widths.

In this paper, the THG in GaAs/AlGaAs cylindrical quan-
tum wires with a two-dimensional parabolic confinement po-
tential and an applied uniform static-electric field is briefly
studied. In Sec. II, electronic states in cylindrical coordinate
systems and a simple analytical formula for THG suscepti-
bility is derived. Numerical results and discussions are pre-
sented in Sec. III. We find that the THG susceptibility in the
system is very giant and relative to the confinement potential
frequency and the applied electric field. A brief summary is
given in Sec. IV.

II. THEORY

Electrons in a cylindrical semiconductor quantum wire
with a two-dimentional parabolic confinement potential and
an applied uniform static-electric field along the x direction
can be described by the effective-mass Hamiltonian in cylin-
drical coordinate systems as

H = Hr + Hz = −
�2
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where r=�x2+y2, and m* is the effective mass of the electron
in the conduction band, �0 the parabolic confinement fre-
quency, e the electron charge, and F the applied electric field.

The electronic eigenfunctions �nm,k and eigenenergies
�nm,k, satisfying the Schrödinger equation H�nm,k
=�nm,k�nm,k, are given by

�nm,k = �nm�x,y�Uc�r�eikz �2�

and

�nm,k = Enm +
�2k2

2m* , �3�

where k is the wave vector in the z direction and Uc�r� is the
periodic part of the Bloch function in the conduction-band
bottom. �nm and Enm, the envelope wave functions and the
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transverse energies of the nmth subband satisfying the
Schrödinger equation Hr�nm=Enm�nm, can be written as

Enm = �2n + �m� + 1���0 −
e2F2

2m*�0
2 , �4�
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where n=0,1 ,2 ,¯, m=0, ±1, ±2,¯, and Ln
�m� are general-

ized Laguerre polynomials.
Let us consider a circularly polarized electromagnetic

field with frequency � incident along the z direction, inter-
acting with the system, as follows:

E�t� =
E0�t�
�2

�êx ± iêy� , �7�

where êx and êy denote the unit vectors in the x and y direc-
tions respectively, and E0�t� is expressed as

E0�t� = E0 cos��t� = Ẽe−i�t + Ẽei�t. �8�

Then the system is excited by the electromagnetic field.
By considering symmetry of Bloch states, the dipolar transi-
tion moment between the state �nm,k and �n�m�,k� can be ex-
pressed as

	�nm,k�er��n�m�,k�
 = 
k,k�	�nm�er��n�m�
 , �9�

where 
 is the Kronecker delta function.
In the following, we will derive a general expression of

THG susceptibility in the two-dimensional isotropic har-
monic oscillator model by the compact density-matrix
method and the iterative procedure. Let a sign �̄ denote the
one-electron density matrix for the system. Then the evolu-
tion of which obeys the following time-dependent Liouville
equation:

� �̄ij/�t = �i��−1�H0 − erE�t�, �̄�ij − �ij��̄ − �̄�0��ij , �10�

where �̄�0� is the unperturbed density matrix and �ij is the
relaxation rate. For simplicity, we will assume in the follow-
ing only two different �ij values: �1=1/T1 for i= j is the
diagonal relaxation rate, where T1 is the longitudinal relax-
ation time, and �2=1/T2 for i� j is the off-diagonal relax-
ation rate, where T2 is the transverse relaxation time. H�=
−erE�t� is treated as a perturbation term. Equation �10� is
solved by using the usual iterative procedure,10 then

�̄�t� = 

n

�̄�n��t� , �11�
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�12�

The electronic polarization in the system may also be ex-
panded phenomenologically as a series of the electric field.
Here only the first three orders of the polarization is written
down, i.e.,

P�t� = ��0��1�Ẽe−i�t + �0�0
�2��Ẽ�2 + �0�2�

�2�Ẽ2e−2i�t

+ �0��
�3��Ẽ�2Ẽe−i�t + �0�3�

�3�Ẽ3e−3i�t� + c . c . ,

�13�

where ��1�, �0
�2�, �2�

�2�, ��
�3�, and �3�

�3� are the linear, optical
rectification, second-harmonic generation, third-order and
third-harmonic generation susceptibilities, respectively. �0 is
the vacuum dielectric constant. The electronic polarization of
the nth order is given as

P�n��t� =
1

V
Tr��̄�n�er� , �14�

where V is the volume of interaction and Tr denotes the trace
or summation over the diagonal elements of the matrix
�̄�n�er .

In this paper we only pay attention to the THG � i.e., only
consider the third-order contribution from the terms oscillat-
ing with 3� �. By using the same compact density-matrix
approach and iterative procedure, the THG susceptibility per
unit volume is obtained by utilizing the condition of triple
resonance which can be satisfied in the parabolic potential as

�3�
�3�

=
e4
v

�0�3

M01M12M23M30

�� − �10 + i�10��2� − �20 + i�20��3� − �30 + i�30�
.

�15�

where Mij = �	� j0�r��i0
� is the off-diagonal matrix element,
�ij = �Ei0−Ej0� /� the transition frequency, and 
v the elec-
tronic density. For simplicity, we only consider the transi-
tions between the quantum states of the quantum number
m=0 in this paper.

The THG susceptibility has a resonant peak in the energy
position of triple resonance, i.e., ��=��10=��21=��32,
given by

�3�,max
�3� =

e4
v

�0

M01M12M23M30

i���2�3 , �16�

where the off-diagonal relaxation rate �2=�10=�20=�30.
15

III. RESULTS AND DISCUSSIONS

In what follows we will discuss the THG susceptibility in
GaAs/AlGaAs cylindrical parabolic quantum wires with an
applied static electric field F. The parameters used in our
numerical calculations are adopted as6 
v=1016 cm−3, T2
=0.2 ps, m*=0.067m0 �m0 is the mass of a free electron�, the
section radius of the cylindrical quantum wires R0=50 nm.
The relation between the parabolic confinement frequency
�0 and R0 must satisfy ��0=�2 /m*R0

2.16 So �0 should be
much more than 6.9�1011 s−1. Given that the density of
electrons and transverse relaxation time T2, the maximum
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THG susceptibility ��3�,max
�3� � at resonant peaks is determined

by the geometrical factor M01M12M23M30, which is evident
from the expression �16�.

We plot the matrix elements M01, M12, M23, M30 and their
product M01M12M23M30 versus the parabolic confinement
frequency �0 for the two cases F=0 in Fig. 1 and F=2.0
�104 V/m in Fig. 2. From Fig. 1, we can see easily that the
matrix elements M01, M12, M23, M30 and their product
M01M12M23M30 decrease monotonously with an increase in
the parabolic confinement frequency �0 in the absence of an
applied electric field. The reason for which is that the ex-
tended areas of the intersubband wave function will decrease
with an increase in �0, which gives rise to the electronic
coherent length to be decreased. As a result, all of the dipole
transition matrix elements will decrease. But in the presence
of an applied electric field F, the variations of all of the

above matrix elements are obviously different from those
without an applied electric field. Indeed, in Fig. 2, it is ob-
vious that the matrix elements M01, M12, M23 increase
quickly at first, and then decrease slowly with increasing �0,
respectively. But the variation of the matrix element M30
appears a dip at about �0=0.13�1013 s−1, which gives rise
to the product of matrix elements M01M12M23M30 dipping at
the same �0. So there appear two maximum peaks in the
different positions. The dip values of the matrix element M30
and of the product of matrix elements M01M12M23M30 are
about 8.51�10−11m and 0.11�10−30 m,4 respectively. The
reason why the dip occurs is that the parabolic potential will
be translated in the presence of an applied electric field F,
consequently the effective scope of the intersubband wave
functions in the quantum wires, in particular the high
exciting-state wave function �30 whose influence is the larg-
est, will be less than one without applied electric field F.
With increasing �0, on the one hand, the extended areas of
the intersubband wave function will decrease, on the other
hand, their effective scope in the quantum wires will in-
crease, but the former is dominant, so the matrix element
M30 will decreased. With a further increase in �0, however,
the latter will be dominant, thereby the matrix element M30
will increase. But in the final analysis, the matrix element
M30 will decrease again due to the decrease of the extended
areas of the electronic wave function.

We also plot the matrix elements M01, M12, M23, M30 and
their product M01M12M23M30 versus the applied electric field
F with �0=1.0�1013 s−1 in Fig. 3. From Fig. 3, it is clear
that the matrix elements M01, M12, M23 decrease monoto-
nously when the electric field F increases. However, the
variation of the matrix element M30 has a dip at about F
=43�104 V/m, which leads to the product of matrix ele-
ments M01M12M23M30 also appearing to dip at the same F.
The dip values of the matrix element M30 and of the product
of matrix elements M01M12M23M30 are about 4.78�10−13m
and 2.84�10−35 m,4 respectively. The reason why this dip
appears is that the parabolic potential will be translated with
increasing the applied electric field F, which leads to the

FIG. 1. The matrix elements M01, M12,M23,M30 and their prod-
uct M01M12M23M30 versus the parabolic confinement frequency �0

in the absence of an applied electric field F.

FIG. 2. The matrix elements M01,M12,M23,M30 and their prod-
uct M01M12M23M30 versus the parabolic confinement frequency �0

for a fixed applied electric field F.

FIG. 3. The matrix elements M01, M12, M23, M30 and their prod-
uct M01M12M23M30 versus the applied electric field F for a fixed
parabolic confinement frequency �0.
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effective scope of the intersubband wave functions in the
quantum wires will decrease. Therefore the relative matrix
element M30 first decrease. With a further increase in F,
however, the parabolic potential will be gradually translated
into the semiparabolic potential, so the M30 will increase.
But which will decrease finally due to the decrease of the
effective scope of the electronic wave functions in the quan-
tum wires.

Figure 4 shows the maximum THG susceptibility ��3�,max
�3� �

at resonant peaks as a function of the parabolic confinement
frequency �0 with F=0 in Fig. 4�a�, F=2.0�104 V/m in
Fig. 4�b�, and F=2.0�105 V/m in Fig. 4�c�. From Fig. 4�a�,
we can see that the maximum THG susceptibility decreases
monotonously with increasing �0 in the absence of an ap-
plied electric field. In Figs. 4�b� and 4�c�, however, it is
distinct that the variation of the maximum THG susceptibil-
ity is very large and there appear two maximum peaks in the
presence of an applied electric field, which is consistent with
those of the product of matrix elements M01M12M23M30 in
Fig. 2. When F=2.0�104 V/m, the two maximum peaks
occur at �0=0.103�1013 s−1 and 0.21�1013 s−1, respec-
tively. But when F=2.0�105 V/m, they occur at �0
=0.479�1013 s−1 and 0.975�1013s−1, respectively. From
Figs. 4�b� and 4�c�, we can also find that the maximum THG
susceptibility decreases to original 4.6% when the external
electric field F increases 10 times from 2.0�104 to 2.0
�105 V/m. Therefore the THG susceptibility is sensitive to
the applied electric field in the model.

Figure 5 shows the THG susceptibility ��3�
�3�� as a function

of the incident photon energy �� for three different values of
the parabolic confinement frequency �0: �a� �0=0.479
�1013 s−1, �b� �0=0.975�1013 s−1, and �c� �0=1.5
�1013 s−1 with F=2.0�105 V/m, which are illustrated by
the solid, dashed, and dotted line, respectively. From Fig. 5,
It can be easily seen that �0 has great influence on the THG
susceptibility ��3�

�3��, whose variation at resonant peaks is
identical with those in Fig. 4�c�, and three resonant peaks
occur at ��=0.0063, 0.013, 0.020 eV, respectively. A very
important property is that the resonant peak will move to the

FIG. 4. The maximum THG susceptibility ��3�,max
�3� � as a function

of the parabolic confinement frequency �0 with F=0 in �a�, F
=2.0�104 V/m in �b�, and F=2.0�105 V/m in �c�.

FIG. 5. The THG susceptibility ��3�
�3�� as a function of the inci-

dent photon energy �� for three different values of the parabolic
confinement frequency �0.
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right side of the curve with �0 increase, which predicts a
strong confinement-induced blueshift in semiconductor
quantum wires. The physical origin of the shift is the quan-
tum confinement effect in these nanostructures, which causes
the separation of energy levels, and the stronger the confine-
ment effect is, the broader the separation will be.

Figure 6 shows the maximum THG susceptibility ��3�,max
�3� �

at resonant peaks as a function of the applied electric field F
with three different parabolic confinement frequencies �a�
�0=0.8�1013 s−1, �b� �0=1.0�1013 s−1, �c� �0=1.2
�1013 s−1, which are illustrated by the solid, dashed, and
dotted lines, respectively. From Fig. 6, we can find the mag-
nitude of the resonant peaks is different with the different �0
and F. At F=0, the magnitude of the resonant peaks is the
largest, and the weaker the parabolic confinement potential
is, the larger the resonant peaks of the THG susceptibility
will be. The minimum resonant peak values are 1.31
�10−12, 1.44�10−13, and 2.60�10−13 m2/V2 for three

groups of parameters �a� �0=0.8�1013 s−1, F=30.75
�104 V/m, �b� �0=1.0�1013 s−1, F=43�104 V/m, and
�c� �0=1.2�1013 s−1, F=56.55�104 V/m, respectively.

From Figs. 4–6, we can see that the maximum THG sus-
ceptibility may be obtained over 10−9 m2/V2 by optimizing
the values of �0 and F, which is much larger than the calcu-
lated value 1.3�10−14 m2/V2 and the measured value 0.9
�10−14 m2/V2 for coupled quantum wells of
AlInAs/GaInAs by Carlo Sirtori et al.,5 and is over ten or-
ders of magnitude greater than in bulk GaAs materials. The
enhancement of the third-order nonlinearities in the cylindri-
cal parabolic quantum wires stems from the quantum con-
finement effects and from the band structure, satisfying the
triple resonance conditions, of this system. These properties
make these model potential materials be very promising can-
didates for the application of optical devices.

IV. SUMMARY

In this paper, the THG in GaAs/AlGaAs cylindrical para-
bolic quantum wires with an applied uniform static-electric
field is investigated in detail. The calculated results show that
the parabolic confinement frequency �0 and the applied elec-
tric field F have great influence on the THG susceptibility.
Another important point is that very large THG susceptibility
over 10−9 m2/V2 can be got by optimizing the parabolic con-
finement potential and the applied electric field. The con-
tributors to the very giant three-order nonlinear include the
very large dipole transition matrixes, and the triple resonant
condition. Therefore, the properties may have profound con-
sequences as regards improvements of optical devices such
as ultrafast optical switches and optical communications.
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