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Few-electron eigenstates confined in coupled concentric double quantum rings are studied by the exact
diagonalization technique. We show that the magnetic field suppresses the tunnel coupling between the rings,
localizing the single-electron states in the internal ring and the few-electron states in the external ring. The
magnetic fields inducing the ground-state angular momentum transitions are determined by the distribution of
the electron charge between the rings. The charge redistribution is translated into modifications of the fractional
Aharonov-Bohm period. We demonstrate that the electron distribution can be deduced from the cusp pattern of
the chemical potentials governing the single-electron charging properties of the system. The evolution of the
electron-electron correlations to the high field limit of a classical Wigner molecule is discussed.
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I. INTRODUCTION

The phase shift of the electron wave function by the vec-
tor potential1 results in oscillations of the quantum transport
properties2–6 of ring-shaped structures. The conductance7 of
metal and semiconductor rings is periodic in the external
magnetic field with a period determined by the magnetic flux
through the ring. On the other hand, in bound states of closed
circular quantum rings, the single-electron spectrum exhibits
periodic ground-state angular momentum transitions with the
period of the flux quantum.8 In confined interacting few-
electron systems fractional Aharonov-Bohm �AB� periodicity
of the spectrum was predicted9,10 and subsequently observed
in conductance oscillations measured11 in a transport spec-
troscopy experiment. Discussion of the fractional periodicity
in the context of the strength of the electron-electron inter-
action was given in Ref. 12. The fractional period for the
interacting electron system is also found in realistic model-
ing of InGaAs self-assembled quantum rings.13

Recently, fabrication of self-assembled strain-free double
concentric GaAs/AlGaAs quantum rings was reported.14

Concentric coupled quantum ring structures can also be pro-
duced by the atomic force microscope tip oxidation
technique.4,11 In this paper we present an exact diagonaliza-
tion study of the properties of few-electron states confined in
concentric quantum rings. In the presence of inter-ring tunnel
coupling the electron wave functions undergo hybridization,
forming molecular orbitals similarly as in artificial molecules
formed by lateral15–19 or vertical20–22 coupling of quantum
dots. The magnetic field AB period will be significantly dif-
ferent for the internal and external rings. Therefore, the ques-
tion arises, what will be the periodicity of the angular mo-
mentum transitions for such hybridized orbitals?

In the two-electron laterally coupled dots, the external
magnetic field enhances the localization of the wave func-
tions in each of the dots.17 Similar is the effect of the
electron-electron interaction favoring charge segregation. On
the other hand, in concentric rings the electron-electron in-
teraction will favor localization of the electrons in the exter-
nal ring while the diamagnetic term of the Hamiltonian will

tend to localize the electrons in the inner ring. We will show
that the redistribution of the electrons between the rings af-
fects the AB period of the angular momentum transitions,
which can be extracted from conductance measurements11 on
rings connected to electrodes. Moreover, the angular momen-
tum transitions result in characteristic cusp patterns of the
chemical potential determining the single-electron charging
of the structure. The alignment of the chemical potentials of
the confined electrons with the Fermi level of the gate elec-
trode can be detected in capacitance spectroscopy, which was
used earlier to study the electronic structure of self-
assembled quantum rings23 incorporated in a charge tunable
structure.

The present paper extends our previous work on the cou-
pling between a quantum dot and a quantum ring.24 For a
single quantum ring, the envelope of the single-electron
ground-state energy depends only on the strength of the con-
finement in the radial direction and not on the radius of the
ring. For the radial ring confinement energy ��, when the
radius of the ring is large as compared to the range of the
radial confinement, the ground-state envelope is approxi-
mately given24 by �����2+ ���c�2 /2, where �c is the cyclo-
tron frequency. Therefore, a continuous evolution of the elec-
tron distribution between the two rings should be expected as
a function of the magnetic field in contrast to the rapid
ground-state charge redistributions found previously for a
quantum dot coupled to a surrounding quantum ring.24

A study related to the present one was presented earlier
for two concentric superconducting rings25 in which the cou-
pling between the rings was mediated by the magnetic self-
field of the separate rings.

The paper is organized as follows. In Sec. II we present
the model, the results for the single-electron coupling are
given in Sec. III, and for the interacting electron systems in
Sec. IV. Section V contains the summary and conclusions.

II. THEORY

We consider a two-dimensional model of circularly sym-
metric double concentric rings with confinement potential
taken in the form
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where m is the effective electron band mass, R1 and R2 stand
for the internal and external ring radii, � is the distance of the
origin, and � is the harmonic oscillator frequency for the
lateral confinement of the electrons in each of the rings.
Similar models were previously applied for laterally coupled
dots.17–19 In our calculations we take the GaAs value for the
mass m=0.067m0, the dielectric constant �=12.4, and as-
sume ��=3 meV. The adopted oscillator energy corre-
sponds to a length l=�2� /m�=27.5 nm which defines the
width d=2l of the considered rings. The Hamiltonian of a
single electron in a perpendicular magnetic field �B�, using
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where L is the angular momentum of the considered state,
and �c=eB /m. In the following we refer to the second, third,
and fourth term of the Hamiltonian as the centrifugal, dia-
magnetic, and the orbital Zeeman terms. We neglect the Zee-
man interaction of the electron spin with the magnetic field,
which at high fields polarizes the spins of the confined elec-
trons. The spin Zeeman interaction is decoupled from the
orbital degree of freedom, it does not influence the tunnel
coupling, and can be trivially accounted for as an energy
shift linear in B.24 The eigenstates of the N-electron Hamil-
tonian

H = �
i=1

N

hi + �
i=1

N

�
j�i

N
e2

4���0rij
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are found with a standard26,27 exact diagonalization approach
using the single-electron eigenstates of operator �2� to con-
struct the basis elements in the form of Slater determinants.
We use the numerical method as originally developed to dis-
cuss the coupling between a quantum dot and a quantum
ring.24 The single-electron Hamiltonian �2� is diagonalized
using a finite difference scheme and the Coulomb matrix
elements are integrated numerically.

III. SINGLE ELECTRON COUPLING

Let us first discuss the single-electron states in the
coupled concentric rings. Figure 1 shows the potential felt by
an electron in the L=0 and L=6 states as well as the lowest-
energy orbitals �radial probability densities� for R1=120 nm
and R2=180 nm in the absence of a magnetic field. In the
lowest L=0 states the electron is equally probable to be
found in both rings and the orbitals possess a clear bonding
and antibonding character. On the other hand, for L�0, the
centrifugal potential pushes the electrons towards the outer
ring. In Fig. 1 we show the result for L=6, which clearly
shows that the lowest-energy orbital is shifted to the external
ring. As a consequence, the electron in the excited-state or-
bital occupies predominantly the inner ring and the zero of

the wave function is displaced from the center of the barrier
to the external ring. We see that the bonding-antibonding
character of the lowest-energy orbitals occupying both rings
is, for increasing L, replaced by a single-ring type of local-
ization. Therefore, the effect of the centrifugal potential is to
lift the tunnel coupling.

The energy levels are shown in Fig. 2 as functions of the
inner ring radius R1 for fixed R2=180 nm. Note that for R1
=0, the system consists of a quantum dot surrounded by a
quantum ring.24 The lowest-energy level for L=0 and B=0
�see Fig. 2�a�� is then associated with the ring-localized state
�of energy close to �� /2=1.5 meV� and the excited state
corresponds to an electron confined in the parabolic quantum
dot �of energy ��=3 meV�. For R1�0 the quantum dot is
transformed to a quantum ring. The energy of the orbital,
which is predominantly localized in the inner ring, first goes
below �� /2 and then returns to this value. Around R1
=80 nm the tunnel coupling appears between the internal and
the external rings, leading to an energy gap between the two
energy levels. Finally, for a single quantum ring �R1=R2

=180 nm� the spectrum resembles the one-dimensional har-
monic oscillator potential.24 For L=2 at R1=0 both the
lowest-energy levels correspond to orbitals localized in the
external ring. The energies are slightly shifted above �� /2
and 3�� /2 by the centrifugal potential. The internal ring
localized level becomes the first excited state near R1
=30 nm. The centrifugal potential lowers the height of the
inter-ring tunnel barrier �see Fig. 1�. Consequently, the
avoided crossings between the L=2 energy levels �R1

	100 nm� are visibly larger than for L=0. A larger centrifu-
gal shift of the energy levels and a stronger level interaction,
a signature of a stronger tunnel coupling, is observed for L
=6 �see Fig. 2�b��. For L=6 and B=0.5 T the diamagnetic
shift of the external ring-confined level is almost exactly

FIG. 1. �Color online� Radial profile of the confinement poten-
tial �black solid curve referred to the right vertical axis� of the two
concentric rings for R1=120 nm and R2=180 nm at B=0. The black
dotted curve shows the sum of the confinement potential and the
centrifugal potential for L=6. Red �light gray� and blue �dark gray�
curves show the square of the modulus of the two lowest-energy
single-electron wave functions multiplied by Jacobian � at B=0 for
L=0 and L=6, respectively. The lower-energy orbitals are given by
the solid curves and the higher-energy orbitals by the dashed
curves.
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cancelled by the orbital Zeeman term �compare the lowest
black and blue curves at R1=0 in Fig. 2�b��. However, the
Zeeman term dominates for the state localized in the internal
ring. As a consequence, the energy levels change their order
in a narrow anticrossing near R1=90 nm.

The dependence of the single-electron energy spectrum on
the external magnetic field is plotted in Figs. 3�a�–3�c� for
fixed R2=180 nm and different internal ring radii. For R1
=60 nm there is no tunneling between the rings and the spec-
trum is a simple sum of two single-ring spectra. The spec-
trum corresponding to the internal ring exhibits angular mo-
mentum transitions with a period of 0.214 T while the period
of the one corresponding to the external ring is 0.0406 T.
These periods correspond to the flux quantum passing
through an effective one-dimensional ring of radius 55.4 nm
and 180 nm, respectively. The ground state corresponds to
the electron in the internal ring, except for B	0.2 T and B
	0.65 T. The inner-ring localized states are favored by the
−�1/���d /d�� term of the kinetic energy.

For R1=100 nm �see Fig. 3�b�� the inter-ring coupling is
non-negligible. For comparison, the ground-state energy of
the single quantum ring of radius 180 nm is also shown in
Fig. 3�b� by the black curve. For B�0.15 T, sightly above

the ground state, we observe more frequent angular momen-
tum transitions than in the ground state. This energy band
corresponds to the electron predominantly confined in the
external ring. With increasing magnetic field, this band
closely approaches the single-ring spectrum �cf. the black
curve�, which indicates that the electron becomes entirely
localized in the external ring. Thus at high magnetic fields
the spectrum of the internal and external rings become de-
coupled. Note that the energy band corresponding to the lo-
calization of the electron in the external ring becomes dis-
tinct only for L�4.

Energy levels with the same angular momentum change
their order through avoided crossings. The lowest-energy
levels, for L�2, possess two minima, after and before the
avoided level crossing. The wave functions and the poten-
tials for the anticrossing of the L=5 energy levels �see the
anticrossing of red lines near 0.38 T at Fig. 3�b�� are pre-
sented in Fig. 3�d�. The L=5 eigenstate for B=0.2 T is the
lowest-energy state of the external ring energy band �see Fig.
3�b� and the paragraph above� and its wave function is pre-
dominantly localized in the outer ring �see Fig. 3�d��. At B
=0.38 T, corresponding to the smallest distance between the
anticrossing energy levels, the electron can be found with a
comparable probability in both rings. After the avoided
crossing the diamagnetic potential localizes the electron in
the internal ring. For B=0.7 T the L=5 state is localized
almost entirely in the inner ring �see purple curve in Fig.
3�d�� when it corresponds to the ground-state of the system
�Fig. 3�b��. Concluding, for B=0 and fixed nonzero L the
lowest energy level is predominantly localized in the external
ring due to the centrifugal potential. For high magnetic field,
the lowest-energy state for a fixed L is transferred to the
internal ring by the diamagnetic term of the Hamiltonian.

For R1=120 nm �Fig. 3�c�� the coupling between the two
rings is stronger and the difference between the centrifugal
potentials in both rings is smaller. Consequently the two de-
coupled spectra of the internal and external ring are only
distinguishable for B�0.5 T. The amount of electron charge
localized in the internal ring �integrated over � from 0 to
�R1+R2� /2� for the ground state is plotted in Fig. 4, together
with the ground-state angular momentum. For low magnetic
field the ground-state wave functions are almost equally dis-
tributed between the two rings and at high field they are
entirely localized in the inner ring. Consequently, the period
of the ground-state oscillations increases with B �see the
slope of the black staircase in Fig. 4�. Note that the decou-
pling of the spectra in Fig. 3�c� for B�0.5 T �R1=120 nm�
is accompanied by the transfer of the electron to the internal
ring �see Fig. 4�. For R1=140 nm many more angular mo-
mentum transitions are needed before the electron becomes
entirely localized in the inner ring.

At the end of this section we would like to explain the
role of the adopted finite value of the rings’ width for our
results. The studied rings radii �R	150 nm� and width �d
=55 nm� correspond to structures produced by the tip oxida-
tion technique.4 For instance, the ring of Ref. 4 is character-
ized by R=132 nm and d=65 nm. In the limit of infinite
oscillator energy ���� the rings become strictly one-
dimensional �d→0� and decoupled due to the infinite inter-

FIG. 2. �Color online� Two lowest single-electron energy levels
for L=0, and L=2 at B=0 �a� and for L=6 at B=0 and 0.5 T �b�, as
functions of the internal ring radius for an external ring of radius
R2=180 nm.
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ring barrier. The energy levels of states confined in one-
dimensional rings only depend on the magnetic flux8 Ei�L�
= ��2 / �2mRi

2���L−�i /�0�2, where i=1, 2 stands for the in-
ternal and external ring localization respectively, �0=h /e is
the flux quantum, and �i corresponds to the flux through the
radius Ri. It is clear that the localization of the lowest-energy
level of a pair of one-dimensional rings will oscillate
abruptly between internal and external rings when the mag-
netic field is increased. However, this switching is deprived
of physical consequences since due to the infinite inter-ring
barrier the electron is not allowed to release its energy tun-
neling from one ring to the other. Note that a trace of the
discussed localization switching can be observed in Fig. 3�a�
for negligible inter-ring tunnel coupling. Decoupled spectra
with short appearances of the external ring localization in the
lowest-energy state similar to Fig. 3�a� are obtained for R1
=120 nm, R2=180 nm for d decreased from 55 nm �as in
Fig. 3�c�� to 13.5 nm ���=50 meV�. The rapid localization
switching disappears for the nontrivial case of a non-
negligible tunnel coupling �cf. Figs. 3�b�–3�d��.

FIG. 3. �Color online� �a�–�c� Single electron spectrum for coupled rings with the external ring radius R2=180 nm and the internal ring
radius R1=60 nm �a�, 100 nm �b�, and 120 nm �c�. Energy levels corresponding to different angular momenta up to 8 were plotted with
different colors. In �b� the ground state of a single ring with radius 180 nm is shown by the black curve. �d� Lowest energy L=5 wave
function �solid lines� for R1=100 nm, before �B=0.2 T� at �0.38 T� and after �0.7 T� the avoided crossings of the energy levels �cf. red lines
in �b�� corresponding to states localized in the external and internal ring, respectively. Dotted curves refer to the right vertical axis and show
the sum of the confinement, centrifugal, and diamagnetic potentials.

FIG. 4. �Color online� The discontinuous lines show the amount
of charge localized in the internal ring for the single-electron
ground state. The results correspond to the external radius R2

=180 nm and internal radius R1=120 nm �black lines� and R1

=140 nm �red lines� as functions of the magnetic field. The stair-
cases at the lower part of the figure are referred to the right axis and
show the ground-state angular momentum.
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IV. FEW-ELECTRON EIGENSTATES

Let us now discuss the effect of the electron-electron in-
teraction on the ground-state properties of few-electron sys-
tems. We find that for the interacting two-electron system the
ground-state angular momentum takes on all the subsequent
integer values, such as for a single quantum ring. The upper

bound for the ground-state angular momentum of the two-
electron system 	�L is plotted in Fig. 5�a� as a function of
the external magnetic field. In contrast to the single-electron
problem, no influence of the inner ring on the ground-state
angular momentum is observed for R1
90 nm. This indi-
cates that the Coulomb repulsion prevents the electrons from
occupying the inner ring if its radius is too small. As a sig-
nature of the inter-ring coupling we see for R1=115 nm, 120
nm, and 122 nm that the ground-state angular momentum
increases initially more slowly than for the single R
=180 nm ring, indicating the presence of electron charge in
the internal ring. At a certain value of magnetic field, how-
ever, the lines change their slope and tend toward the values
obtained for a single ring of radius 180 nm. In the discussed
range of the magnetic field, the inter-ring coupling for the
internal ring radii R1=130 and 140 nm is preserved.

Dotted lines in Fig. 5�a� show the 	 values for the nonin-
teracting electron couple for a single ring with R=180 nm
�black dots� and for the double ring with R1=120 nm and
R2=180 nm �orange dots�. For the single R=180 nm ring,
the 	 values for the interacting and noninteracting cases run
parallel to one another. However, for R=120 nm the 	 values
for the noninteracting pair decreases its slope as the magnetic
field is increased, while for the interacting pair an increase of
the slope is observed instead. This is because for high mag-
netic fields the interacting electrons tend to occupy the ex-
ternal ring �cf. Fig. 5�b�� to minimize their mutual repulsion

FIG. 5. �Color online� �a� Upper bound for the two-electron
ground-state angular momentum for R2=180 nm and various values
of the inner ring radius. The dotted lines show the values in the
absence of the electron-electron interaction. �b� Charge localized in
the inner ring as function of the magnetic field for R2=180 nm and
different radii of the inner ring. �c� The two-electron energy spec-
trum for R1=122 nm and R2=180 nm. The spin singlets are plotted
as solid lines and the triplets with dotted lines. In the bottom of the
figure the ground-state angular momentum staircase is plotted.

FIG. 6. �Color online� Three electrons in two concentric rings.
�a� Charge localized in the inner ring for R2=180 nm and various
R1 radii. �b� Upper bound for the ground-state angular momentum.
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in contrast to the single-electron problem in which the dia-
magnetic term of the Hamiltonian promotes the localization
in the inner ring �see Fig. 4�.

The energy spectrum for R1=122 nm, for which the local-
ization of the charge in the external ring appears in the most
abrupt way, is plotted in Fig. 5�c�. Below B=0.4 T one can
observe two bands of energy levels. In the ground state the
spin singlets correspond to even angular momenta and the
spin triplets to odd angular momenta. Opposite correspon-
dence is found in the excited energy band. The two bands
approach each other near B=0.5 T, but never cross. The re-
lation between the ground-state spin and the even/odd parity
of the angular momentum remains unchanged �cf. singlets
and triplets of L=24 marked in orange in the right upper part
of Fig. 5�c��.

The distribution of the charge between the rings in the
three-electron system is qualitatively similar to the two-
electron case. At zero magnetic field the electrons refuse to
occupy the inner ring if its radius is too small �see Fig. 6�a��.
Some electron charge is present in the internal ring due to
inter-ring tunneling, which is lifted by the application of the
external magnetic field. The ground-state angular momentum
at high magnetic field tends toward the value obtained for a
single, external ring �see Fig. 6�b��. For R1=140 nm, in the
range of the magnetic field presented in Fig. 6, the inter-ring
coupling is not broken �cf. Figs. 5�a� and 5�b� for R1
=130 nm and R1=140 nm�. In the high magnetic field limit,
when the magnetic length becomes small compared to the
size of the confining nanostructures, the charge distribution
in few-electron systems can be identified28 with the lowest-

energy configuration of a classical system29 of point-charge
particles. Therefore, one should expect that in our model,
assuming equal depths of both rings, the few-electron system
will eventually become entirely localized in the external ring
at still higher magnetic fields.

Next, we study the evolution of the ground-state electron-
electron correlations with increasing magnetic field. For this
purpose we consider the pair-correlation function plots given
in Figs. 7 and 8 for two- and three-electron systems, respec-
tively. The position of one of the electrons is fixed in the
middle of the external ring, namely in the point �180 nm,0�.
For two electrons at zero magnetic field the second electron
is found with an almost equal probability in the outer and
inner rings opposite to the fixed electron �Fig. 7�a��. For 0.6
T �Fig. 7�d�� the second electron occupies mainly the exter-
nal ring with a small leakage of the probability density to the
internal ring �cf. also the orange line in Fig. 5�b��. On the
other hand, in the three-electron system at B=0 there is al-
ready a pronounced shift of the pair-correlation function to
the external ring �Fig. 8�a��. Figs. 7 and 8 show that the
infinite magnetic field limit is obtained in two steps: first the
charge is removed from the internal ring and then the angular
correlations between the electrons start to increase. The
Wigner type of localization, i.e., separation of electron
charges in the internal coordinates, increases with each
ground-state angular momentum transition tending to the
point-charge limit.

FIG. 7. Pair correlation function for two-electron ground state in
concentric rings with radii R1=120 nm and R2=180 nm. One of the
electrons is fixed at the point �180 nm,0�.

FIG. 8. Same as Fig. 7, but now for three electrons.
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The above discussed AB oscillations associated with the
angular momentum transitions can be measured through the
magnetic field dependence of the conductance11 as per-
formed in phase-sensitive transport spectroscopy. Such trans-
port measurements require contacts to be attached to the
nanostructure. Connection of terminals to rings formed by
the surface oxidation technique4,11 is straightforward. On the
other hand, attachment of electrodes to self-assembled
rings14,23 has not been reported so far. However, the ground-
state angular momentum transitions can still be extracted
from the chemical potential as measured in a capacitance
experiment.23 The magnetic field dependence of the chemical
potentials �N, defined as the ground-state energy difference
of N and N−1 electrons, is presented in Fig. 9. Figure 9�a�
shows the chemical potential for a single quantum ring of
radius 180 nm. For a single electron the chemical potential is
equal to the ground-state energy. The potential exhibits cusps
having a � shape at the angular momentum transitions.
These � cusps are translated into V-shaped cusps of the
chemical potential for the two-electron system. The angular
momentum transitions in the two-electron system are twice
as frequent10 as for N=1, hence in the �2 plot we observe
two � cusps per one V cusp. Similarly, in the cusps’ pattern
of the three-electron chemical potential we obtain three �’s
per two V’s. Below 0.7 T for the double-ring structure with
R1=140 and R2=180 nm, we obtain qualitatively the same

spectrum of a single-ring type, only the AB oscillations pe-
riod is increased due to the reduced effective R value. This is
because for R1=140 nm the inter-ring coupling is not broken
by the magnetic field for B
0.7 T �see Figs. 4, 5�a�, and
6�a��. The occupied orbitals are equally distributed between
the rings.

Figure 9�b�, for the doubled ring with internal radius R1
=100 nm, corresponds to the situation when a small mag-
netic field localizes the single-electron ground states in the
internal ring and ejects the entire charge of the two- and
three- electron systems to the external ring �see Figs. 5�b�
and 6�a��. As a consequence, for �2 we observe seven to
eight � cusps between each couple of V’s. On the other
hand, the pattern of cusps in the chemical potential of the
three-electron system resembles the single-ring case �Fig.
9�a��, only below B
0.1 T a small perturbation of the pat-
tern is observed.

Figure 9�c� shows the chemical potentials for R1
=120 nm, for which the inter-ring tunnel coupling is quite
significant at B=0, but becomes suppressed in the studied
range of magnetic field �see Figs. 4, 5�a�, 5�b�, and 6� for all
considered N. Note that for N=1 and 2, the range of the
chemical potential modification by the magnetic field is an
order of magnitude larger than for a single ring �see Fig.
9�a��. A distinctly larger range of chemical potential variation
can also be noticed for N=1 in Fig. 9�b�. This increase is due

FIG. 9. �Color online� Magnetic field dependence of the chemical potentials for 1, 2, and 3 electron systems in a single ring of radius
R=180 nm �a�, in double concentric rings of external ring radius R2=180 nm and internal ring radius R1=100 nm �b�, and R1=120 nm.
Chemical potentials for one and three electrons have been shifted for clarity. �d� Deviation of the chemical potentials from the local average
�see text� for plot �c�.
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to the magnetic field lifting of the inter-ring coupling present
at B=0. For larger N the Coulomb repulsion weakens the
tunnel coupling at B=0, which explains the weaker depen-
dence of the envelopes of �3 and �2 in Fig. 9�b� and �3 in
Fig. 9�c�.

In order to extract the fine features of the cusps’ pattern
we fitted slowly varying sixth order polynomials to the
chemical potentials in Fig. 9�c� and then subtracted from �N
this local average provided by the fitted polynomial. The
result is displayed in Fig. 9�d�. For N=1 we see an enlarge-
ment of the AB oscillation period as the electron becomes
localized in the inner ring. The low magnetic field �-V cusp
sequences for N=2 and 3 resemble the single-ring localiza-
tion �see Fig. 9�a��. For B�0.45 T when both electrons are
ejected to the external ring and the single electron is local-
ized in the inner ring, we see in �2 several �’s per one V, as
in Fig. 9�b�. For �3 the single-ring type of pattern is found
above B�0.45 T. In the transition region �0.35 T
B

0.45 T� the cusp structure is less pronounced. This is due
to the fact that in the B range corresponding to the transition
of the electrons to the external ring, the angular momentum
increases very fast, tending toward the angular momentum of
the ground state in the single quantum ring �see Figs. 5�a�,
5�c�, and 6� of radius R=180 nm.

V. SUMMARY AND CONCLUSIONS

We studied the coupling between concentric rings for the
few-electron eigenstates using the exact diagonalization ap-
proach. We find that the strength of the tunnel coupling de-
creases with angular momentum since the centrifugal poten-
tial favors the localization of the electrons in the external

ring. At high magnetic field, for which the ground state cor-
responds to high angular momentum, the tunnel coupling
between the rings is suppressed and the energy spectrum
becomes decoupled into spectra of separate external and in-
ternal rings. The ground state for the single electron becomes
entirely localized in the inner ring due to the diamagnetic
term of the Hamiltonian, enhancing the localization of the
electron orbits. In contrast, the few-electron states at high
magnetic field become localized in the external ring to mini-
mize their mutual Coulomb repulsion. In our model, assum-
ing a similar radial confinement potential near the centers of
both rings, we find that the order of the spin-orbital ground-
state symmetries is not perturbed by the inter-ring coupling,
only the stability intervals of the subsequent ground states
are affected by the coupling. The modification of the electron
distribution between the external and internal rings is trans-
lated into the frequency of the ground-state angular momen-
tum transitions on the magnetic field scale. The electron dis-
tribution can be extracted from the cusp patterns of the
single-electron charging lines, i.e., the chemical potential de-
pendence on the magnetic field. Suppression of the tunnel
inter-ring coupling and localization of the ground states in
one of the rings under the influence of a magnetic field is
accompanied by a distinctly stronger increase of the chemi-
cal potentials compared to the charging spectra in which the
charge distribution between the rings is not modified.
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