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Aharonov-Bohm electron interferometer in the integer quantum Hall regime
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We report experiments on a quantum electron interferometer fabricated from high mobility, low density
AlGaAs/GaAs heterostructure material. In this device, a nearly circular electron island is defined by four front
gates deposited in etched trenches. The island is separated from the two-dimensional (2D) electron bulk by two
nearly open constrictions. In the quantum Hall regime, two counterpropagating edge channels are coupled by
tunneling in the constrictions, thus forming a closed electron interference path. For several fixed front gate
voltages, we observe periodic Aharonov-Bohm interference oscillations in four-terminal resistance as a func-
tion of the enclosed flux. The oscillation period AB gives the area of the interference path S via the quantiza-
tion condition S=h/eAB. We experimentally determine the dependence of S on the front gate voltage, and find
that the Aharonov-Bohm quantization condition does not require significant corrections due to the confining
potential. These results can be interpreted as a constant integrated compressibility of the island with respect to
the front gates. We also analyze experimental results using two classical electrostatics models: one modeling
the 2D electron density due to depletion from an etch trench, and another modeling the gate voltage depen-

dence of the electron density profile in the island.
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I. INTRODUCTION

Quantum interference of 2D electrons around a quantum
antidot subjected to a quantizing magnetic field has been
used experimentally to determine the fractional charge of
Laughlin quasiparticles of the surrounding quantum Hall
condensate.!'> Recent experiments on devices in the inverse
geometry, where quantized electron paths circle a 2D elec-
tron island, have reported observation of an Aharonov-Bohm
“superperiod,” implying fractional statistics of Laughlin
quasiparticles.> The layout of the present interferometer
looks qualitatively similar to a “Coulomb Island,”*> but the
electron island is larger. The principal difference is that the
constrictions are nearly open, so that no Coulomb blockade
or conductance steps are observed at zero magnetic field. In
the integer quantum Hall (QH) regime, the Landau level fill-
ing in the constrictions is nearly equal to that in the 2D bulk.

In this paper we report electron quantum interference ex-
periments in the integer QH regime performed with an elec-
tron interferometer device, Fig. 1. In this device, counter-
propagating edge channels®® enclose a lithographically
defined 2D electron island, and tunneling in the two nearly
open, tunable constrictions completes the electron path, thus
allowing an Aharonov-Bohm-type interference regime.
When tunneling between the edge channels occurs, in the
quantum-coherent regime, Aharonov-Bohm oscillations
with period AB are expected in the four-terminal resistance
Ryx=Vx/Iy as a function of the magnetic field B. In the
quantum limit, each oscillation signals the alignment of a
quantized electron state encircling the 2D electron island
with the chemical potential .

In each spin-polarized Landau level (LL), the single-
electron states are quantized by the Aharonov-Bohm condi-
tion: The magnetic flux @ through the area of an encircling
orbital S, satisfies ®=BS,,=mP,, where m is the quantum
number of the orbital and ®y=h/e is the fundamental flux
quantum.'®!! Thus, S,,=mh/eB=2mm€>, where {=\#/eB is
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the magnetic length, and the area for each electron state per
spin-polarized LL is S,,,;—S,,=2m{*>=h/eB. These quantiza-
tion conditions apply as well to an interacting 2D electron
fluid with microscopically uniform density, so long as no
phase transition to a charge density wave (such as a striped
or “bubble”) ground state occurs.

The 2D electron island in this sample is large, containing
~2000 electrons. Thus the electron density profile is ex-
pected to be determined mostly by the classical electrostatics
of neutralizing the positively charged donors and the electric
field of the gates, if biased. The island basic confinement is
produced by the etch trenches which remove the donors.
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FIG. 1. (Color online) An atomic force microscope (AFM) im-
age of the central region of an electron interferometer device. A
nearly circular region of lithographic radius R=1300 nm was de-
fined in AlGaAs/GaAs heterojunction material by chemically
etched trenches. Au/Ti metallization deposited in the etch trenches
forms the front gates of the device. The constrictions are 1200 nm
wide. Four Ohmic contacts (black squares) are in fact positioned at
the corners of a ~4 X4 mm sample. On a quantum Hall plateau,
with a quantizing magnetic field normal to the 2D electron plane,
current flows along the counterpropagating edge channels (blue
solid lines). Tunneling (represented by dots) occurs in the two wide
constrictions, when the edge channels are close enough, thus allow-
ing the electrons to perform a closed path around the 2DES island.
The Aharonov-Bohm interference signal is detected as oscillations
in Ryy=Vy/Iy.
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GaAs is known to have the “surface Fermi level pinning,”
due to a large density of mid-gap surface electron states,
which has been successfully modeled by self-consistent
depletion of donors, including a negative surface charge den-
sity. The surface depletion results in the 2D electron density
being less than the donor density (because some donor elec-
trons go to the surface), and, important for the present
samples, an additional etched mesa sidewall depletion due to
the free surface of the etch trenches.

The main effect of the external confinement potential U(r)
is to lift the massive degeneracy of the single-electron states
in each Landau level. In the first order perturbation theory,
the quantization S,,=27m¢> is not affected by the confine-
ment [U(r) is simply added to the cyclotron and spin ener-
gies]. For the QH filling!? i=1 (the only QH filling presented
in this paper), each Ryy oscillation corresponds to a change
by one in the number of electron states within S, the area
enclosed by the path of the electron at energy w.>!'! Thus, as
a function of B, when S, is nearly fixed by the confining
potential, the flux period A® is one ®,, for each oscillation,
similar to the quantum antidots,"!" so that §,=®,/AB.

We stress that changing B does not change appreciably
the number of electrons in the large island (this would lead to
an enormous Coulomb energy). Instead, changing B changes
the density of states in each Landau level, so that the same
number of island electrons occupies the same total number of
states, but their distribution between various Landau levels
changes: The Landau level filling v=nh/eB changes while
density n is fixed. On the i=1 QH plateau, in the 2D bulk u
is in the localized states between the lowest and the next
spin-split Landau levels. Chemical potential in the island is
determined by the w in the bulk, our results (presented in this
paper) show that apparently the radial position of the i=1
edge channel circling the island is nearly fixed by the con-
fining potential, that is, S, is nearly constant. The quantum
number m, of the state S,, corresponding to S, regularly
changes in steps of one, m,*B since the area per state
27> 1/B. If the occupation of the states in the electron
island were a step-function, 1 for m=m i and O for m>m w
then S , must change, and the number of electrons within S “
must change. Instead, as evidenced by the experiments re-
ported here, both S P and the number of electrons within S u
are nearly constant. What happens is that the electron occu-
pation is not described by the step-function. Increasing B
increases density of states in a LL, thus accommodating the
same number of electrons is accompanied by creation of un-
occupied states (that is, holes) in the otherwise filled LL.
Likewise, decreasing B is accompanied by filling of the
states in the next, otherwise empty LL. Such Landau level
quasiparticle or quasihole creation allows to accommodate a
fixed number of island electrons (as dictated by the self-
consistent electrostatics of Coulomb-interacting electrons) in
a nearly constant area S,.

Application of a front gate voltage Vp; produces electric
field which affects the confining potential and thus changes
both the electron density distribution and S,. The number of
electrons in the island changes because both density and the
area §,, change. An increased n is accompanied by the shift
to a higher B of the i=1 QH plateau (with Aharonov-Bohm
oscillations superimposed). An increase in S, is observed as
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a smaller Aharonov-Bohm period AB. Thus, the two effects
are measured directly, independent of each other. From the
dependence of the period AB, and thus S, on Vj; we obtain
the electric-field-induced AS s the electron orbit area change
corresponding to addition of one electron inside the orbital at
M. We also observe a systematic shift of the midpoint of the
range of the Aharonov-Bohm oscillations B),;, which, assum-
ing it corresponds to a fixed filling v=1, also yields the area
AS #:217€2 occupied by one electron. These two experimen-
tally independent ways to obtain AS,, agree very well. Addi-
tionally, we compare these experimental results to AS,, ob-
tainable from the edge depletion models of Chklovskii et
al."® and Gelfand and Halperin,'* and find a reasonable
agreement between AS,, obtained from these models and in
the experiments.

II. EXPERIMENTAL RESULTS

Our device is based on a very low disorder, high
mobility modulation-doped AlGaAs/GaAs heterojunction,'
which had a 2D electron system (2DES) with density
n9=9.7 % 10'° cm™? (achieved after exposing the sample to
red light at 4.2 K). Ohmic contacts were prepared on a pre-
etched mesa. Next, a 2DES island of lithographic radius
R=1300 nm was defined by electron beam lithography (us-
ing proximity correction) and a self-aligned lift-off process
(see Fig. 1). The 50 nm thick Au/Ti gate metal was depos-
ited in chemically etched shallow trenches, 82 nm deep,
reaching below the 6-doping, while the 2DES is 215 nm be-
low the surface. The four independent front gates are con-
tacted separately.

All the measurements presented here were performed
with the device in the 10.2 mK *He—*He bath in the tail of
the mixing chamber of a top-loading into mixture dilution
refrigerator. Extensive cold filtering in the electrical leads
reduces the electromagnetic background incident on the
sample to 5 X 10717 W.1® We measure Ryy=Vy/Iy as a func-
tion of magnetic field B using a lock-in technique at 5.4 Hz.
We typically use /y=200 pA rms in this paper, although re-
ducing the current to 100 pA reveals moderate electron heat-
ing effects. Each Ryy versus B trace was measured at a fixed
value of Vi, defined as the average front gate voltage. A
small differential front gate bias was applied in order to fine-
tune the two constrictions for symmetry of tunneling ampli-
tudes (to increase the amplitude of the oscillations).

In this paper we focus exclusively on the i=1 QH plateau
in the island. The experimental results in this regime are
summarized in Figs. 2 and 3 and in the inset of Fig. 4. In
general, we observe the Aharonov-Bohm oscillations in Ryy,
superimposed on a smooth background magnetoresistance
coming from the 2D bulk outside the island.? Fig. 2 presents
a typical directly measured Ryy vs. B trace. The oscillations
are clearly periodic with period AB; for example, the trace
shown in Fig. 2 (Vpg=0) has AB=1.87 mT. Figure 3 pre-
sents the oscillatory dRyy as a function of B (that is, Ryy with
the smooth background subtracted), for several positive val-
ues of Vpg. The period AB for each of these traces decreases
with increasing V. It is evident that the magnetic field in-
tervals where the Aharonov-Bohm oscillations occur shift to
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FIG. 2. (Color online) Directly measured Aharonov-Bohm os-
cillations in Ryy on i=1 quantum Hall plateau. Front gate voltage
Veg=0, bath temperature of 10.2 mK. Oscillations are superim-
posed on a smooth background due to conduction in the 2D electron
“bulk,” outside of the island.

higher magnetic fields when Vg is increased. To quantify
this behavior, we define B;, as the midpoint of the magnetic
field range in which the oscillations occur (for the given
Vi) For example, By, ~2.80 T for the V=150 mV trace.
The inset in Fig. 4 shows the dependence of thus determined
By, on Vg, which is approximately linear in the range of the
voltages studied.

III. ANALYSIS AND DISCUSSION

A. The edge depletion models

The 2D electron island is defined by the depletion poten-
tial of the etch trenches. We use a model based on that of
Gelfand and Halperin'* (GH) to calculate the resulting elec-
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FIG. 3. (Color online) Aharonov-Bohm oscillations SRyy as a
function of B for several values of positive front gate voltage Vg,
given in the labels next to each trace (in mV). All the traces occur
on the i=1 quantum Hall plateau, and have been displaced verti-
cally in steps of 1 k) for clarity (1 kQ corresponds to tunneling
conductance 0.04¢2/h). Each trace contains approximately 100 os-
cillations with a well defined period AB, which depends on V.
Inset: A blow up of the Vp5=255 mV trace shows the regularity of
the oscillations.

PHYSICAL REVIEW B 72, 155313 (2005)

32
=
& 2.8H Y28t d
p= D
S m
24
0 200 400

S, (10°2
Y -

22

0 100 200 300 400
Veg (MV)

FIG. 4. (Color online) Dependence of island area S, on V.
Each value of S, (circles) was determined from the Aharonov-
Bohm period AB. The dependence is approximately linear in
the range of Vg studied; the solid line is a least squares fit to S,
=a+bVpg, giving a=2.21X107"2 m? and b=1.44X10""2 m?/V.
Diameter 45 w/m=1.8 pum. Inset: The midpoint of the oscillations
By vs Vig. A linear fit By=c+dVyp; gives ¢=2.53T and
d=1.77T/V.

tron density profile n(r,Vg;=0), assumed to be rotationally
symmetric. Briefly, this B=0 classical electrostatics model
includes effects of the surface charge on the side wall of
the etched mesa due to the GaAs surface states, and the
resulting ionized donors of the intentional 2D J-doping.
GH obtain an analytic expression for the density profile
ney(x)=Fgu(x/ W)n, for a linear edge, where x is the coor-
dinate normal to the edge (x=—W at the lithographic edge),
W is the depletion length, n is the 2D “bulk” electron den-
sity, and Fy is the function given in their Eq. (7). In a strong
magnetic field W> €, the magnetic length, and this analytic
expression agrees very well with the profile obtained in a
Hartree-Fock calculation'* for x such that ngy(x)/ny>0.3.
Since W< R, the island lithographic radius, we adapt the GH
density profile to our circular geometry:

nGu(r) = Foul (R = r)/WIF gyl (R + 1)/ W]ny, (1)

where r is the radial distance from the center of the island.
The effect of the front gate bias is modeled following
Chklovskii, Shklovskii, and Glazman'® (CSG). They obtain
an analytic expression for the electron density profile
nesg(x)=Fesg(x/L)ng for a linear edge (x=-L at the gate
edge), where Fog=[(x+L)/(x—L)]"?, and the length param-
eter L=eg,Vpg/ men,. Again, since L<<R for our Vs range,
we adapt the CSG density profile to our circular geometry:

2_,2\112
%) .

nes(r) = Fesg(r/L)ng = < R

The main effect of a quantizing magnetic field is to open
the QH gap at u, causing creation of “incompressible” and
“compressible” regions.!'>!%!7 The effect on electron trans-
port properties is great, but the B=0 electron density profile
is not perturbed very much. This is because a variation of
electron density produces large electrostatic charging energy,
which must be compensated by the fraction of the QH gap
energy gained per displaced electron. Recently, Hartree-Fock
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calculations for up to 300 electrons confined in an island for
QH filling i=2 have been reported for both parabolic and a
bell-shaped confining potentials.'® Certain qualitative simi-
larities to the behavior in our samples are apparent, and per-
haps future Hartree-Fock work can more closely model con-
finement in the electron interferometer samples.

B. The Aharonov-Bohm quantization

As mentioned in the Introduction, in this sample, in the
integer QH regime, the Aharonov-Bohm oscillations arise
from the modulation of quantum interference of electron
paths by magnetic flux ® enclosed by the two counterpropa-
gating edge channels, coupled by tunneling (Fig. 1). The
edge channels follow the equipotentials of the edge depletion
potential, where the resulting electron density is such that
Landau level filling v=hn/eB=~i=1 (note that vocn in a
given B). These approximately circular electron island states
are quantized by the Aharonov-Bohm condition of one state
per @, per spin-polarized LL:

CDZBszm(I)(), (3)

where the azimuthal quantum number m=0,1,2,...,
Oy=2mh/e=hle, and §,, is the area enclosed by the mth
electron state. This quantization follows from equating the
Aharonov-Bohm Berry phase of the mth electron state to
2am, required for single-valued wave functions. In the low
temperature, low excitation extreme quantum limit, the cur-
rent is carried by electrons at the chemical potential w, and
each oscillation in Ryy signals the crossing of a single-
electron quantized state with . Consequently, the Aharonov-
Bohm oscillation period AB corresponds to a flux change by
one ®, through S, (the area enclosed by the electron state

at u):
S, =Dy/AB. (4)

Thus determined S, are plotted in Fig. 4 for several V.

In a magnetic field sweep, at a fixed Vg, as discussed in
the Introduction, the density of the electron states in each LL
is proportional to B. The electron density is pretty much
constant, because disturbing the electron density results in a
huge charging energy. For example, if each of the 100 ob-
served oscillations resulted from transfer of one electron to
the island, the total charging by 100e would result in
~10 eV charging energy; if an i=2 ring containing 100 “ex-
tra” electrons were to form just within the i=1 edge channel,
thus allowing shrinkage of S, the charging energy would be
~2 eV, still enormous.

The chemical potential u in the open island follows w in
the 2D bulk; LLs crossing w results in de Haas-van Alphen
and Shubnikov-de Haas oscillations. On a QH plateau, where
the Aharonov-Bohm oscillations are observed, u resides in
the localized states between two LLs. The fixed number of N
electrons occupying the nearly constant area S, is accom-
plished by creating localized LL quasiparticles or quasiholes
within the island edge ring. The Aharonov-Bohm oscillations
result from a quantized single-electron state crossing u,
which modulates the tunneling amplitude, accompanied by a
microscopic electron population redistribution within S,,.
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Each oscillation corresponds to a change by one @, in the
flux through S, but at the higher field B+AB the area per &,
is less; thus the area S, remains nearly constant, and the
number of electrons within S, is constant too. Since the
quantization condition Eq. (3) is equivalent to the increment
by 27 of the Berry phase of the electron wave function, we
recover the Aharonov-Bohm periodicity of the constructive-
destructive interference.

With increasing Vg, more electrons are attracted to the
2DES island and the constrictions. Since tunneling amplitude
is exponentially sensitive to the tunneling distance, the posi-
tion of the tunneling links at the saddle points in the constric-
tions is nearly fixed, but the electron density n. at these
positions increases with increasing V. Accordingly, in or-
der to remain on the i=1 QH plateau, the applied B must be
increased. Within the island, the edge channels must follow
the constant electron density contours with density equal that
in the constrictions, n., and move outward, away from the
island center. This edge channel density increase is con-
firmed by the shift to higher B of the midpoint of the range of
the Aharonov-Bohm oscillations: n(r,)=B)/®, at QH
filling i=1, where r, is the radius of the electron orbit
at u. The By, vs Vs dependence is shown in the inset of
Fig. 4; the slope dBy/dVp;=1.77 T/V corresponds to
dn(r,)/dVpg=43X10"" 1/m*V. Similarly, the area S, is
expected to increase with increasing Vs because of reduced
mesa depletion. An approximately linear dependence of S,
on Vg is indeed obtained from the Aharonov-Bohm period
AB, see Fig. 4, the slope dS,/dVp=1.44X107"2 m?*/V.

Reference 5 reported and analyzed Aharonov-Bohm oscil-
lations observed in a Coulomb Island of lithographic radius
R=750 nm, separated from the 2D bulk by two narrow
(300 nm wide) point contacts, showing conductance steps at
B=0. The gates were deposited on GaAs surface, with no
etch trenches; a fixed negative Vs was applied to produce
the confining potential. The analysis of Ref. 5 invoked a
large negative correction to the Aharonov-Bohm period, Eq.
(4), which was justified by a seemingly strong dependence of
the product iAB on the island QH filling i, assumed equal to
that in the bulk. Actually, from the data in Figs. 2 and 3 and
the text of Ref. 5, it is clear that the island edge ring filling
was ~1.7 times smaller than in the bulk. Accordingly, the
Aharonov-Bohm oscillations regions centered on B=5.1, 2.6,
1.85, and 1.4 T should be identified as belonging to the
i=1, 2, 3, and 4 QH plateaus, respectively. Using this
filling factor assignment, the corresponding periods
AB=5.3,2.7, 2.0, and 1.3 mT scale well, so that the product
iAB~54 mT is constant (within the experimental uncer-
tainty). This yields the area S, =®,/iAB=7.6 X 10~"* m* and
the radius rM:495 nm, values independent of i and reason-
able. The i=1, 2, and 4 Aharonov-Bohm oscillations
reported!® for the device of Ref. 3 also yield a constant prod-
uct iAB=2.7+0.1 mT. This analysis involves no correction
to our Eq. (4) due to the confining potential.

C. The front gate voltage period

Although not done in experiments reported here, in prin-
ciple it is possible to sweep front gate voltage Vs continu-
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FIG. 5. (Color online) (a) Dependence of the product S,AVpg
on Vpg, where the increment AVp; induces one more electron
within the area S, at a fixed B. The product S,AVgg is constant
within 2% in the range of Vpg from 0 to 400 mV, while S, in-
creases by 27% in the same range (Fig. 4). (b) One electron state
area AS,, vs V. The squares with error bars (AS,) are determined
from the experiment as ®/B,,=2m¢%, Eq. (5), while the solid line
(AS;) is obtained from the fit of the experimental Aharonov-Bohm
periods AB, Eq. (7). The dashed line gives AS, calculated by inte-
grating the edge depletion model electron density profile with no
adjustable parameters. The 13% discrepancy between the model
calculation and the experiment is surprisingly small, considering the
several approximations made and the idealized, simplified geometry
of the model.

ously (at a fixed B). We denote AV the expected period,
which induces a change AN=1 in the number of electrons N
within §,,. Application of AVy; results in a change AS,,
which can be linearized as AS,=(dS,/dVyg)AVg for large
N>1 (in this device N~2000). Since the area AS, can be
occupied by precisely one electron per spin-polarized Lan-
dau level, AS L, can be identified with the area between con-
secutive quantized electron orbits S,,,;—S,, in the vicinity of
. Hence, from the Aharonov-Bohm quantization condition
Eq. (3), substituting B, for B:

AS,tl,:(I)O/BM' (5)

Note that Eq. (5) simply gives AS,=27¢? with magnetic
length corresponding to B,;. Combining these two expres-
sions for AS,, we get an expression for AVy in terms of
experimentally obtained quantities:

AVFG = (I)O/(dS,u/dVFG)BM (6)

We calculated AVp; using the experimental value of
dS,/dVig and the values of By, (see Fig. 4). We find that
AV decreases with increasing Vg, but the product S, AV
is approximately constant, independent of Vp; (within the
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experimental uncertainty of 2%), see Fig. 5(a). The product
S, AV is proportional to the inverse integrated compress-
ibility of the 2D electrons in the island: dn/du<dn/dVyg
*(dN/dVg)!S,=ANIS ,AVpg=1/S,AVre. In this perspec-
tive, the constancy of S, AV is very fundamental: It stems
from the fixed density of states in the island area encircled by
the i=1 edge channel, that is, in one spin-split Landau level.
The Aharonov-Bohm signal originates in the interference of
electrons moving in the current-carrying edge channel. Un-
der increasing positive Vpg, the edge channel radius in-
creases, but, so long as the island remains on the i=1 pla-
teau, the opening of the QH gap precludes population of the
next Landau level in the interior of the island (recall that B is
fixed). That is, the population of the island by additional
electrons occurs by an enlargement of the edge channel ra-
dius, as opposed to the B=0 case, where additional electrons
are induced throughout the area of the island.

The constancy of the product S,AVg; can also be
viewed as a constant differential capacitance per unit area,
C/S,=64 uF/m?, where C=dQ/dV=e/AV; is the differ-
ential capacitance between the front gates and the 2D elec-
tron island. The effect must be quantum, since the classical
island capacitance can be estimated to change by a factor of
1.5, from the data of Fig. 4. A constant differential capaci-
tance in QH regime has been reported in quantum antidots®”
and in mesoscopic Si MOSFETs.?!

Using the experimental fact that the product S,AVgg
does not depend on Vp;, and the linearization AS,
=(dS,/dVpG)AVpg, we obtain:

AS; (Vo) = das, S,(0)AV5(0)
AV lv,, SuVro)
where S,,(0) and AV(0) are evaluated at Vy;=0. The as-
terisk in AS serves to distinguish it from AS,, calculated
using Eq. (53L. Equation (7) is of interest because it can be
used to obtain AS; from entirely different experimental in-
put, the dependence of the Aharonov-Bohm period AB on
Vre» than those used in Eq. (5), that is, the dependence of B,
(positions of QH filling i=1 in the island) on Vg The re-
sults obtained from these two routes are given in Fig. 5(b),
where AS; (solid line) is calculated using the slope
dS,,/dV g of the linear dependence of S, on Vg (Fig. 4) and
AVpg(0)=1.13 mV, Eq. (6). The error bars in AS,, are most
likely overestimated by taking an error in B,, equal to half
the range of the magnetic field at which the oscillations oc-
cur. As can be seen, the agreement between AS u and AS; is
very good, well within the error bars. This agreement con-
firms that the Aharonov-Bohm quantization condition, Egs.
(3) and (4), describes well the basic physics of the electron
interferometer devices in the QH regime studied in this work
and in Ref. 3.

, (7

D. Comparison to the edge depletion models

As stated in Sec. IIT A, the primary 2D electron confining
potential is created by the depletion potential of the etch
trenches. The resulting 2D electron density profile is affected
by the electric field of the front gates. A relatively robust way

155313-5



CAMINO, ZHOU, AND GOLDMAN

to evaluate the effect of Vp; on the electron island is to
calculate AS,, due to AV, the voltage increment needed to
attract one more electron to S, To this end, we evaluate
ngy(r) from Eq. (1), using the known heterostructure and
lithographic parameters and dimensions as input. We then
calculate n(r,Vpg)=ngy(r)Fesg(r, Vi), using Feog; from
Eq. (2), where the Vgs-dependence is contained in Lot Vi
(for the present device, L/ Vg;=0.23 nm/mV). Such a calcu-
lation is not self-consistent, but, in the absence of a self-
consistent result, is justified by: (i) In this paper, front gate
voltage in the range of 0 <Vj;<400 mV is only a perturba-
tion to the larger depletion effect of the etch trenches, and (ii)
we use only n(r, V) integrated over the area of S, which
excludes the low density tail of n(r,Vgg), and thus should
reduce relative error due to nonself-consistency of the calcu-
lation, because such an error is larger for nearly depleted
regions of small electron density.

Integrating n(r,Vg;) over the experimental Aharonov-
Bohm area S, we determine AVy; such that the number
of electrons within S, increments by one: AN
=n(Vpg+AVig)dS—n(Veg)dS=1. In particular, we obtain
AVi6(0)=1.01 mV starting at Vp=0. Using Eq. (7), the in-
crement AVyg(0) gives the one electron state area AS,,
shown by the dashed line in Fig. 5(b). The model calculation
described above involves no adjustable parameters, has ex-
perimental input via §,,, and uses an idealized device geom-
etry. The surprisingly small difference (13%) between the
experimental and the calculated AS,, indicates that the CSG
model adequately describes the effect of front gates on elec-
tron density profile for moderate V.

IV. CONCLUSIONS

We reported electron quantum interference experiments
on the i=1 quantum Hall plateau performed with an electron
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interferometer device. When tunneling between edge chan-
nels occurs, in the quantum-coherent regime, Aharonov-
Bohm oscillations with period AB were observed as a func-
tion of magnetic field B. In this regime, the electron states
encircling the island are quantized by the Aharonov-Bohm
condition: The magnetic flux through the area of the closed
electron path at the chemical potential u satisfies AD
=ABS,=®,, where ®y=h/e. Each oscillation corresponds to
a change by one ®j in the flux through §,,. Microscopically,
each Landau level has one electron state per @, and addition
of flux ® leads to the outermost empty state crossing u, that
is, becoming occupied. Simultaneously, addition of @ to the
interior of the island creates a hole state in the otherwise
occupied LL. Thus the area §,, remains nearly invariable, and
the number of electrons within S u is constant, too. We ex-
perimentally determined the dependence of S, on the front
gate voltage, and conclude that the Aharonov-Bohm quanti-
zation condition does not require significant corrections due
to the confining potential. These results can be interpreted as
a constant integrated compressibility of the island (on a
quantum Hall plateau) with respect to the front gates. We
also analyzed experimental results using two classical elec-
trostatics models: One modeling the 2D electron density due
to depletion from an etch trench, and another modeling the
gate voltage dependence of the electron density profile in the
island. We conclude that the models adequately describe the
effect of front gates on electron density profile for moderate
biases.
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