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We study the dynamics of impurity-bound electrons interacting with a bath of conduction band electrons in
a semiconductor. Only the exchange interaction is considered. We derive master equations for the density
matrices of single- and two-qubit systems under the usual Born and Markov approximations. The bath medi-
ated Ruderman-Kittel-Kasuya-Yoshida interaction in the two-qubit case arises naturally. It leads to an energy
shift significant only when the ratio �RT� of the interqubit distance to the thermal de Broglie wavelength of the
bath electrons is small. This bath mediated interaction also has a profound impact on the decoherence times;
the effect decreases monotonically with RT.

DOI: 10.1103/PhysRevB.72.155312 PACS number�s�: 03.65.Yz, 71.55.Cn, 71.70.Gm

I. INTRODUCTION

The dynamics of the impurity-bound electrons in semi-
conductors have been studied previously in the context of
population relaxation.1–3 Experimental studies of electron
spin relaxation were central to understanding various mecha-
nisms of relaxation of nuclear and electron spins in 31P at-
oms in Si. Since then, theoretical work has exhaustively con-
sidered the effects of various interactions among electrons
and atoms on the relaxation of populations in different quan-
tum states. Various researchers have considered the effects of
spin-orbit coupling, hyperfine, exchange, Coulomb, and di-
polar interactions. Current interest in the unusually long re-
laxation times predicted and observed in these systems stems
from possible applications in solid-state quantum computing.
The seminal proposal by Kane4 to use 31P atoms embedded
in Si crystal as qubits identifies one strategy for the realiza-
tion of quantum computer hardware in the solid state.

Recent investigations of decoherence mechanisms in
these schemes assume the presence of a strong magnetic field
and low temperatures, typically, a few mK; this prevents
spontaneous spin flips by breaking the degeneracy of bound
electron spins.4–8 The dominant decoherence mechanisms in
this case include the hyperfine and dipolar interaction of
electrons with nuclei, and dipolar-dipolar interaction among
the electrons. Recent calculations5,6 suggest that at low tem-
peratures decoherence is dominated by spin diffusion in-
duced by hyperfine and dipolar interactions of qubits with
the spin bath of Si atoms. In principle, and to a high degree
in practice, this mechanism can be eliminated by using ultra-
pure 28Si crystals. But it would be desirable to operate solid
state quantum devices at low magnetic fields and higher tem-
peratures, and the price for this is the importance of addi-
tional decoherence channels in the system. One of these is
due to the interaction of qubits with a bath of conduction
electrons. Studies of decoherence due to this channel have
appeared in literature only recently.9,10 The problem investi-
gated by Kim et al.9 concerns the exchange interaction of a
qubit with a spin polarized one-dimensional stream of elec-
trons. However, it only addresses the spin flip rates of the
qubit, and uses a bath that is physically different from an
unpolarized gas of conduction electrons typically found in a

semiconductor. The latter type of bath is used by Rikitake et
al.10 who study the effects of decoherence on the Ruderman-
Kittel-Kasuya-Yoshida �RKKY� interaction of two qubits in
a bath consisting of a noninteracting degenerate electron gas.

In this paper we consider a simple model, similar to that
of Rikitake et al.,10 in which the spins of electrons bound to
donor atoms act as qubits and scatter the conduction elec-
trons via the exchange interaction. For reasonably low donor
densities, we show that the conduction electrons form a
Boltzmann gas at all temperatures. Therefore, in a Kane type
model only a classical distribution need be considered. The
temperature is considered high enough that the ratio of
bound to free electron density ensures that interactions
among qubits are negligible compared to their exchange in-
teraction with conduction electrons. For P atoms in Si, these
assumptions are satisfied, in the absence of magnetic fields,
for donor densities of the order of 1016 cm−3 or lower. The
nature of the bath has important consequences for the tem-
perature dependence of decoherence. Thus the results in the
present paper are in contrast to those in of Rikitake et al.,
despite similar master equations obtained in both. Further-
more, the present paper addresses the Kane model more con-
cretely and makes a stronger connection between the param-
eters of the equations derived and fundamental properties of
semiconductors.

In the following, we first present a full master equation
for the density matrix of a single qubit and obtain an intuitive
analytical result for the decoherence and relaxation times.
The result is similar in form to the phenomenological result
obtained by Pines et al.2 for the relaxation rates under con-
ditions similar to those considered here. We then derive the
master equation for a system of two mutually noninteracting
qubits, and study the decoherence due to their interaction
with the conduction electron bath. We plan to include the
effects of interactions among qubits in a future paper.

II. MODEL AND FORMAL EQUATIONS

We consider a silicon lattice at nonzero temperatures
doped with a density nD of phosphorus atoms. Each P atom
donates an electron, which either becomes a conduction elec-
tron or is captured by another ionized P atom forming an
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“atom” with hydrogenlike properties. The captured electrons
are usually in s states with a Bohr radius of about 25 Å and
a binding energy of about 0.044 eV.8,11 The conduction elec-
trons form a gas of approximately free particles with an ef-
fective mass of 0.2me, where me is the bare mass of the
electron. The density of the gas builds up �from zero at T
=0� as temperature rises and more donors are ionized. A
simple statistical mechanics analysis shows that the expected
number density of bound electrons at temperature T is nb

=nD�1+ 1
2 z−1 exp�−Eb /kBT��−1, where z is fugacity of the

total system comprised of bound and unbound electrons, Eb
is the energy needed to excite a bound electron into the con-
duction band, and kB is Boltzmann’s constant. The conduc-
tion electron gas has a number density of

nc�T� = 2�T
−3F3/2�z� , �1�

where F3/2�z�=�0
�dx�x�z−1ex+1�−1 is the Fermi-Dirac func-

tion, and �T=��2� /mkBT�1/2 is the thermal de Broglie wave-
length. Forcing nc+nb=nD, we find

F3/2�z��2z + e−Eb/kBT� =
1

2
nD�T

3 e−Eb/kBT. �2�

For the parameters chosen, the product �T
3 e−Eb/kBT

�10−24 cm3 for temperatures below 300 K, which implies
that for nD�1016 cm−3, we can take z�1 and F3/2�z��z.
Consequently, the distribution of conduction electron gas re-
mains Boltzmann down to T=0.

We simplify the picture by assuming the qubits to be in s
states, with only the spin acting as their degree of freedom,
and suppose there are no external fields breaking the degen-
eracy of the spin states. The conduction electrons collide
occasionally with the qubits elastically; we assume they do
not excite them into higher states. However, the spins of the
two may become entangled or even exchanged. Since the
conduction electron moves throughout the crystal interacting
with many electrons and atoms before the qubit scatters an-
other conduction electron, it loses its coherence much faster
than the qubits, and may be thought to be in an incoherent
superposition of momentum eigenstates over the time scale
of interest. Thus it is also independent of other bath elec-
trons, while being on the same footing as they. This allows
us to study only the case of interaction between a qubit and
one mixed-state conduction electron, and multiply by the
number of the latter in the end result. Thus we can take our
Hamiltonian as

H =
p2

2m
+ V , �3�

where p is the momentum of the conduction electron and m
is its effective mass. The operator V is the interaction Hamil-
tonian acting on the electron and the qubit�s�. We are con-
cerned only with the exchange interaction, and study two
cases. We first consider a single qubit at the origin for which
the interaction takes the form

V = Jr0
3��r�S · s , �4�

where J is the exchange coefficient and r0 is an effective
Bohr radius characterizing the size of the qubit. The spin

operators S and s act on the qubit and the conduction elec-
trons respectively. We also consider two mutually noninter-
acting qubits for which the interaction is

V = Jr0
3��	r −

1

2
R
S1 · s + �	r +

1

2
R
S2 · s� , �5�

where S1 and S2 are the qubit spin operators, and the two
qubits are placed symmetrically at ±R /2. To treat more than
two qubits, similar terms would be added to V, with delta
functions centered at the respective qubit locations. Despite
the absence of direct exchange interaction between them, the
two qubits can still exchange spins via indirect exchange
interaction. Physically this occurs when the bath remains
correlated long enough for the conduction electron to link
two qubits; the indirect exchange coupling between qubits
can arise even when they are too far away to have significant
direct exchange interaction. This coupling is significant only
when the interqubit distance is much shorter than the coher-
ence length of the bath, which is approximately the thermal
de Broglie wavelength �T. The results found here depend
naturally on these two important length scales.

In addition, there are also direct interactions between the
qubits. The important qubit-qubit interactions involve the ex-
change interaction between bound electrons, the hyperfine,
dipolar, and spin-orbit coupling of these electrons to the bath
of Si nuclei. For low doping densities the first of these can be
ignored as a starting point. For a donor density of nD
=1016 cm−3, and T=100 K, the interdonor distance is R
�50 nm, whereas the mean radius of the electron orbits is
r0�2.5 nm. Thus the exchange energy is small, as we expect
little overlap between the qubit wave functions. The second
and third have been studied by various authors in the context
of both relaxation and decoherence rates.1–3,5,6,12,13 The hy-
perfine and dipolar terms can be made arbitrarily small by
purifying the Si samples to contain only the 28Si isotope. For
natural Si, which contains 95.33% 28Si, it is estimated that
the hyperfine and dipolar couplings combined are of the or-
der of 10−7 eV or less.8 This is minute compared to the ex-
change interaction on the order of meV that we consider.
Spin-orbit coupling is likewise small, and we neglect these
additional effects in this preliminary investigation.

We point out that the model has important differences to
the one used by Chang and Chakravarty in their general
study of dissipative dynamics of a two-state system.14 They
consider a biased qubit that is coupled to the bath via Sz only,
and the coupling induces no spin flips in either the bath or
the qubit. Furthermore, spin flips are introduced by a tunnel-
ing parameter that is independent of the bath state. This is
clearly not the case in Eqs. �4� and �5� where the isotropic
coupling of system and bath causes joint spin flips in the two
subsystems. A more general case of Brownian motion in a
fermionic environment has also been studied in several pa-
pers by Chen,15–17 who mainly focused on mapping between
fermionic and bosonic environments. None of these studies
discusses decoherence directly, and it is highly nontrivial to
extend the results of these papers to arrive at those in this
work.
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We first develop a general equation for the density matrix
��t� of a system coupled to a bath and the full system evolv-
ing via the Hamiltonian in Eq. �3�. The following notation is
used. We label the conduction electron states by �	p= �	
� �p, where �	 and �p are the eigenstates of sz and the
momentum operator of the conduction electron respectively.
The kinetic energy of the bath electron is denoted by �
p
= p2 /2m, and the normalized system states are labeled using
Roman letters. For a general interaction V, we write the in-
teraction Hamiltonian in the interaction picture as

HI�t� = �
ij

�i�j� � �
	,	�

�
p,p�

ei�
p−
p��t�	p�	p�Vij�	�p��	�p�� .

�6�

Here we defined bath operators Vij = �i�V�j which depend
parametrically on system states. It is shown in the Appendix
that for an unpolarized bath under the Born approximation,
the density matrix � of the system is given by

�̇ = − i
RKKY�
ijkl

�ijkl��ij�kl,��

+ �
ijkl

�ijkl�2�kl��ij − �ij�kl� − ��ij�kl� , �7�

where the operators �ij = �i�j� are system operators. The ten-
sors � and �, and the constants  and 
RKKY, result from
specializing �A7� and �A11� to the two the forms of V shown
in Eqs. �4� and �5�. It is evident that � is involved with a
unitary evolution of ��t� and � with the decoherence pro-
cesses. Thus we label the first sum as the unitary term and
the second as the dissipative or nonunitary. The frequency

RKKY is a shift resulting from the RKKY interaction be-
tween the two qubits. No such term arises in the single-qubit
problem. The constant −1 is an interaction time constant of
the system and the bath �see Appendix for derivation�;  and

RKKY are defined as

 = 4�2��−3/2nc�T��Jr0
3m�−2�2�kBT

m
, �8�


RKKY�R� = − �2��3�−1�Jr0
3�2��R� , �9�

=
4

�
nc�T��Jr0

3m�−2�2 �

mR
e−��2R/�T�2

.

�10�

In the definition Eq. �9� of 
RKKY, ��r� is the free electron
susceptibility, and the expression in Eq. �10� specializes this
definition to a Boltzmann distribution for the conduction
electron gas. Apart from dimensionless factors,  is a product
of the thermal flux of conduction electrons and an “effective
area” �Jr0

3m�−2�2 over which the bound electron experiences
this flux. On the other hand, the thermal flux in the definition
of 
RKKY is replaced by nc��mR�−1 exp�−4�RT

2�, which de-
pends on the interqubit distance and the thermal de Broglie
wavelength of bath electrons. Both these rates are given by a
mean number of scattering events, where the scattering oc-
curs via the exchange interaction. The 1/R divergence of


RKKY is typical of the ��r� in three dimensions18,19 but the
spatial damping factor in the case of Boltzmann distribution
is Gaussian as opposed to exponential in the degenerate
limit.19 Furthermore, the increase in decoherence with nc and
J is accompanied by a correspondingly faster unitary evolu-
tion, as the ratio −1
RKKY is independent of both these pa-
rameters.

III. APPLICATION TO TWO SPECIFIC CASES

A. Dynamics of a single qubit

This is the simplest application of the general expressions
given above, and we use it to estimate the temperature de-
pendence of relaxation and decoherence times. The tensors �
and � in this case are equal and their tensor elements are
found to be

�ijkl =
1

2
�i�Sz�j�k�Sz�l +

1

4
�i�S+�j�k�S−�l +

1

4
�i�S−�j�k�S+�l ,

�11�

where S±=Sx± iSy. Substitution of this expression in Eq. �7�
yields the master equation for a single qubit explicitly in the
Lindblad form. The unitary term becomes �S2 ,��, and it van-
ishes because S2 is proportional to identity. We define a su-
peroperator L�.� such that L�A��=2A�A†−A†A�−�A†A,
where A is a general operator, and obtain

�̇ =


2
�L�Sx�� + L�Sy�� + L�Sz��� , �12�

=−


2
��Sx,�Sx,��� + �Sy,�Sy,��� + �Sz,�Sz,���� . �13�

The latter equality follows due to the Hermiticity of the spin
operators. Besides ensuring complete positivity and trace
preservation, this form is also invariant under arbitrary rota-
tions of the spin. Therefore we may consider any pure initial
state to be a spin-up state in the Sz basis of a suitable coor-
dinate frame. In the Bloch formalism, these states reside on
the surface of a unit sphere and their loss of purity is de-
scribed by the decay in the length of the vector representing
them. From Eq. �13� we then find that the initial decay of
purity is equal to d Tr��2� /dt=− for all pure states.

To study the evolution of a general state, we study the
Bloch vector with components u=�01+�10, v= i��01−�10�,
and w=�11−�00. Here 0 identifies the spin-down state and 1
the spin-up state. From the master equation �13� it follows
that

u̇ = − u, v̇ = − v, ẇ = − w . �14�

From these equations we find that the longitudinal and
transverse rates are T1

−1=T2
−1=. Thus the relaxation rate is

proportional to the collision rate of a qubit with a thermal-
ized bath of particles. The two rates are equal because the
system is unbiased, and both relaxation and decoherence
arise only through elastic scattering. The conventional rela-
tion 2T2�T1 holds true only when several distinct scattering
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processes determine T2 while only a subset of them is re-
sponsible for T1. When no such distinction exists we can
have T1=T2, as Bloch noted many years ago.20

In Si:P with physical parameters defined in Sec. II, we
estimate J�6 meV. Taking into account the temperature de-
pendence of nc�T�, shown in Fig. 1, we plot log�−1� as a
function of T in Fig. 2 �the logarithm base is 10�. It is evident
from the figure that above about 70 K, −1 is less than a
microsecond, which means that conduction electrons present
a significant decoherence mechanism in this regime. The ef-
fectiveness of this channel vanishes significantly at low tem-
peratures due to the loss of conduction electrons �as dis-
cussed in Sec. II�; nc is less than 1% of nD for T�35 K. The
�T dependence of the thermal flux, which is associated with
a decrease in conduction electron velocity with lowering
temperature, also contributes to the rapid decrease in  as
temperature is decreased.

B. Dynamics of two mutually noninteracting qubits

We now consider a system of two mutually noninteracting
qubits that relax and decohere via the exchange interaction
with the conduction electrons. Again, the general dynamical
map �7� describes the evolution upon specializing the tensors
� and � to Eq. �5� using the defining Eqs. �A7� and �A11�.
As expected a contribution of the form �11� for a single qubit
comes from each member of the system. We call this �� and
write it as

�ijkl� = �
q=1

2
1

2
�i�Sq

z �j�k�Sq
z �l +

1

4
�i�Sq

+�j�k�Sq
−�l

+
1

4
�i�Sq

−�j�k�Sq
+�l , �15�

where q=1,2 labels each qubit. However, there also exist
cross-coupling terms which represent the process by which a
conduction electron mediates a spin exchange between the
two qubits. These are given by �� where

�ijkl� =
1

2
�i�S1

z �j�k�S2
z �l +

1

4
�i�S1

+�j�k�S2
−�l +

1

4
�i�S1

−�j�k�S2
+�l

+
1

2
�i�S2

z �j�k�S1
z �l +

1

4
�i�S2

+�j�k�S1
−�l

+
1

4
�i�S2

−�j�k�S1
+�l . �16�

The two tensors add to form the tensors that appear in Eq.
�7�,

�ijkl = �ijkl� + ��RT��ijkl� , �17�

�ijkl = �ijkl� , �18�

��RT� = �
0

�

xe−x sinc2�RT
�4�x�dx =

− i erf�iRT
�4��

4RT
e−4�RT

2
,

�19�

where RT=R /�T is the interqubit distance measured in units
of the thermal de Broglie wavelength, and erf�.� denotes the
error function. The tensor � depends only on �� because the
term corresponding to �� commutes with ��t�, as can be
verified from Eq. �7�. The dimensionless integral ��RT� rep-
resents the strength of indirect exchange coupling between
the two qubits relative to their direct exchange interaction
with the conduction electrons. The most dominant contribu-
tion to the integral comes from x�� /4RT

2. Thus we find, as
expected, that the strength of indirect exchange decreases
rapidly as qubits move out of the coherence region of the
conduction electron, and the plot of ��RT� in Fig. 3 shows a
monotonic decrease as RT increases. We point out that if the
Fermi distribution were applicable, ��R ,T� would be given
by the same formula as above, but with xe−x replaced by the
x�z−1ex+1�−1, where z is the fugacity of the gas. At vanish-
ingly small temperatures, the Fermi wavelength would then
take the role of the thermal de Broglie wavelength in setting
the length scale of indirect exchange. But we stress that for

FIG. 1. Ratio of conduction electron density to donor density as
a function of temperature.

FIG. 2. Decoherence time for a single qubit as a function of
temperature �logarithm base 10�.
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the model presented in Sec. II the Boltzmann distribution is
relevant for all temperatures.

Complete positivity and trace preservation is guaranteed
in the two-qubit case as well. Substitution of Eqs. �15� and
�16� in Eq. �7� yields

�̇ = −
i

�
�Heff,�� + �

k,l=1

6

ckl�2Fk�Fl
† − �Fl

†Fk,��� , �20�

where we have defined an effective Hamiltonian

Heff = �
RKKYS1 · S2, �21�

which causes unitary evolution due to system bath interac-
tion. The dissipative part contains six operators
�F1 ,F2 ,F3 ,F4 ,F5 ,F6�= �S1

z ,S1
+ ,S1

− ,S2
z ,S2

+ ,S2
−�, and a 6�6

symmetric coefficient matrix

c = � a �a

�a a
� , �22�

a =
1

4�2 0 0

0 1 0

0 0 1
� . �23�

The matrix c is positive semidefinite, as can be verified from
its non-negative eigenvalues for 0���1. This is sufficient
to ensure complete positivity of Eq. �20�. The equation is
reduced to Lindblad form by diagonalizing c and obtaining
an orthonormal set of eigenvectors. Thus,

�̇ = −
i

�
�Heff,�� +

1

4
�1 + ���L�S2

x + S1
x� + L�S2

y + S1
y�

+ L�S2
z + S1

z��� +
1

4
�1 − ���L�S2

x − S1
x�

+ L�S2
y − S1

y� + L�S2
z − S1

z��� . �24�

An equation of the same form has been derived by Riki-
take et al. but with the parameters specific to a degenerate

bath.10 Let us now compare this map with the single-qubit
map �12� by ignoring the unitary term. For the case �=0, c is
already diagonal, and the spin operators of each qubit form
the set of Lindblad operators in the dynamical map. The map
then consists of a sum of maps �12� for each qubit, which
implies that the reduced dynamics of each qubit is indepen-
dent of the other. Physically, at �=0, the coherence length of
the bath is much smaller than the interqubit distance, and
therefore the qubits scatter bath electrons independently of
each other.

In the presence of indirect coupling, the Lindblad opera-
tors are not the spin operators of the qubits but their sum S
=S2+S1, and difference �=S2−S1. For significant values of
�, the coherence length of the bath covers the interqubit dis-
tance. When scattering the bath electrons, it is then reason-
able to expect that the two qubits behave as a single entity
with total spin S. In fact, in the extreme limit of full coher-
ence over the region containing the qubits, �=1, and the map
has exactly the same form as that of the single-qubit map.
The difference operator, �, accounts for the deviation from
perfect coherence of conduction electrons at the two sites,
and allows independent evolution to take place; the magni-
tude of this effect is of order 1−�. This suggests that the
singlet state with a total spin zero should be free of dissipa-
tive dynamics whenever �=1, and this is found to be the case
in the solution of Eq. �24� presented below. Note that this is
true not just within the context of the Born approximation to
the scattering amplitudes. Since �=1 strictly only for R=0 �it
is meaningless to consider T=0 as nc�0�=0�, the interaction
becomes V=J��r�s ·S. The operator S has a null space with
the singlet as its only member, and therefore, the singlet
stops interacting with the bath when �=1, and remains pure
indefinitely. More generally, the purity is clearly long lived
whenever �T�R, and ��1. Note also that no state other
than the singlet can be in isolation because a nonzero total
spin would always interact with the bath electrons. Finally,
the dynamics of the singlet was briefly considered by Riki-
take et al. They find similar behavior for the singlet, but
where the thermal de Broglie wavelength is replaced by
Fermi wavelength, as was pointed out earlier for the case of
a degenerate gas.

Let us now consider in detail a realistic case of interme-
diate values of �. In order to proceed, we analytically solve
Eq. �24�, which is done most conveniently in the Bell-basis
representation of ��t�, where the basis vectors are enumer-
ated in the order they are shown as follows:

� �00 + �11
�2

,
�00 − �11

�2
,
�01 + �10

�2
,
�01 − �10

�2
� .

The first �second� symbol corresponds to the first �second�
qubit. In this basis the operators S and � take a particularly
simple form as shown in Table I. It is evident from the table
and Eq. �24� that the diagonal terms of the density matrix do
not couple to the off-diagonal ones. This simplifies the cal-
culation and yields the following population equations:

d

dt
��22 − �11� = − �2 + ����22 − �11� , �25�

FIG. 3. ��RT� as a function of RT=R /�T.
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d

dt
��33 − �11� = − �2 + ����33 − �11� , �26�

d

dt
�

i=1,2,3
�ii = − 2�1 − �� �

i=1,2,3
�ii +

3

2
�1 − �� , �27�

d

dt
�44 = − 2�1 − ���44 +



2
�1 − �� . �28�

The first two equations show that the populations within the
triplet manifold equilibrate to a uniform distribution at a rate
of �2+��. The last two show that the population transfer
between this and the singlet manifold occurs at a rate of
2�1−��, confirming our observation that the singlet ceases
to evolve at �=1. The off-diagonal elements couple only to
their conjugates. Within the triplet manifold they obey

�12�t� = �Re��12�0�� + i Im��12�0��e−�1+��t�e−t, �29�

�13�t� = �Re��13�0�� + i Im��13�0��e−�1+��t�e−t, �30�

�23�t� = �Re��23�0��e−�1+��t + i Im��23�0���e−t, �31�

while the elements between the triplet and the singlet mani-
folds obey

�14�t� = Re��14�0���cos�
�t� − �i
 + ��
sin�
�t�


�
�e−�3−��t/2

+ i Im��14�0���cos�
�t� − �i
 − ��
sin�
�t�


�
�

�e−�3−��t/2, �32�

�24�t� = Re��24�0���cos�
�t� − �i
 − ��
sin�
�t�


�
�e−�3−��t/2

+ i Im��24�0���cos�
�t� − �i
 + ��
sin�
�t�


�
�

�e−�3−��t/2, �33�

�34�t� = Re��34�0���cos�
�t� − �i
 − ��
sin�
�t�


�
�e−�3−��t/2

+ i Im��34�0���cos�
�t� − �i
 + ��
sin�
�t�


�
�

�e−�3−��t/2. �34�

Here we defined the difference of eigenvalues of Heff in the
triplet and singlet manifolds as �
= �k�Heff�k− �4�Heff�4,

where k=1, 2, or 3 labels the triplet states. The renormalized
frequency 
�=�
2−�2, where �=�1−�� /2, represents
the oscillations caused by the unitary evolution resulting
from the RKKY interaction. It follows from Table I that
these oscillations are absent within the triplet manifold; they
also disappear for 
�� in the above equations. We note
that the off-diagonal elements always decay at least with a
rate of , and each of these elements is uncoupled from all
others. Hence dephasing between any pair of Bell states pro-
ceeds independently of the rest of the states.

Equations �25�–�28� show that, for ��1, the final state of
the density matrix is the maximum entropy state �= 1

4 1.
However, for �=1, the relaxation between the singlet state
and the triplet manifold ceases, and the final state becomes
�44

final=�44�0� and �ii
final= 1

3 �1−�44�0�� for i=1,2,3. The relax-
ation rate of the singlet can become zero, but all other states
attain a minimum relaxation rate of 2.

Several other properties of the dynamical map �24� be-
come evident when we consider the rate of decrease in purity
of an initially pure state; the map ensures that the purity
p�t�=Tr��2�t�� is a monotonically decreasing function of
time. A general equation for the rate of change of purity
follows straightforwardly from Eq. �24� as

dp

dt
= − 3�1 − ��p − 2� Tr�S2�2� +  Tr��1 + ���S�� · �S��

+ �1 − ������ · ����� . �35�

For pure initial states ��0�= �����, the initial loss in purity
occurs at the rate

ṗ�0� = − 3�1 − �� − 2����S2�� + �1 + ������S���2

+ �1 − ����������2. �36�

It is easily verified that the separable states of the general
form �a�b lose initial purity at the rate ṗ�0�=�−3
+2��a�S1�a�2+2��b�S2�b�2�, which is independent of �. Thus
the size of � has no effect on the initial decay in purity of
unentangled states. Furthermore, since any state corresponds
to spin-up in some direction, we have �a�S1�a · �a�S1�a
= �b�S2�b · �b�S2�b=1/4, and all separable states are on an
equal footing with respect to the initial rate of loss in purity.

We now show that this is in fact the minimum rate achiev-
able within the triplet manifold. An arbitrary state in the
triplet manifold has ���S2��=2, and ������=0, which
when substituted in Eq. �36� yields the initial rate ṗ�0�=
−�3+�− �1+������S���2� with only one state dependent
variable, ����S���. The maximum value of ����S��� occurs
for a separable �, which consists of parallel spins. Therefore,
we see that within the triplet manifold, separable states are
the most robust against loss in purity.

On the other hand, the singlet has �ṗ�0��=3�1−��, which
becomes less than 2 for ��1/3. Therefore the singlet is
more robust than the separable states in this regime. The rate
corresponding to any superposition of singlet and separable
states is greater than the average of the rates of these states.
Consequently, the set of robust states does not change in any
continuous manner with �, and it instead changes from sepa-

TABLE I. Bell-basis representation of the spin operators S
and �.

j→ x y z

Sj �1�3�+ �3�1� −i�2�3�+ i�3�2� �1�2�+ �2�1�
� j −�2�4�− �4�2� −i�1�4�+ i�4�1� �3�4�+ �4�3�
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rable to singlet at �=1/3. For t�0, the fidelity, f�t�
�Tr���t���0��, offers a characterization for predictability in
which f�t��1 identifies a highly predicable state and f�t�
�0 a poorly predicable one. In a study of fidelity, not re-
ported here, we found that the set of most predicable states
makes a transition from separable to singlet state for 1 /3
���1/2, depending on the time elapsed.

We end this section by discussing the time-dependent be-
havior of ṗ�t� for a few simple cases. Since for our Hilbert
space of dimension 4, p�t� decreases monotonically to the
value 1/4 for ��1, it is useful to define an “instantaneous
rate” for purity

a�t� = −
ṗ

p − 0.25
,

in terms of which

p�t� =
1

4
+

3

4
exp	− �

0

t

a�t��dt�
 .

The function a�t� highlights differences in ṗ�t�, and it is es-
pecially useful when different states lead to similar behavior
for ṗ�t�. We first consider the separable states of the form

�� = �0�cos����0 + sin����1�

and plot the �-parametrized rate a��t� as a function of � and
time t for different values of �. Figure 4�a� shows that all
separable states give rise to exactly the same rate at all times
for �=0. Here we set 
=0 to describe the effects of nonuni-
tary dynamics only. The effect of nonzero exchange coupling
becomes evident in Figure 4�b� where we set �=0.7. Here
the function a��t� decays much more slowly with time for
states ��� /4 than for �� �0,� /2�. Thus while � plays no
role initially for the separable states, the more stable states
are those with both qubits prepared parallel or antiparallel to
each other �see discussion after Eq. �36��. Similarly, the most
vulnerable of separable states are those in which the qubits
are eigenstates of spin operators corresponding to orthogonal
Cartesian directions.

The purity of the four Bell states has the following time
dependence:

pi�t� =
1

4
+

1

12
e−4�1−��t +

2

3
e−2�2+��t, i = 1,2,3,

p4�t� =
1

4
+

3

4
e−4�1−��t.

Thus the three states with total spin S�0 lose purity for all
values of �, and do so at two different rates for ��1. Ini-
tially, the decay is dominated by the rate 2�2+��, while at
times much longer than the inverse of this rate, the decay
approaches the slower rate 4�1−��. The corresponding rate
a�t� decreases from 4�1+� /3� to 4�1−�� as time in-
creases. In contrast, the rate for the singlet is independent of
time.

IV. CONCLUSION

In summary, we have derived and studied the master
equations for impurity-bound electrons �qubits� scattering a
bath of conduction electrons in a semiconductor. We show
that the distribution of bath electrons remains Boltzmann at
all temperatures, due to the temperature-dependent filling of
the conduction band. Thus our analysis, based on this result,
is in contrast with other studies on decoherence of qubits in
an electron gas obeying a Fermi-Dirac distribution.9,10 The
master equations are obtained in the Lindblad form for a
single qubit and a system of two mutually noninteracting
qubits. In the former, the Lindblad operators are found to be
the spin operators for the qubit. In the latter, these are re-
placed by the sum and difference of the spin operators of
each member of the system. The Bloch equations derived for
a single qubit show that decoherence occurs at the same rate
as relaxation in the Sz basis. This departs from the conven-
tional inequality 2T2�T1 because the two levels in the sys-
tem are degenerate, and therefore relaxation and dephasing
processes are both elastic. The inverse relaxation times are
equal to , which is proportional to the product of thermal

FIG. 4. The “instantaneous rate” a�t� for �a� �=0 and �b� �
=0.7.
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flux of the bath electrons and an effective cross section that
depends on the exchange coefficient J and the Bohr radius of
the qubit. Calculations show that −1 is on the order of sec-
onds for temperatures below 10 K, and decreases rapidly to
below a microsecond above 70 K. Thus the conduction elec-
tron bath is dominant in causing decoherence compared to
other sources4–8 for temperatures above 70 K.

The same parameter  also sets the time scale of decoher-
ence and relaxation in a two-qubit system. However an ad-
ditional parameter, ��RT�, representing the indirect exchange
coupling of the two members of the system, affects the rates
profoundly. The function ��RT� decreases monotonically
from 1 to 0 with RT, the ratio of interqubit distance to ther-
mal de Broglie wavelength of conduction electrons. The dis-
sipative part of the dynamical map is dominated by the total
spin operator when ��1. As a result the singlet state, with
zero total spin, becomes the most robust state in this limit.
For small �, however, the separable states in which both
members of the system are in an eigenstate of the same Car-
tesian component of the spin operator exhibit the slowest rate
of loss in purity. Pairs of Bell states are found to dephase
independently of each other, and their dephasing rate never
exceeds the population transfer rate. The unitary RKKY in-
teraction arises naturally between the two qubits in our mas-
ter equation. The frequency shift associated with this inter-
action is found to be proportional to the free electron
susceptibility of the bath, in agreement with past studies of
RKKY interaction between two spins mediated by a gas of
free electrons.18,19 While these studies found the interaction
to decay exponentially as a function of interqubit distance for
a Fermi-Dirac distribution, we find a Gaussian decay for a
Boltzmann distributed electron gas. The results in the two-
qubit system can be understood qualitatively in terms of the
coherence length of the bath electrons and the initial en-
tanglement between the qubits. Electrons with large thermal
de Broglie wavelength tend to scatter as if the two qubits
were acting as a single entity, while those with small wave-
length scatter off each qubit independently of the other. Simi-
larly, qubits prepared in pure separable states lose purity in-
dependently of �, while the sensitivity to � is much greater
for entangled initial states.

The generalization to include the effects of an external
magnetic field is straightforward and will restore the inequal-
ity 2T2�T1 in addition to the precession of qubits in the
field. However, interactions among the qubits demand a
more involved calculation, because unless they are much
larger or much smaller than the system-bath interaction, they
render the secular approximation invalid. This approximation
is central to most derivations of a coarse-grained, Markovian
master equation.
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APPENDIX: DERIVATION OF MASTER EQUATION

Here we derive the master equation �7� of Sec. II. The
density operator, denoted W�t�, for the joint qubit-electron

system evolves unitarily via the transformation W�t�
=U�t�W�0�U†�t�, where the unitary operator U=1+ iT and T
satisfies the equation

T = −
1

�
�

0

t

HI�t��dt� −
i

�
�

0

t

HI�t��T�t��dt�. �A1�

By unitarity of U�t� it follows that i�T−T†�=−T†T, and the
evolution of W�t� can then be written in terms of T as

W�t� − W�0� =
i

2
�T + T†,W�0�� + TW�0�T† −

1

2
T†TW�0�

−
1

2
W�0�T†T . �A2�

We consider only the product initial state, W�0�=�0 � RB,
where RB is the thermal density matrix of the bath. We first
show that under the second order Born approximation and
appropriate coarse-graining of t, Eq. �A2� yields the follow-
ing equation for the system density matrix:

��t� − �0 = − i�
ijkl

tNijkl��ij�kl,�0� + �
ijkl

tMijkl�2�ij�0�kl

− �kl�ij�0 − �0�kl�ij� . �A3�

The tensors Nijkl and Mijkl are independent of time, and �ij
are system operators defined by �ij = �i�j�.

We derive each sum in Eq. �A3� from the corresponding
term in Eq. �A2�, correct to second order. Since the expan-
sion of T starts at the first order in HI, the dissipative term
becomes second order automatically. Application of the first
order expansion of T then yields the second sum in Eq. �A3�
with the tensor Mijkl given by the expression

tMijkl =
1

2�2�
0

t

dt��
0

t

dt� �
	,	�

�
p,p�

ei�
p−
p���t�−t��

��	p;i�V�	�p�; j�	�p�;k�V�	p;lNp, �A4�

where Np is the number of particles in the momentum state
p. We now evaluate the integrals and sums in the limit of a
large crystal. Let � represent the crystal volume, and within
this volume, let n�p� be the density of conduction electrons
in the phase space. Then Np=��pn�p�, where �p
= �2���3 /� is the volume in p space associated with a mo-
mentum state. Introducing the phase space volume for p� in
a similar manner and letting � be large we find that

�
p

Np�
p�

→� dp �n�p� � dp�
�

�2���3 .

Next we introduce the rescaled operators Ṽij
=��2���−3�i�V�j and substitute them in Eq. �A4�. Making a
change of variables in t�,t� we find that

tMijkl = 4�3��
		�
�

0

t

d���
−L�t;���

+L�t;���
d�� dp dp� ei�
p−
p���n�p�

��	p�Ṽij�	�p��	�p��Ṽkl�	p ,

where L�t ;���=2�� for ��� t /2 and L�t ;���=2��−��� for �
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� t /2. The integral over � is essentially a Fourier transform
of a p-dependent function and it is expected to drop quickly
for thermal distributions at sufficiently high temperatures.21

Therefore, we switch to a coarse-grained time scale which
captures the evolution of the qubit but not the behavior of the
bath correlations. In this limit, L�t ;��� may be considered
infinite for essentially all �� without introducing error in the
integral over �. The result is

tMijkl = t8�4��
		�

� dp dp� n�p��	 p�2 − p2

2m�

�	p�Ṽij�	�p�

��	�p��Ṽkl�	p . �A5�

The factor t appears from the integral over �� due to the
absence of system dynamics; in the presence of system dy-
namics, �� is coarse-grained further to be insensitive to the
energy difference between the system levels. We now inte-
grate over p� making use of the formula n�p�dp
=4�p2n�p�dp�dû /4��, where n�p� is the occupancy of en-
ergy state p2 /2m divided by phase space cell volume, and dû
is an element of the solid angle centered about û. After sub-
stituting these definitions we find that

Mijkl = 2�2��6�m��2�
0

�

dp
p

m
p2n�p�

��
		�

� dû

4�

dû�

4�
�	pû�Ṽij�	�pû�

��	�pû��Ṽkl�	pû . �A6�

In a similar treatment22 it was shown that a more accurate
calculation yields a result obtained by replacing the first or-
der scattering amplitudes in this formula with their exact
counterparts. We expect the same to hold here, but since the
exchange interaction is often introduced with parameters as-
sumed appropriate for only a lowest order Born calculation,
we do not pursue this issue here. We finalize this formula by
substituting the Boltzmann distribution for n�p�,

n�p� = nc�2�mkBT�−3/2e−p2/2mkBT,

where we remind the reader that nc is the total number of
conduction electrons present at temperature T. It is
convenient to introduce the dimensionless variable
x= �2mkBT�−1p2 in terms of which �v
=4�2��9/2nc�m��2�kBT /m�,

Mijkl = v�
0

�

dx xe−x� dû

4�

dû�

4�
�
		�

�	,pû�Ṽij�	�,pû�

��	�,pû��Ṽkl�	,pû . �A7�

Our next task is to expand i TrB�T+T†� /2 and obtain a time-
independent expression for Nijkl. As the bath distribution
does not depend on spin, the first order term vanishes by the
zero trace property of Pauli matrices. The second order term
then yields

i

2
TrB�T + T†,W0�

=
− 1

2�2�
0

t

dt��
0

t�
d� TrB��HI�t��,HI�t� − ���, �0 � RB� .

�A8�

The commutator �HI�t�� ,HI�t�−��� takes the following form
where the summation is done over all p and 	:

�HI�t��,HI�t� − ��� = �ij�kl � ei�
p�−
p�t�

��ei�
p�−
p�� − e−i�
p�−
p����

��	p�	p�Vij�	�p�

��	�p��Vkl�	�p��	�p�� .

We convert the summations over momentum to integrals and
substitute the result in Eq. �A8�. Taking the trace we find

i

2
TrB�T + T†,W0� = ��ij�kl,�0�t�− 4�3�� �

	,	�
� dp dp�

��
0

�

d� 2i sin��
p� − 
p���

��	p�Ṽij�	�p��	�p��Ṽkl�	pn�p� .

�A9�

The integral over � yields 2iP�
p−
p��
−1, where P denotes

the principal value. Comparing Eq. �A9� with Eq. �A3�, we
get

Nijkl = 4�3�� dp dp�
2P


p� − 
p
n�p� �

	,	�

��	p�Ṽij�	�p�

��	�p��Ṽkl�	p� . �A10�

Substitution of the Boltzmann distribution and reexpression
in terms of the dimensionless variable defined above yields
the following expression:

Nijkl =
v
�
� dx dy�xye−x

P
y − x

� dû

4�

dû�

4�
�
	,	�

�	p�Ṽij�	�p�

��	�p��Ṽkl�	p . �A11�

Having shown the validity of Eq. �A3�, we can obtain a
coarse-grained differential equation for ��t� by iterating this
equation after replacing ��t�−��0� by ��t+�t�−��t�. Thus,

d�

dt
= − i�

ijkl

Nijkl��ij�kl,��

+ �
ijkl

Mijkl�2�kl��ij − �ij�kl� − ��ij�kl� . �A12�

When the expressions �4� and �5� are substituted for V, the
tensor M becomes �, where  is a constant defined in Eq.
�8� and � is given by Eq. �11� for the single qubit and by Eq.
�17� for the two-qubit system. The commutator associated
with the tensor N vanishes for the single qubit. In the two-
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qubit system, the tensor N=
RKKY�, where 
RKKY is defined
in Eq. �9�, while � is given by Eq. �18�.

We now outline the calculation to obtain the RKKY split-
ting in terms of the susceptibility of the bath. We first ob-
serve that Eq. �A10� can be written as

Nijkl = 4�3�� dp dp� 2 Re	 1


p� − 
p + i�
n�p�

� �
	,	�

��	p�Ṽij�	�p��	�p��Ṽkl�	p� ,

where �→0 at the end of the calculation. Substituting Eq. �5�
in the above expression, keeping only the cross-terms, and
changing the variables of integration to k=p /�, we find that

Nijkl = �ijkl4�3�−2�Jr0
3�2� dk

�2��3

dk�

�2��3n�k�

�ei�k�−k�·R2 Re	 1


k� − 
k + i�
 + c.c.

Here k,q are wave vectors, n�k�dk now represents the den-
sity of electrons with wave vector within dk of k, and �ijkl
represents the summation over spin indices 	,	�. We now
manipulate the sum by first writing it as a sum of two iden-
tical copies of itself and then interchanging k,k� in one of the

integrals. Then doing the transformation k,k�→−k,−k� in
that integral, we find that

Nijkl = �ijkl4�3�−2�Jr0
3�2

��� dk

�2��3

dk�

�2��3ei�k�−k�·Rn�k�Re	 1


k� − 
k + i�

−� dk

�2��3

dk�

�2��3ei�k�−k�·Rn�k�

�Re	 1


k� − 
k + i�
 + c.c.� .

We do not change the sign of i� in the second integral since
the real part is unaffected by it. An expression equivalent to
the one above is

Nijkl = − �ijkl4�3�−1�Jr0
3�2� dq

�2��3eiq·R

�� dk

�2��3

�n�k + 1
2q� − n�k − 1

2q��
�2k · q/m + i�

+ c.c.

The integral over k in the limit �=0 is the static Lindhard
function,23 which defines the Fourier transform, ��q�, of the
static susceptibility ��r�.19,24 Since ��r�=��−r�,

Nijkl = − �2��3�−1�Jr0
3�2��R��ijkl.
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