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We study the changes in the electronic structure induced by lattice defects in graphene planes. In many
cases, lattice distortions give rise to localized states at the Fermi level. Electron-electron interactions lead to the
existence of local moments. The RKKY interaction between these moments is always ferromagnetic, due to the
semimetallic properties of graphene.
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I. INTRODUCTION

A number of recent experiments suggest that pure graph-
ite behaves as a highly correlated electron system.1 In par-
ticular, it shows a metal-insulator transition in magnetic
fields and insulating behavior in the direction perpendicular
to the planes in different samples.1–8 Recent results show
ferromagnetic behavior,9 enhanced by proton bombard-
ment,10 which opens up a new way to the creation of organic
magnets.11 In this paper we study the formation of local mo-
ments near extended defects. It is shown that many types of
lattice distortions, like cracks and large voids, can induce
localized states at the Fermi level, leading to the existence of
local moments. The RKKY interaction between these mo-
ments is always ferromagnetic due to the semimetallic prop-
erties of graphite. Hence, the RKKY interaction does not
lead to frustration and spin glass features.

We outline the model to be studied in the next section. In
Sec. III we present analytical and numerical calculations that
show the possibility of localized electronic states near ex-
tended defects. In the next section we analyze the formation
of local moments associated with these states, due to a local
repulsive electron-electron interaction. Then, we discuss the
nature of the coupling between these local moments and the
bulk magnetic properties that they can induce. Section VI
contains the main conclusions of our work.

II. THE MODEL

The conduction band of graphite is well described by a
tight binding model that includes the � orbitals that are per-
pendicular to the graphite planes at each C atom.12 If the
interplane hopping is neglected, this model describes a semi-
metal, with a zero density of states at the Fermi energy, and
where the Fermi surface is reduced to two inequivalent K
points located at the corner of the hexagonal Brillouin zone.
If we only keep nearest neighbor hopping terms, the elec-
tronic bands are described by the tight-binding Hamiltonian:

HTB = t �
i,jn.n.;s

ci,s
† cj,s + H.c., �1�

where t�2.7 eV. The corresponding dispersion relation of
the two � bands is

�k = ± 3t�cos�ka1� + cos�ka2� + cos�k�a1 − a2�� , �2�

where a1 and a2 are the unit vectors of the honeycomb lat-
tice.

The low-energy excitations with momenta in the vicinity
of the Fermi points have a linear dispersion and can be de-
scribed by a continuum model that reduces to the Dirac
equation in two dimensions.12–16 The Hamiltonian density of
the system is

H0 = �vF� d2r �̄�r��i�x�x + i�y�y���r� , �3�

where �i are the Pauli matrices, vF= �3ta� /2, and a=1.4 Å is
the distance between nearest carbon atoms. The components
of the two-dimensional spinor,

��r� = 	�1�r�
�2�r�


 , �4�

correspond to the amplitude of the wave function in each of
the two sublattices that build up the honeycomb structure.
They satisfy the equation

�i�x ± �y��1�r� = ��2�r� ,

�i�x � �y��2�r� = ��1�r� , �5�

where the two signs on the right-hand side correspond to the
two inequivalent corners of the Brillouin zone.

In the clean two-dimensional system there is no room for
low-energy electronic instabilities, as the short-range interac-
tions are made irrelevant in the renormalization group sense
by the vanishing density of states at the Fermi level.

III. BOUND STATES NEAR CRACKS AND OTHER
LATTICE DEFECTS

A. Continuum approximation

It is known that disorder significantly changes the states
described by the two-dimensional Dirac equation,17–19 and,
usually, the density of states at low energies is increased.
Lattice defects, such as pentagons and heptagons, or disloca-
tions, can be included in the continuum model by means of a
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non-Abelian gauge field14,20 that reproduces the effects of the
curvature of the lattice and the possible exchange of Fermi
points. Within the same theoretical scheme it has also been
shown that certain types of disorder randomly distributed in
the graphene lattice enhances the effect of the interactions21

and can stabilize new phases. In addition, a graphene plane
can show states localized at interfaces,22,23 which, in the ab-
sence of other types of disorder, lie at the Fermi energy.
Structures with mixed sp2 and sp3 bonding can also lead to
localized states.24

The tight-binding model defined by the � orbitals at the
lattice sites can have edge states when the sites at the edge
belong all to the same sublattice22,23,25 �zigzag edge�. These
states lie at zero energy which for neutral graphene planes
correspond to the Fermi energy. In the continuum model de-
scribed earlier, these localized states are normalizable solu-
tions ��1�r� ,�2�r�� of the Dirac equation, Eq. �5� for �=0,

�i�x ± �y��1�r� = i�z,z̄�1�z, z̄� = 0,

�i�x � i�y��2�r� = i�z̄,z�2�z, z̄� = 0, �6�

where z , z̄=x± iy. These equations are satisfied if �1�r� is an
analytic function of z and �2�r�=0, or if �1�r�=0 and �2�r�
is an analytic function of z̄.

We now consider a semi-infinite honeycomb lattice with
an edge at y=0 and that occupies the half-plane x�0. A
possible solution that decays as x→� is

�1�x,y� 	 e−kz = eikye−kx, �2�r� = 0.

These solutions satisfy the boundary conditions at y=0 if the
last column of carbon atoms belong to the sublattice where
the component �1 is defined. Then, the next column belongs
to the other sublattice, where the amplitude of the state is, by
construction, zero.

These kinds of solutions can be generalized to describe
other types of extended defects that will be produced in ex-
periments where graphite samples are bombarded by pro-
tons. In a strongly disordered sample, large defects made up
of many vacancies can exist. These defects will give rise to
localized states, when the termination at the edges is locally
similar to the surfaces discussed above. Note that if the
bonds at the edges are saturated by bonding to other ele-
ments, like hydrogen, the states at these sites are removed
from the Fermi energy, but a similar boundary problem arises
for the remaining � orbitals. The only possible localized
states can exist at zero energy, where the density of extended
states vanishes. The wave functions obtained from the Dirac
equations will be normalizable and analytic functions of the
variables z=x+ iy or z̄=x− iy of the form,

��z� � �f�z�,0�

obeying the boundary conditions imposed by the shape of the
defect.

Extended vacancies with an approximate circular shape
can support solutions of the type

f�z� 	 z−n, n � 1.

By using conformal mapping techniques, solutions can be
found with the boundary conditions appropriate to the shapes
of different defects.

A simple case is the elongated crack depicted in Fig. 1,
which we assume to extend from x=−a to x=a, and to have
a width comparable to the lattice constant along the y axis.
The analytic function f�z� associated with localized states
near a crack of this shape should satisfy Re f�z�=0 at the
crack edges, because the boundaries of the crack include
atoms from the two sublattices. Hence, the boundary of the
crack leads to a branch cut in the complex function f�z�.
Labeling edge states by a quantum number n, we find that
the function � can be written for these states as

�n � �Re	 A

zn�z2 − a2
,0 .

A similar solution is obtained by exchanging the upper by
the lower spinor component, and replacing z↔ z̄. Because of
the discreteness of the lattice, the allowed values of n should
be smaller than the number of lattice units spanned by the
crack.

B. Lattice model

We have checked numerically the existence of these lo-
calized states by diagonalizing the tight-binding Hamiltonian
in finite lattices of different sizes. The dependence of some
of the states close to the chemical potential �zero energy� on
the cluster size is shown in Fig. 2. The delocalized states
show a dependence �del	L−1, consistent with the properties
of the Dirac equation from which they can be derived. The
states closest to �=0 show a dependence �loc	L−2, which
suggest a power law localization, in agreement with the pre-
vious analysis. The total density of states of a given cluster is
shown in Fig. 3.

These states are half-filled in a neutral graphene plane. In
the absence of electron interactions, this leads to a large de-
generacy in the ground state.

FIG. 1. �Color online� Elongated crack in the honeycomb struc-
ture. The crack is such that the sites in the upper edge belong to one
sublattice, while those at the lower edge belong to the other. Bot-
tom: an approximate cut in the complex plane that can be used to
represent this crack at long distances.
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IV. ELECTRON ELECTRON INTERACTIONS

In the presence of a finite local repulsion, the flat band of
localized states will tend to become polarized, leading to a a
ferromagnetic alignment of the electrons occupying these
states, as in similar cases with degenerate bands.26 This ef-
fect has been found numerically for the surface states near
flat edges discussed previously.27,28

We have checked the formation of local moments near
cracks and similar defects by performing Hartree-Fock cal-
culations in finite clusters, and modeling the electron-
electron interaction by an on site repulsive term U. A typical
total density of states for the unpolarized state of a cluster
with 24
24 unit cells and a large defect as the one shown in
Fig. 1 are shown in Fig. 3. A small, but finite repulsive, term,
U=0.5t�1.4 eV, leads to the splitting of a central peak, as
shown in Fig. 4. The total polarization of the cluster is also
small. Similar results are obtained with an arbitrary number
of contiguous vacancies. In all cases the total polarization of
the cluster is proportional to the excess of sites of one sub-
lattice over the other in the edge nA−nB, which agrees with

previous results29 and shows that only the electrons from the
states around the impurity contribute to the formation of a
local moment.

This calculation assumes that the Fermi level is pinned at
�F=0, and that the electronic spectrum shows electron hole
symmetry around this energy. A finite doping, like that in-
duced by an external gate used in Ref. 30, leads to a finite
Fermi energy, and �F will reduce the tendency toward the
formation of a local moment. A similar effect can be ex-
pected from hopping terms between sites in the same lattice,
t�, which break electron-hole symmetry,31 which will tend to
broaden the localized state discussed here. The previous
analysis, however, remains qualitatively valid, provided that
�F , t��U.

V. COUPLING BETWEEN LOCAL MOMENTS

A. RKKY interaction

We have shown in the previous section that large lattice
defects induce localized electronic states in their vicinity,

FIG. 2. �Color online� Energy of the five
states with positive energy closest to �=0 for a
cluster of size L
L that contains at the center the
defect shown in the inset. Periodic boundary con-
ditions are used. The spectrum is symmetric
around �=0.

FIG. 3. Density of states of a 24
24 cluster with a large defect
as the one shown in Fig. 1. The on-site interaction term is U=0.

FIG. 4. The same as Fig. 3 with an on-site interaction
U=0.5t.
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which, in turn, lead to the formation of local moments. These
local moments interact with the extended states, which will
mediate a RKKY-like interaction between local moments at
neighboring defects. A spin polarized electron in a localized
state ��m� gives rise to an effective magnetic field at each
site of order m�U�aij

m�2, where aij
m is the amplitude of state m

at site ij. This field favors the occupancy of that site with
electrons in extended states with the same spin as that of the
localized electrons �note that typically the exchange interac-
tion between electrons at different sites is antiferromagnetic�.
The change in the wave function of the extended electrons
can be calculated using perturbation theory, in terms of the
spin susceptibility of a clean system. The susceptibility per
unit area was calculated in Ref. 16, and can be written, at
small momenta, as

��q� 	
�q�
vF

. �7�

The total potential induced around a defect is

m � U�
m;ij

�aij
m�2 � NU , �8�

where N�Ld /a , Ld is proportional to the length of the pe-
rimeter of the defect, and a is the carbon-carbon distance.
This potential is distributed over an area comparable, or
larger to, the surface of the defect, Ad�Ld

2. Combining Eq.
�7� and Eq. �8�, we obtain

JRKKY�r� � U2Nd
2a4�

�k��Ld
−1

d2k eikr �k�
vF

� U2Nd
2 a4

vF�r�3
,

�9�

where a is the lattice constant.
Due to the absence of a finite Fermi surface, the RKKY

interaction in Eq. �9� does not have oscillations. Hence, there
are no competing ferro- and antiferromagnetic couplings,
and the magnetic moments will tend to be ferromagnetically
aligned. The total polarization per unit area at low tempera-
tures is proportional to c
Nd, where c is the concentration
of defects, and Nd is proportional to their average size.

B. Collective effects. Ferromagnetism

We can make an estimate of the Curie temperature from
the coupling between the local magnetic moments given in
Eq. �9�. The entropy cost of aligning ferromagnetically mo-
ments is S�T per moment. The average distance between
moments is �r��c−1/2. Hence, the free energy per moment in
the ferromagnetic phase can be written as

F�m� = 	− c1
U2Nd

2a4c3/2

vF
+ c2T
m2 + ¯ , �10�

where c1 and c2 are numerical constants of order unity. The
value of the free energy will be negative �and below the
value in the paramagnetic phase� at a Curie temperature,
given by

Tc �
U2Nd

2a4c3/2

vF
�

U2

W

Nda3

l3 , �11�

where W is the conduction electron bandwidth, W�vF /a
� t, and l is the average distance between impurities.

The Curie temperature depends on the concentration and
size of the defects. Assuming, as an example, that Nd�10
and l�102a, we obtain a saturation magnetization of
10−3 Bohr magnetons per unit cell, and a Curie temparature
TC�10−4U2 /W. The value of U2 /W can be estimated to be
�1 eV. Then, these arguments give TC�1 K. This tempera-
ture is considerably lower than the experimentally observed
ones. It is worth noting, however, that this analysis does not
take into account the enhancement of the susceptibility of the
conduction electrons, percolation effects due to the random
distribution of impurities, and the finite extension of the lo-
calized states induced by the defects.

This analysis does not take into account the effects of a
shift in the Fermi energy, �F, due to doping. In a doped
graphene sheet, a finite Fermi momentum, kF=�F /vF will
lead to oscillations with wavelength 2kF superimposed to the
interaction described in Eq. �9�. These oscillations lead to
competing ferro- and antiferromagnetic couplings at dis-
tances greater than kF

−1	n−1/2, where n is the concentration of
carriers. If the distance between defects is smaller than this
value, the RKKY interaction remains ferromagnetic, and the
conclusions of this section are valid. Note, in addition, that
defects tend to suppress the sharpness of the Fermi surface.

VI. CONCLUSIONS

We have shown that, under very general circumstances,
lattice defects, vacancies, and voids in the graphene structure
give rise to localized states at the Fermi energy. The number
of these states scales roughly with the perimeter of the de-
fect. Repulsive electron-electron interactions lead to the po-
larization of these states, and to the formation of local mo-
ments. The RKKY interaction mediated by the valence
electrons decays as r−3, where r is the distance between de-
fects, and shows no oscillations, due to the vanishing of the
Fermi surface in a graphene layer. The interaction is ferro-
magnetic, and the system cannot show the frustration effects
and spin glass features observed in other disordered systems
with local moments. On the other hand, the Curie tempera-
ture estimated assuming a random distribution of local mo-
ments is low, TC�1 K, for reasonable values of the defect
concentration. It may happen that percolation effects, and the
finite extension of the localized states that give rise to the
local moments will increase the value of TC.
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