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By means of model calculations for an independent-electron metal, we obtain exact line shapes for the
photon absorption, emission, and photoemission spectra of core states, including electronic relaxation. In all
cases we find an x-ray edge anomaly. For the absorption and emission spectra this anomaly is superposed on
a continuum resembling Elliott exciton theory. We display how the spectra evolve from the exciton limit to the
free-electron limit as the final-state interaction strength is decreased or the Fermi energy increased. We com-
pare the spectra obtained for different final-state interactions and find that different types of interactions
produce different spectral shapes. Away from threshold the absorption and emission profiles show an enhance-
ment of the free-electron result, as predicted by the screened-exciton theory. Our results offer potential expla-
nations for �i� incompatibilities between threshold exponents and exponents extracted from other data, �ii� the
occurrence of nearly symmetric x-ray photoemission lines, and �iii� the lack of mirror symmetry of absorption
and emission edges.
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I. INTRODUCTION

The explanation of the distinctive shapes exhibited at the
Fermi threshold by the soft x-ray emission and absorption
spectra and electron energy loss spectra of simple metals is a
long-standing problem in the physics of metals, which has
attracted considerable experimental1–41 and theoretical42–130

attention over the years.
On the basis of one-electron theory one would expect

sharp Fermi-factor or step-function edges to be characteristic
of simple free-electron metals,42 in disagreement with the
observed spectra. For instance, the LII,III edges of Na,1–11

Mg,1,4,6,7,10–20 and Al,1,4,6,7,11,12,14–17,19,21–23 as well as the
MII,III edge of K,24–26 are sharp but slightly peaked while the
K edges of Li,1,3,6,7,13,14,19,20,23,27–35 Mg,10–20 and Al �Refs.
11–23� are broad and rounded. Transitions from the outer-
most p shells of Rb and Cs yield line shapes similar to the
LII,III edge shapes of Na, Mg, and Al,25,26 but the spectra of
rare-gas impurities in alkali-metal hosts mysteriously exhibit
ramp thresholds,39 and the soft x-ray lineshapes of binary
alloys13–15,20,25,26,37 such as Li1−xMgx sometimes have thresh-
old behaviors quite different from the edge shapes of their
metallic components. Gupta et al.80–82 have shown that by
taking band-structure effects into account in the one-electron
theory, one obtains spectra with the qualitative features ob-
served in the spectra of Na and Mg. Thus band-structure
effects may be important for understanding edge shapes,
even in free-electron metals. However, the question remains
whether one-electron theory alone can quantitatively account
for the observed spectra. The one-electron method does not
take into account the final-state interaction or the electronic
relaxation, effects believed to cause divergent enhancements
of absorption and emission spectra at the Fermi threshold.

A simple approach that seeks to remedy some of the de-
ficiencies of one-electron theory is the so-called screened-
exciton approximation.62 This method takes into account

some of the effects of the final-state interaction by replacing
the unperturbed conduction band states by new states, per-
turbed from the old ones by the screened potential associated
with the core hole. In certain limits �see Sec. IV B�, this
approximation describes the gross features of spectra very
well, especially for energies far from the Fermi threshold;
however, no peaks at threshold are predicted within the
screened-exciton approximation, because the only electronic
relaxation accounted for is the distortion of the optical elec-
tron’s orbit by the core hole. The relaxation of the electrons
in the Fermi sea is omitted, and it is this effect that is thought
to produce the singular threshold.

Friedel43,44,48 first suggested that electron-hole interac-
tions and multi-electron relaxation are responsible for inter-
esting modifications of the one-electron line shapes in met-
als. This was subsequently expanded upon by Mahan,45

Mizuno and Ishikawa,46 and Nozières and de Dominicis
�ND�,47 who developed an asymptotic theory for the thresh-
old behavior of the absorption and emission spectra of free-
electron metals. The ND theory is based on the fact that the
sudden insertion of a core hole into a metal during x-ray
absorption is equivalent to the sudden application of a poten-
tial to the conduction electrons, and causes the conduction
sea to recoil into a distribution of excited-state configura-
tions. Nozières and de Dominicis simulate this by describing
the conduction electron sea with different Hamiltonians for
the initial and final states; they use an initial Hamiltonian
Hinitial for N conduction electrons in a potential U�r�:

Hinitial = �
j=1

N

��pJ
2/2M� + U�rj�� . �1.1�

This is then suddenly switched to a final Hamiltonian
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Hfinal = �
j=1

N

��pJ
2/2m� + U�rj� + V�rj�� , �1.2�

which differs from the initial Hamiltonian by the final-state
interaction V�r�. We have M =N for x-ray photoemission
spectroscopy �XPS�,131–136 and M =N+1 �N−1� for x-ray ab-
sorption �emission�. With this model, ND obtain an
asymptotic solution for the absorption lineshape ��E� for N
→� and E→ET�E�T�, which shows an edge anomaly
given by

��E� = A�E − ET�−1+���E − ET� . �1.3�

Here ET is the threshold energy, A is a constant, � is the unit
step function, and � is an exponent related to the difference
of the phase shifts of the perturbed and unperturbed one-
electron states at the Fermi energy �see Sec. II B�. The
asymptotic line shape for emission is the mirror image of Eq.
�1.3� about the threshold energy. A similar expression, with a
slightly different exponent, was obtained for the XPS line-
shapes by Doniach and Sunjic.52

The ND model has experienced several different levels of
acceptance. Initially it was combined with predictions of
exponents45,51 and thought to provide the explanation of the
rounded K edges. Indeed the explanation of the K edge
rounding as an electronic relaxation effect was thought to be
the greatest triumph of the theory.65 However, subsequent
work30–35,41,55 demonstrated that the K edge rounding origi-
nates from phonon36,50,54,72,134 and Auger59 effects and not
from the Fermi threshold effect. There now exists consensus
on the origin of the K edge broadening, although some dis-
cussion continues concerning the sizes of the various
contributions.109 The failure of the theory in its original form
for the K edges stemmed primarily from the exponent pre-
dictions, which were based on the excessively large phase
shifts of Thomas-Fermi screened potentials110 and not on the
ND model itself.

Attention then focused on claims that the ND relaxation is
the cause of the peaked LII,III and MII,III edges. Unlike the
discussion of the rounded K edges, which centered on quali-
tative aspects of the theory, the peaked edge debate concen-
trated on quantitative line shape analyses. The ND line shape
Eq. �1.3� was first fitted to the Mg1−xSbx absorption edge data
of Slowik and Brown,38,58 producing values of the absorption
edge exponent � �also called �0�.137 Subsequent analyses of
the LII,III absorption and emission edges of Na, Mg, and Al
also yielded values of �0.57 A controversy swirled around
these analyses for a while, with several workers doubting
that accurate exponents could be extracted from the data;
however, analyses of subsequent experiments35 have gener-
ally confirmed the early exponents while reducing the ex-
perimental uncertainties. The exponents extracted from fit-
ting edge data with suitably broadened forms of Eq. �1.3� are
not necessarily the “true” exponents, however, and contem-
porary work focuses on the corrections to the asymptotic
theory Eq. �1.3� due to band structure, exchange, and
electron-electron interactions—because widespread inconsis-
tencies have been found among exponents extracted from
LII,III edges,56 XPS data,88 electron-energy-loss spectra,83 im-

purity resistivity data,74 and impurity absorption data.39 Al-
though resolutions of a small number of these discrepancies
have been proposed,85,135 no consistent theory of all the data
has been set forth; the most serious inconsistencies involve
the XPS exponents88 and remain unexplained today. Thus
workers in the field now seem to agree that the ND threshold
effect is not the sole cause of the observed edge anomalies,
but no consensus has been reached on the quantitative im-
portance of the various other physical phenomena contribut-
ing to the edge shapes.

On the theoretical side, there has been general unanimity
that Eq. �1.3� is the correct asymptotic solution to the ND
model at threshold. The extent to which it remains faithful to
the exact solutions away from threshold is a topic of ongoing
discussion.

Four possibilities are often mentioned as possible causes
of the discrepancies between the asymptotic ND theory and
data: �i� one-electron band-structure effects possibly produce
an energy dependence in the “constant” A of Eq. �1.3�;80–82,88

�ii� exchange mixing of spin-orbit split edges is perhaps
significant;76,95 �iii� many-electron effects omitted from the
ND model conceivably distort the edge shapes;84,103 and �iv�
exact solutions of the ND model perhaps disagree with the
asymptotic solution Eq. �1.3�, for energies a significant dis-
tance from threshold.

This last possibility motivates the present work. The
asymptotic solution is reminiscent of critical behavior in
phase transition theory: a universal asymptotic threshold be-
havior Eq. �1.3� exists for all final-state interactions yielding
the same change of Fermi energy phase shift. But in phase
transitions, the universal behavior is often only apparent very
near the critical temperature: ��T−Tc� /Tc��10−2. If, by anal-
ogy, the asymptotic theory were comparably limited to ener-
gies very near threshold, then the asymptotic regime would
not be accessible to contemporary experiments, which are
limited by instrumental or lifetime broadenings to resolutions
of greater than 0.05 eV.

The ND model for free-electron metals can be solved ex-
actly for the XPS, absorption, and emission profiles, even for
realistic final-state interactions, as demonstrated by Dow and
Flynn90 and by Flynn and the authors,96 using determinants
and a finite number of electrons in the Fermi sea. Other
authors,61,86,87,91,92,97 most notably Kotani and Toyozawa61

and Grebbenikov et al.,92 have provided solutions of various
versions of the ND model using the Green’s function
method; the most extensive theoretical solutions involve
model densities of states and separable final-state interac-
tions. �Computationally the determinantal method presented
here appears to be faster as well as better suited to the treat-
ment of realistic systems.� Extensions of the determinantal
method to p-wave recoil,99 “forbidden” transitions,100 and a
model of rare-gas impurities in alkali-metal hosts113 have
likewise been published. The method has also been used to
study Auger spectra112 and the effects of band structure,138

surfaces,139 high temperatures,140 and disorder141 on x-ray
edges. For the models treated, the asymptotic theory Eq.
�1.3� and the exact solutions agree at threshold,142 but sig-
nificant differences occur between the exact and asymptotic
solutions at energies away from threshold, with the size of
the differences depending on the final-state interactions. This
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raises the possibility that the XPS exponents, which are ob-
tained by fitting data over the most extended energy range,
may be the least accurate approximation to the “true”
exponents—so that some of the most serious discrepancies
between the asymptotic theory and data may be resolved.90

In this paper we shall present a complete discussion of
how the ND model can be solved exactly to obtain profiles
for XPS, absorption, and emission. Sum rules can be em-
ployed to check the results of these calculations and
screened-exciton theory62 can be used to predict the
asymptotic high-energy absorption profile and the gross fea-
tures of the spectra. Furthermore, it will be shown that the
exact solutions correctly describe the formation of a second
threshold in the XPS and absorption spectra if the final-state
interaction is strong enough to produce a bound state. The
XPS spectra also display resonances. In each case we find
that the exact solution and the ND result agree only very
close to threshold, showing that the ND theory is a true
asymptotic theory. However, for energies at finite distances
from threshold, differences between the exact and asymptotic
line shapes appear. Hence we urge caution in the interpreta-
tion of experimental exponents extracted from line shapes by
fitting the asymptotic theory over an extended energy range:
our calculations suggest that the experimental exponents may
not be the “true” exponents.

We have restricted ourselves to calculations of the line
shape for s-wave channels alone. This serves to illustrate the
features of the exact solutions, although the methods are not
restricted to this case and have been applied successfully to
other channels as well.99–101 Furthermore, for mathematical
convenience, we have considered only final-state interactions
V�r� for which overlap integrals of initial- and final-state
single-particle wave functions can be evaluated analytically
once the wave functions are known.

The organization of this paper is as follows. In Sec. II we
describe how exact solutions for the XPS recoil profiles may
be obtained for systems containing a finite number of elec-
trons N. It is also shown how the solution for N→� can be
obtained from these exact solutions for finite N. In Sec. III
we give the results of our calculations of the XPS recoil
profiles for four different final-state interactions, and com-
pare these results with profiles obtained using the ND theory.
Section IV describes how exact solutions of the absorption
and emission profiles are obtained for systems with a finite
number of electrons; this section also contains a description
of screened-exciton theory and its applications to various
final-state interactions. In Sec. V we give the results for the
emission and absorption spectra, and compare the exact re-
sults with profiles obtained with other theories. Section VI
contains a discussion of our results. Finally, in the Appendix,
we give some of the mathematical details of the calculations.
Throughout this paper we use units such that �h /2��2=2m,
e2=2; i.e., the Rydberg Ry is the unit of energy and the Bohr
radius aB is the unit of length.

II. EXACT SOLUTIONS FOR XPS

A. Solutions for a finite number of electrons

Following ND47 and Dow and Flynn90 we consider a non-
interacting Fermi sea of conduction electrons described by

the initial and final Hamiltonians given in Eqs. �1.1� and
�1.2�. In the case of x-ray photoemission spectroscopy, the
core electron is removed to infinity, the number of conduc-
tion electrons does not change �M =N�, and we are interested
in the recoil profile I�E� given by

I�E� = �
f	

�	i�f	
�2
�E − Ef	 + Ei� . �2.1�

Here �i
 and �f	
 are the N-electron initial and final states
�Slater determinants� of the conduction electrons and

	i�f	
 = det��n,�m� , �2.2�

where ��n� and ��m� are one-electron initial and final states,
respectively. When the conduction Fermi sea is noninteract-
ing and contains only a few electrons, the recoil profile I�E�
can be evaluated exactly for any final-state interaction V�r�.
In particular, for a spherically symmetric system with isotro-
pic potentials U�r� and V�r� at its center, the total recoil
profile is a multiple convolution of profiles I�ms�E�m� for
each individual angular momentum channel �m:90

I�E�dE = �
��,m,�=�0,−�,−1/2�

��,�,1/2�

I�mdE�m. �2.3�

Here E�m is the recoil energy in the �m channel and we
have E=��mE�m. This shows that we need only consider
one channel at a time and in what follows we consider only
a single-spin s-wave channel.

To calculate the s-wave recoil profile for N s-electrons we
go through the following steps: �i� specify the potential U�r�
present in the initial state; �ii� specify the electron density n
�using n−1=4�rs

3 /3�, and hence the Fermi wave vector kF
and the Fermi energy EF; �iii� enclose the system in a box of
radius R determined by the number of electrons N and the
Fermi wave vector kF; �iv� solve the Schrödinger equation
for the initial single-particle orbitals ��n�; �v� specify 
0, the
difference in phase shifts at the Fermi level for the perturbed
and unperturbed single-particle states: �vi� adjust the param-
eters of the final-state interaction V�r� to produce this phase
shift difference 
0; �vii� solve the Schrödinger equation for
the perturbed single-particle states ��m�; �viii� enumerate all
possible final-state configurations �f	
 and form the appropri-
ate determinants 	i � f	
=det��n ,�m�; �ix� evaluate the profile
I�E� using Eqs. �2.1� and �2.2�.

To make these steps clearer, we shall consider, as an ex-
ample, the simple case first discussed by Dow and Flynn90 of
suddenly impressing an infinite barrier potential on an elec-
tron gas. Here we choose U�r�=0 in Eqs. �1.1� and �1.2�, and
specify the electron density by rs. Then we have
kF�9� /4�1/3 / �rsaB� and R=N� /kF. The initial single-particle
orbitals are given by

��n� = �2�Rr2�−1/2 sin�knr� , �2.4�

with kn=n� /R and n=1,2 , . . . ,N. Let the phase shift at the
Fermi level be 
0 and choose V�r�=� for r�a and V�r�=0
for a�r�R �i.e., an infinite barrier of radius a at the center
of the system�. Then we must have a=
0 /N� to produce the
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desired phase shift. The final-state single-particle orbitals for
this case are given by

��m� = �2��R − a�r2�−1/2 sin�km� �r − a�� , �2.5�

for a�r�R, with km� =m� / �R−a� and with m taking on all
integer values. To illustrate the enumeration of the possible
final-state configurations let us consider a system of N=3 s
waves, and denote the configurations by �n1 ,n2 ,n3
, where
the ni denote the occupied single-particle orbitals of the
final-state configuration. Various possible final-state configu-
rations of orbitals ��m� are the ground state �f0
= �1,2 ,3
 and
states with one electron-hole pair such as �f1
= �1,2 ,4
,
�f2
= �1,3 ,4
, and �f3
= �1,2 ,5
. Also possible, of course,
are states with multiple electron-hole pairs, such as the two-
pair state �1,4,5
. The initial state is a Slater determinant of
the three lowest orbitals ��1�, ��2�, ��3�. It is now a simple
matter to evaluate the various contributions �	i � f	
�2

=det2��n ,�m� to the recoil profile, as well as the energies at
which these contributions occur, and thereby evaluate the
complete recoil profile for N=3. An example is given in Fig.
1, where we show the initial state �i
 as well as various final-
state configurations �f0
, �f1
, �f2
, and �f3
. �This example
in Fig. 1 corresponds to an attractive final-state interaction
rather than a repulsive one.� Also shown are the zero-pair
line �	i � f0
�2 and some single-pair lines �	i � f	
�2.

The total number of final-state configurations is of course
infinite, but fortunately it turns out that only a few excita-
tions close to the ground state are needed to obtain the com-
plete recoil profile. To demonstrate this, it is convenient to
consider the integrated recoil profile J�E� given by

J�E� = �
E�T�

E

I�E��dE� = �
f	

�	i�f	
�2��E − E�� , �2.6�

where E�T� is the same as ET. This integrated profile obeys
the sum rule

J��� = �
f	

�	i�f	
�2 = 1. �2.7�

Since J���=1 we know that the calculation has converged as
soon as J�E� differs from unity by a sufficiently small num-
ber; once this condition is satisfactorily met, it is no longer
necessary to consider additional highly excited states. From
the integrated recoil profiles shown in Fig. 2 for N=3, 6, 12,
24, 46, and 80, it is clear that the calculation has saturated
the sum rule �2.7� for excitation energies of the order of 2EF,
i.e., for a finite number of excitations. Moreover, it turns out
that only excitations consisting of one or two electron-hole
pairs are important �unless the final-state interaction pro-
duces one or more bound states, in which case excitations
consisting of three or more electron-hole pairs may become
important; in those cases, however, the single-pair excita-
tions often become unimportant�. From Fig. 2 it is also clear
that the profile has an essential stability which manifests it-
self for N10; larger systems merely smooth the response
obtained for N5. Figure 2 also shows that the procedure
has converged to the large-N result for N=80. In the next
subsection we shall discuss how one may obtain the exact
line shape for N→� from these numerical results for finite
N.

B. Limit of infinite number of electrons

The strength of the zero-pair line �	i � f0
�2 can be obtained
from Anderson’s143 orthogonality theorem, which states that

�	i�f0
�2 = CN−�, where � = �
0/��2, �2.8�

where C is a constant slightly less than unity. �For large N,
our calculated values of 	i � f0
 scale as required by Eq.

FIG. 1. Single-particle energy levels and their occupancies in
the initial state �i
 and various final states �f	
 for N=3. The lower
portion of the figure gives the numerical recoil profile for this case,
as well as the ND-DS �Nozières–de Dominicis or Doniach-Sunjic�
profile �dashed�.

FIG. 2. Typical integrated recoil spectrum J�E� versus energy in
units of the Fermi energy, for N=3, 6, 12, 24, 46, and 80. These
spectra for a square well with phase shift 
0=0.35� illustrate how
rapidly the calculations for finite N approach the infinite-N limit.
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�2.8�.� From this, one can simply obtain the ND result, as
first shown by Flynn,90 as follows: the strength of the zero-
pair line is the integral of the line shape from threshold
E�T��ET to the first pair line, which occurs at energy E
=ET+2EF /N:

�	i�f0
�2 = �
E�T�

ET+2EF/N

I�E��dE� = CN−�, where � = �
0/��2.

�2.9�

If the lineshape becomes sufficiently independent of N for
large N,108 we obtain by differentiation with respect to N and
substitution of E=ET+2EF /N:

I�E� = A�E − ET�−1+�0��E − ET� , �2.10�

for E→ET, where �0= �
0 /��2 and AC�0�2EF�−�0.108

Equation �2.10� is simply the one-channel ND result, as ob-
tained for photoemission by Doniach and Sunjic.52 For the
integrated profile one obtains

J�E�  �A/�0��E − ET��0��E − ET�

= C��E − ET�/2EF��0��E − ET� . �2.11�

The constant A, which is related to Anderson’s constant C,108

can be obtained from the numerical results by calculating C
as a function of 1/N from Eq. �2.8� and extrapolating the
results to 1/N=0. The threshold energy ET can be obtained
analytically for some final-state interactions, while for other
cases it can be calculated numerically for some large value of
N �typically N=5000�. We now fit our numerical results with
a line shape

J�x� = C�x/2���x� for x � 2, �2.12�

where we have x= �E−ET� /EF, and ��x�=�0+�p=1
5 bpxp.

This procedure works only for x�2. Since we know that
J�x� approaches unity for large x, we also use

J�x� = 1 − exp��
p=0

4

cpxp� for x � 1. �2.13�

By taking derivatives of Eqs. �2.12� and �2.13�, we are in
general able to obtain an accurate line shape I�E�. As a check
on the fit and to remove any ambiguities in the fitted line
shapes, especially in the region 1�x�2, where the two fits
overlap, we have also convolved the numerical line shapes
I�En� with a Gaussian of width � comparable to the level
spacing, �=2EF /N, to obtain a broadened recoil profile IG:

IG�E� = �
n=1

N�

�2��2�−1/2 exp�− �E − xn�2/2�2�I�xn� .

�2.14�

Here N� stands for the number of calculated points of the
numerical line shape and I�xn� is the calculated intensity at
E=xn.

Finally we notice that the exact calculations also provide
us with the recoil energy ER for a particular channel, defined
as

ER = Ef0 − Ei = �
m=1

M

�m
f − �

n=1

N

�n
i , �2.15�

where �m
f and �m

i are the energies of the one-electron orbitals
in the final and initial states, respectively. The recoil energy
ER can be evaluated exactly in some cases, while in cases
where this is not possible ER can be evaluated numerically
for some large value of N �typically N=5000�.

III. RESULTS FOR XPS RECOIL PROFILES

We have considered four forms of the final-state interac-
tion V�r�, namely, �i� a repulsive barrier, �ii� an attractive
square well, �iii� an attractive 
 shell, and �iv� a repulsive 

shell. In this section we shall give the results for each of
those cases separately in Secs. III A–III D. All calculations
have employed an electron density appropriate for Na �rs

=3.93�. Some mathematical details of the calculations are
given in the Appendix.

A. Repulsive barrier

In the first place we have considered a repulsive barrier
VB�r� of infinite strength

VB�r� = �� for r � a ,

0 for r � a .
� �3.1�

The radius a is determined by the phase shift difference 
0 at
the Fermi level, as described in Sec. II A. We consider two
cases, namely, �i� 
0�0, in which case we take U�r�
=VB�r�, V�r�=−VB�r� in Eqs. �1.1� and �1.2�; and �ii� 
0�0,
in which case we choose U�r�=0, V�r�=VB�r�. Case �i� cor-
responds to “turning the barrier off” in the final state. The
case of the infinite barrier was selected mainly for its sim-
plicity, although it may be of some relevance in the ioniza-
tion of an electron bound to a neutral rare-gas impurity in a
metal �case �i��,39 as well as in the capture of negative me-
sons in metals �case �ii��.144

For the infinite barrier the recoil energy ER �and also the
threshold energy ET� can be evaluated exactly in the limit
N→�, and is given by

ER = �2
0/3��EF. �3.2�

In Fig. 3 we show our results for the recoil profile I�E� for
various phase shifts 
0. Also shown are the ND profiles nor-
malized with Anderson’s constant as discussed above. The
profiles for positive phase shifts are displayed to the right of
the threshold �which is arbitrarily set equal to zero�, while
those for negative phase shifts are displayed to the left of
threshold.

For small phase shifts ��
0��0.125�� the XPS sum rule
�Eq. �2.7�� is adequately exhausted very close to threshold
and the exact calculations and the ND results appear at first
glance to agree well. However, percentagewise the difference
between the exact calculations and the ND profiles is 20%
for �E−ET� /EF=0.1. It is also clear that the profiles are not
symmetric under a change in sign of 
0, except infinitesi-
mally close to threshold. For larger phase shifts this mirror
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asymmetry becomes more pronounced, as in general the pro-
file for 
0�0 shuts off for EEF, while the profile for 
0
�0 does not display this behavior. This asymmetry is ob-
served for all final-state interactions considered in this work,
and points to a basic asymmetry in the recoil profiles for
cases with 
0�0 and 
0�0, respectively. For 
0�0 the
final-state interaction is attractive and causes the one-
electron orbitals of the final state to have lower energies than
the corresponding orbitals of the initial state. This means that

the initial state can be expanded approximately in those final
states made up out of single-particle states with energies
�EF �i.e., the first N+1 single-particle final states�. Note that
the maximum excitation energy for these excitations is EF,
corresponding to an excitation from the n=1 level to the n
=N+1 level. �If a bound state is present, we should add �B,
the binding energy of the bound state. See also Flynn84 for a
discussion along these lines for a very simple case.� There-
fore, on the one hand for 
0�0, one expects the profile to

FIG. 3. Recoil profiles EFI�E� for barriers of infinite height, with phase shifts �
0�=0.125�, 0.25�, 0.50�, 0.75�, 0.90�, and 1.05�.
Profiles for positive phase shifts are displayed to the right of the threshold �turning off the barrier�, those for negative phase shifts are
displayed to the left of the threshold �turning on the barrier�. Solid lines, exact results; chained lines, ND theory.
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show a cutoff at excitation energies near EF. The effect be-
comes more pronounced for large phase shifts 
0. On the
other hand, for 
0�0 one cannot expect the profile to show
such a cutoff at excitation energies near EF. This is because
the final-state interaction is now repulsive, causing the one-
electron orbitals of the final state to have higher energies
than the corresponding orbitals in the initial state. Therefore,
it is no longer possible to expand the initial state approxi-
mately in final states made up out of single-particle states
with energies below EF, and no cutoff at excitation energies
near EF is expected. �In this case it would be possible to
expand the final ground state approximately in a number of
initial states with single-particle energies below EF, thus re-
establishing the symmetry between the two cases. However,
this is a moot point, since one has to consider only the initial
ground state.� In principle it is possible to confirm these ob-
servations with the moment theorems derived by
Flynn39,72,84.

From these results it is already clear that the ND theory is
valid only very close to threshold �the exact result and the
ND results start to differ substantially for E−ET0.03EF�,
and that the use of the ND theory to fit experimental line
shapes away from threshold may introduce significant errors.

The exhaustion of the XPS sum rule �Eq. �2.7�� at ener-
gies near threshold suggests an explanation of the anoma-
lously symmetric XPS lines:88 the asymmetry at threshold is
obscured far from the threshold by instrumental broadening,
because the sum rule prevents the line shape from having a
prominent tail at energies far from threshold.

As the phase shift approaches �, the divergence at the
threshold becomes less pronounced as �
0 /��2 approaches
unity, until finally for �
0 /���1, the divergence disappears
and the profiles become broad and rounded, as shown in Fig.
3 for �
0 /��=1.05.

Finally we notice that, for the barrier, the spectra EFI�E�
plotted against �E−ET� /EF depend only on 
0, not on rS.
Thus the spectra displayed in Fig. 3 are in fact valid for all
rS, when appropriately scaled.

B. Attractive square well

It may be argued that the previous case of the infinite
barrier is not a good case to consider, since the eigenstates
for the problem with the barrier present do not form a com-
plete set of states for the case where the barrier is absent, so
that Eq. �2.7� does not necessarily hold �although numeri-
cally we find that Eq. �2.7� is satisfied in a limiting sense for
large but finite barriers.113� For an attractive square well this
problem does not occur. Here we use the square well poten-
tial VW�r� given by

VW�r� = V0��a − r� . �3.3�

We arbitrarily choose a=1.5aB, after which the strength �V0�
of the potential is determined by 
0, the phase shift at the
Fermi level. For 
0�0 we choose U�r�=0 and V�r�=VW�r�
in Eqs. �1.1� and �1.2�, while for 
0�0 we have U�r�
=VW�r� and V�r�=−VW�r�. In other words, a positive phase
shift corresponds to turning the square well potential on,
while a negative phase shift corresponds to turning the po-

tential off. In this case the recoil energy cannot be evaluated
exactly and was instead determined numerically for N
=5000. The recoil energies so obtained for various phase
shifts are given in Table I. In Fig. 4 we show the results of
our calculations for I�E� for various values of 
0, together
with normalized ND profiles. These spectra depend on a /rS
�for given 
0�, and a /rS was chosen to be 0.38aB, i.e., a well
radius of 1.5aB for an electron gas of rS=3.93.

The spectra displayed in Fig. 4 show the same qualitative
features as the spectra obtained for the repulsive barrier: for
small phase shifts the sum rule is exhausted very close to
threshold, whereas for larger phase shifts the profiles for 
0
�0 shut off near E−ET=EF, while those for 
0�0 do not. A
new feature in this case is the appearance of a second thresh-
old for 
0�0.38�, i.e., when the potential is strong enough
to form a bound state. This second threshold corresponds to
a final state differing from the ground final state �f0
 by the
excitation of an electron in the bound state to the first empty
orbital above the Fermi level, and this second threshold oc-
curs at an energy EF+�B above the first threshold, where �B
is the binding energy of the bound state. A similar second
threshold was obtained by Davis and Feldkamp.97 A second
threshold is not present for 
0�−0.38�, since in that case
the attractive potential is present in the initial state, which is
always assumed to be the ground state, so that the bound
state is always occupied. At finite temperatures, however,

TABLE I. Recoil energies ER /EF for XPS profiles for the square
well and the attractive and repulsive 
 shells. All recoil energies are
calculated for N=5000 and rS=3.93. Values given are for positive
phase shifts; for negative phase shifts all the signs change.


0 /�

ER /EF

First threshold Second threshold

Square well

0.050 −0.0354

0.100 −0.0738

0.125 −0.0945

0.250 −0.2170

0.350 −0.3581

0.450 −0.5828 0.4632

0.750 −6.5440 0.1690

Attractive 
 shell

0.050 −0.0334

0.100 −0.0688

0.250 −0.1953

0.500 −0.6373 0.4224

0.750 −2.0980 0.1784

Repulsive 
 shell

0.100 −0.0429

0.125 −0.0839

0.250 −0.1685

0.350 −0.2363

0.500 −0.3416

0.750 −0.5015
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such a second threshold would appear; such a situation can
occur in doped semiconductors with EFkBT.140

To obtain the profile at the second threshold E� as N
→�, we again use Anderson’s theorem, Eq. �2.8�, but now
with an exponent equal to �
0 /�−1�2, i.e.,

�	i�f0�
�2 = CN�, where � = �
0/� − 1�2, �3.4�

where �f0�
 denotes the lowest-energy final state in which the
bound orbital is unoccupied. This expression follows since
the excess localized charge in the s-wave channel is �
0 /��

−1 in this case, in contrast with 
0 /� for the true ground
state �f0
.49,53 In the same way as Eq. �2.10� was obtained
from Eq. �2.8� we now obtain from Eq. �3.4�

I�E� = A2�E − ET2�−1+���E − ET2� , �3.5�

or

J�E� = C2��E − ET2�/2EF����E − ET2� , �3.6�

where A2 and C2 are constants and we have �= �
0 /�−1�2.
The lineshape for N→� is now obtained from the line

FIG. 4. Recoil profiles EFI�E� for turning on a square well of radius a=1.5aB �a /rs=0.38aB�; as in Fig. 3. The phase shifts are �
0�
=0.125�, 0.25�, 0.35�, 0.45�, and 0.75�. The profiles for turning off the wells are given on the left.
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shapes for finite N in the same way as described in Sec. II B
for the first threshold.

As a check on the calculation we can still employ the sum
rule Eq. �2.7� for the total integrated spectrum. It would be
convenient, however, to be able to separate this integrated

profile into a contribution from final states in which the
bound state is occupied, and a contribution from final states
in which the bound orbital is empty. It is possible to obtain
an approximate expression for the contribution JB��� from
final states in which the bound state is occupied. We have

JB��� = �
f	�B�

�	i�f	B
�2 = �
j���¯�n �

��1��B� ��1�� j� ��1���� ¯ ��1��n�
��2��B� ��2�� j� ��2���� ¯ ��2��n�
¯

¯

¯

¯

��N��B� ��N�� j� ��N���� ¯ ��N��n�

�
2

. �3.7�

Here the occupied final orbitals are ��B� , �� j� , ���� , . . . , ��n�.
We expand the determinant with respect to the first column
and note that the minors Mq,1 of the first column represent
overlaps of two �N−1�-electron states, the initial state made
up out of all initial one-electron orbitals except ��q�, and the
final state made up out of all the same one-electron con-
tinuum states as the original determinant. Assuming that the
initial states can be expanded in a complete set of final con-
tinuum states, we can carry out the sum and obtain

JB���  �
j=1

N

��� j��B��2. �3.8�

This expression is only approximate, since we do not sum
over a complete set of final states; the bound state is missing.
However, the numerical calculations indicate that Eq. �3.8� is
very closely satisfied in all the cases we have considered, and
so this equation does provide us with a useful check on the
numerical calculations.

As the potential becomes stronger, leading to a deep
bound state, the divergence at the second threshold ET2
�E�T2� also becomes stronger, while the divergence at the
first threshold becomes weaker. This means that simulta-
neous excitations of two electrons �one of which is excited
out of the bound orbital� become more important than they
were in the case of no bound state. Similarly, for sufficiently
strong potentials, two or more bound states may be formed
�not shown in the figures�, in which case excitations involv-
ing three or more electrons may become important.

At the second threshold we see once again that the ND
result and the exact calculations agree only very close to the
threshold.

C. Attractive � shell

Another form of the final-state interaction for which the
overlap integrals can be evaluated analytically is a 
 shell of
radius a:

V
−�r� = − V0a
�r − a� . �3.9�

Here we choose V0a=1.5aB Ry for �
0 /���0.5, and V0a
=6.0aB Ry for �
0 /��=0.75. With these choices for V0a, the
radius a is determined by the phase shift 
0. Again we have
U�r�=0 and V�r�=V
−�r� for 
0�0, and U�r�=V
−�r� and
V�r�=−V
−�r� for 
0�0. Recoil energies must be determined
numerically for N=5000 and are given in Table I. In Fig. 5
we show the XPS recoil profile for various values of the
phase shift 
0. For a given value of the phase shift these
profiles again depend only on a /rS, and we have a /rS
=0.14aB, 0.18aB, and 0.047aB for 
0 /�=0.25, 0.50, and
0.75, respectively.

These profiles are similar to the ones obtained for the
square well potential of the previous subsection, and the
same comments apply. The only difference is that in the case
of the 
 shell potential we can have at most one bound state.

D. Repulsive � shell

The last form of the final-state interaction we have con-
sidered is the repulsive 
 shell V
+�r� given by

V
+�r� = V0a
�r − a� . �3.10�

Again we choose V0a=1.5aB Ry for �
0 /���0.5 and V0a
=6.0aB Ry for �
0 /��=0.75, after which the radius a is de-
termined by the phase shift. For 
0�0 we have U�r�
=V
+�r� and V�r�=−V
+�r� in Eqs. �1.1� and �1.2�, while for

0�0 we have U�r�=0 and V�r�=V
+�r�. Recoil energies
were again evaluated numerically and are given in Table I. In
Fig. 6 we give the calculated XPS profiles for various values
of 
0. For 
0�0 the profiles are qualitatively �but not quan-
titatively� very similar to the corresponding profiles obtained
for the repulsive barriers and the same general comments
apply. For 
0�0 these profiles show a new feature, namely,
a resonance, corresponding to an electron momentarily
trapped within the barrier; similar resonances for d waves are
common in transition metals.
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IV. X-RAY ABSORPTION AND EMISSION

A. Exact solutions for finite numbers of electrons

In the case of x-ray absorption and emission processes the
number of electrons in the conduction band changes, and
instead of calculating the overlap between the initial state
and the various final states one now has to evaluate the di-
pole matrix element between the initial and the final states.
To see how the calculations are carried out in this case, we

first consider the x-ray absorption process. During this pro-
cess, an electron, originally in the core state ��c� centered at
the origin, is injected into the conduction band by the absorp-
tion of a photon. We again use the Hamiltonians Hinitial and
Hfinal as given in Eqs. �1.1� and �1.2� for the initial and final
states, but now we have M =N+1 in Eq. �1.2�, i.e., in the
final state the conduction band contains one more conduction
electron than in the initial state. For simplicity we consider
the case where the core state has angular momentum �=1
�a p state� and we neglect exchange between the core state
and the conduction band and exchange transitions107 involv-
ing higher-angular-momentum electron states of the conduc-
tion band. �In principle exchange can be taken into account
with our methods, but the calculations would become
lengthier.� The final state contains either an additional s elec-
tron �s-wave channel� or an additional d electron �d-wave
channel�. Here we shall neglect the d-wave channel and con-
sider only the physically interesting s-wave channel �for a
core state with a very small radius the d-wave channel will
give very small contributions�.

The initial and final states are now given by �i
= ��c���

and �f	
, respectively, where ��
 is a Slater determinant of N
one-electron states ��n� of Hinitial and �f	
 is a Slater deter-
minant of N+1 single-particle states ��m� of Hfinal. The ab-
sorption profile ��E� can now be written as

��E� = �
f	

�	i�M�f	
�2
�E − Ef	 + Ei� , �4.1�

where M =� j=1
N+1zj is the dipole operator and Ef	 and Ei are

the total energies of the final and initial �N+1�-particle
states. The matrix element 	i�M�f	
 can again be written as a
determinant,

	i�M�f	
 = �
��c�z�� j� ��c�z���� ¯ ��c�z��n�
��1�� j� ��1���� ¯ ��1��n�
¯

¯

¯

��N�� j� ��N���� ¯ ��1��n�
� ,

�4.2�

where the occupied final-state single-particle orbitals are
�� j� , ���� , . . . , ��n�. For a spherically symmetric system with
��c� at its center and with isotropic potentials U�r� and V�r�
at its center, the total absorption profile is a multiple convo-
lution of the absorption profile in one channel �here the
s-wave channel, spin up� and the XPS recoil profiles in all
the remaining channels, so that we can again consider each
channel separately, and in what follows we shall consider the
single-spin s-wave absorption profile by itself.

If the core state ��c� is known, the absorption profile ��E�
can be evaluated for a finite number of electrons in essen-
tially the same way as the XPS recoil profiles were evaluated
�see below�. Although it would be possible to use a realistic
wave function for the core orbital of a specific metal, we
have instead attempted to present the theory in a manner that
does not depend on a specific material. Therefore, we make

FIG. 5. Recoil profiles EFI�E� for turning on �
0�0� and off
�
0�0� an attractive 
 shell. The calculations have employed
a /rs=0.14aB, 0.18aB, and 0.047aB for 
0 /�=0.25, 0.50, and 0.75
respectively, as in Fig. 3.
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the small-core approximation, namely, we assume that the
core p state has a negligible radius ac. This simplifies the
expression for the matrix element considerably, since we can
now write

	i�M�f	
 = M�
� j�0� ���0� ¯ �n�0�

��1�� j� ��1���� ¯ ��1��n�
¯

¯

¯

��N�� j� ��N���� ¯ ��1��n�
� ,

�4.3�

where the reduced matrix element M is given by145

M = ��c�z��m�/�m�0� = 48��7/3�1/2��2 − k2�/��2 + k2�4.

�4.4�

This reduced matrix element depends on the core radius ac
=1/�=aB /Zeff, where aB is the Bohr radius and Zeff is the
effective nuclear charge. For a hydrogen 2p state we have
M→ac

5/2. The small-core approximation to the lineshape is
valid for all energies such that kac�1, where �2k2 /2m is the
kinetic energy of the optical electron. The small-core ap-
proximation breaks down at an electron energy of order

Zeff
2 Ry. Figure 7 displays this effect for various values of the

core radius ac.
The spectra are now calculated for an �N+1�-electron sys-

tem by going through the same steps as were described for
the XPS case in Sec. II A, the only difference being that the
first row of the determinant of overlaps is now replaced by
the appropriate final state orbitals evaluated at r=0. The cal-
culated spectra Y�E� for N=5, 10, 20, 40, and 80 show again
the stability of the profile against changes in the number of
electrons �see Fig. 8�.

The case of x-ray emission is slightly different from ab-
sorption, since now the initial state �i
 contains N+1 conduc-
tion electrons in the presence of the core hole and the final
states �f	
 contain N conduction electrons and the core p
electron. If we denote the single-particle conduction orbitals
in the initial state by ��m� and those in the final state by ��n�,
we obtain the same result for 	i�M�f	
 as given by Eqs. �4.1�
and �4.3� for absorption. The difference between absorption
and emission lies in the fact that for absorption the orbitals
��m� are different in the various final states �f	
, whereas for
emission the orbitals ��m� are different in the various final
states. �So for emission the first row of the determinant of
Eq. �4.3� is the same for all final states.�

Just as in the case of the XPS spectra, there are some
useful checks on the calculations. First consider the case of
x-ray emission. Here we have for the integrated spectrum

FIG. 6. Recoil profiles EFI�E� for turning on �
0�0� and off �
0�0� a repulsive 
 shell. The calculations have employed a /rs

=0.32aB, 0.55aB, 1.00aB, and 1.27aB for �
0� /�=0.125, 0.25, 0.50, and 0.75 respectively. As in Fig. 3.
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J��� = �
f	

�	i�M�f	
�2

= �
j�¯�n�i �

��c�z��1� ��c�z��2� ¯ ��c�z��N+1�
�� j��1� �� j��2� ¯ �� j��N+1�
¯

¯

¯

��n��1� ��n��2� ¯ ��n��N+1�
�

2

.

�4.5�

Now we expand the determinant with respect to the first row.
Note that the minors M1,q of the first row now represent
overlaps of two N-electron states; in this overlap the initial
state is made up out of all the initial one-electron orbitals
except ��q�, and the final state is made up out of the same
one-electron continuum states as in the original determinant.
Assuming that the initial states can be expanded in a com-
plete set of final continuum states, we can carry out the sum
and obtain

J��� = �
j=1

N+1

���c�z�� j��2 = M2�
j=1

N+1

�� j�0��2. �4.6�

Due to the small-core approximation, there exists no sum
rule for the x-ray absorption profile. However, in this case it
is possible to obtain the behavior of the profile far away from
threshold, where the spectrum approaches screened-exciton
theory. In order to describe this asymptotic behavior it is
convenient to first consider the screened-exciton approxima-
tion, which will be done in the next subsection.

B. Screened-exciton approximation

As follows from Flynn’s derivation of the XPS line shape,
which contains no explicit information about the excited
states, the ND theory is an asymptotic theory, valid only
close to threshold. The question arises whether away from
threshold the line shape can be described by some other
simple approximation. As will be shown below, the gross
features of the spectra far from threshold are very well de-
scribed by screened-exciton theory,62,75 which we shall now
describe.

Screened-exciton theory �SEA� starts out by using the
same expression for the absorption and emission profiles as
one obtains with one-electron theory,

�SEA�E� = �
m

���c�z��m��2
�E − Em� , �4.7�

but rather than using the unperturbed one-electron wave
functions ��m�, screened-exciton theory uses the perturbed
wave functions ��m�; i.e., the screened-exciton approxima-
tion produces the spectrum one would obtain if the optical
electron experienced the screened potential of the core hole,
but the conduction electrons did not recoil during the transi-
tion. Here we shall apply screened-exciton theory to the case
where no potential is present when the core state ��c� is
filled. �This means that we shall always have U�r�=0 in Eq.
�1.1� when dealing with absorption, and U�r�=W�r�, V�r�
=−W�r� in Eqs. �1.1� and �1.2� when dealing with emission.
Here W�r� is the particular interaction we are considering. In
other words, for absorption the wave functions ��m� in Eq.
�4.7� are the final-state single-particle wave functions, while
for emission they are the initial-state wave functions.� We
now make the same small-core approximation in Eq. �4.7� as
was done to obtain Eq. �4.3�, which leads to

�SEA�E� = M2�
m

��m�0��2
�E − Em� . �4.8�

For an attractive final-state interaction, excess charge will be
localized near the core hole, so that ��m�0�� will be greater
than the free-electron wave function evaluated at r=0. This

FIG. 7. Plot of A= ��2 /192��M2 /ac
5�E1/2 versus energy for vari-

ous values of the core radius ac, showing the falloff of the free-
electron square root caused by the finite core radius. A is given by
�compare with Eq. �4.4�� A= �1−ac

2E�2�1+ac
2E�−8�E1/2 /4�2�.

FIG. 8. Integrated absorption spectrum Y�E� for a square well
with 
0=0.25� with 
0=0.25� versus energy in units of the Fermi
energy, for N=5, 10, 20, 40, and 80.
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means that for an attractive final-state interaction screened-
exciton theory predicts an enhancement of the free-electron
profiles. This will be worked out below for a square well and
an attractive 
 shell, but first we shall consider the behavior
of the absorption profile far away from threshold.

As we already mentioned in Sec. IV A, there exists no
sum rule for the absorption profile, due to the small-core
approximation �4.4�. However, it is possible to obtain the
behavior of the absorption profile far away from threshold.
To see this we consider again

��E� = M2 �
j�1�¯�n �

� j�0� �1�0� ¯ �n�0�
��1�� j� ��1��1� ¯ ��1��n�
¯

¯

¯

¯

��N�� j� ��N��1� ¯ ��N��n�

�
�
�E − Ef	 + Ei� , �4.9�

and let n become very large. Since �n�0� is proportional to kn

and, for large n, �� j ��n� is inversely proportional to kn, we
see that if we expand the determinant with respect to the last
column, we can write the determinant as

�n�0��
��1�� j� ¯ ¯ ��1��N−1�
��2�� j� ¯ ¯ ��2��N−1�
¯

¯

¯

��N�� j� ��N��1� ¯ ��m��N−1�
� . �4.10�

Now suppose that both n and N−1 become very large. Then
the last column of the determinant in Eq. �4.10� consists of
only zeros and this contribution vanishes. This means that for
large energies E we can write

��E� = M2 �
j�¯�n

��n�0��2�
��1�� j� ¯ ¯ ��1��N−1�
��2�� j� ¯ ¯ ��2��N−1�
¯

¯

¯

¯

��N�� j� ¯ ¯ ��N��N−1�

�
�
�E − Ef	 + Ei�

= M2� d��
n

��n�0��2
�E − � − �n�

� �
j�¯�N−1

�	i�f	�
�2
�� − Ef	� + Ei�

=� d� �SEA�E − ��I��� . �4.11�

Here 	i � f	�
 is the overlap of the initial N-particle state made

up out of ��1� , . . . , ��N� and the final N-particle state, which
has the state ��n� missing from the original �N+1�-particle
state. Ef	� is the total energy of the N-particle final state,
�SEA�E� is the absorption profile given by the screened-
exciton approximation �see Eq. �4.8��, and I��� is the XPS
recoil profile. In most cases, the recoil profile I��� becomes
zero for �EF, so that � is always small compared to E in
Eq. �4.11�. We may then expand �SEA�E−�� in a Taylor se-
ries around E, and if we cut off this series after the first term,
we obtain

��E�  �SEA�E� as E → � . �4.12�

Thus for large energies the absorption profile should ap-
proach the spectrum given by the screened-exciton approxi-
mation. This is indeed borne out by the calculations, as will
be shown in Sec. V.

We now return to the discussion of screened-exciton
theory itself, which was interrupted after Eq. �4.8�. If we
enclose our system in a box of radius R and let R→�, we
may replace the sum over n by �R /���dk, which gives

�SEA�E� = �RM2/�� � dk��k�0��2
�E − k2� . �4.13�

We will work out this expression for the square well and the
attractive 
 shell. �For the normal case where 
0�0 in ab-
sorption, the screened-exciton theory reduces to the free-
electron theory for the repulsive final-state interactions of the
infinite barrier and the repulsive 
 shell. See, however, Sec.
VI for an application of screened-exciton theory to the case
of the repulsive 
 shell for 
0�0.�

1. Square well

In this case we need to solve for the one-electron states of
the potential VW�r�, given by Eq. �3.3�. The solutions are

��� = �2�Rr2�−1/2 sin�kr + 
k�, r � a , �4.14�

and

��� = �2�Rr2�−1/2 sin�ka + 
k�sin��r�/sin��a�, r � a .

�4.15�

Here we have k2=E and �2=V0+E. We find for ���0��2

���0��2 = �2 sin2�ka + 
k�/�2�R sin2 �a� . �4.16�

The phase shift 
k may be eliminated from Eq. �4.16� by
using the continuity of d� /dr at r=a, which gives

cot�ka + 
k� = ��/k�cot��a� . �4.17�

With this result we can write

���0��2 = k2�2/2�R�k2 + V0 cos2 �a� , �4.18�

and substitution of Eq. �4.18� into Eq. �4.13� finally gives

�SEA�E� = M2�E1/2/4�2��E + V0�/

�E + V0 cos2 a�E + V0�1/2� . �4.19�

This expression describes emission for E�EF and absorp-
tion for E�EF. We see that the free-electron square root
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behavior is enhanced by a factor ��E+V0� / �E+V0 cos2 a�E
+V0�1/2�.

2. Attractive � shell

In this case the potential is given by V
− �r�=−V0a
�r
−a� and the s states of the system are

��� = �2�Rr2�−1/2 sin�kr + 
k�, r � a , �4.20�

and

��� = �2�Rr2�−1/2 sin�ka + 
k�sin�kr�/sin�ka�, r � a .

�4.21�

We use the integrated Schrödinger equation

k sin�ka + 
k�cos�ka� = V0a sin�ka + 
k�sin�ka�

+ k cos�ka + 
k�sin�ka� �4.22�

to eliminate the phase shift from the expression for ���0��2,
and obtain

���0��2 = k4/�2�R��k2 − 2kV0a sin�ka�cos�ka�

+ �V0
2a2 sin2 ka�� . �4.23�

Substitution of Eq. �4.23� into Eq. �4.13� gives

�SEA�E� = M2�E1/2/4�2��E/�E − 2kV0a sin�ka�cos�ka�

+ V0
2a2 sin2 ka�� , �4.24�

where we have k2=E. Again the free-electron square-root-of-
energy behavior is enhanced, now by the factor in braces in
Eq. �4.24�.

C. Limit of infinite number of electrons

To obtain the behavior of the absorption and emission
profiles from the numerical profiles as N→�, we formally
use an expression similar to Anderson’s theorem, but now for
�	i�M�f0
�2. We write

�	i�M�f0
�2 = M2CN−�, �4.25�

where the exponent is given by

� = �
0/� − 1�2 �4.26�

appropriate for absorption or emission.48,49 The constant C is
obtained from

C = limN→��	i�M�f0
�2N�/M2. �4.27�

The calculated lines �integrated spectra� are now fitted with
an expression of the form

J�x� = C�x/2���x� �4.28�

just as in the case of the XPS profiles, with ��x�=�
+�p=1

5 apxp. Again this expression is valid only for x�2, and
away from threshold we have to use a different expression.
For the case of absorption we have seen that far away from
threshold the exact profile should approach the screened-
exciton profile, which is expected to depend on the energy
through a factor E1/2 �see Eqs. �4.19� and �4.24��, just like the

free-electron profile. Therefore, the calculated absorption
line shapes �integrated spectra� are fitted with an expression
of the form

J�x� = �
p=0

4

cpxp+1/2 �4.29�

far away from threshold �x�
1
2

�.
In the case of emission one might expect to be able to use

the sum rule Eq. �4.6� again and fit the integrated spectrum
with a function of the type given in Eq. �2.13�. Unfortu-
nately, the sum rules depend weakly on the number of par-
ticles in this case and are of little use in determining small
contributions to ��E� far away from threshold. However, it
turns out that the sum rules for finite N are already almost
saturated for EEF, and it is possible to obtain an accurate
fit to the line shape ��E� by convolving the numerical spectra
with a Gaussian of width comparable to the level spacing,
just as described in Sec. II B for the XPS spectra. The ab-
sorption spectra were also broadened with Gaussians as a
check of the fit and to remove any ambiguities in the region
where the two fits overlap.

V. RESULTS FOR ABSORPTION AND EMISSION
PROFILES

In this section we shall give the results of our calculations
for the case where 
0�0 in absorption, i.e., the state with the
core hole present always has a more attractive potential than
the state in which the core hole is filled. This case is the most
appropriate one to consider for x-ray absorption and emis-
sion.

We have again considered four forms for the final-state
interaction, which will be discussed separately Secs.
V A–V D. No recoil energies will be given for these cases,
since the recoil energies for absorption are related simply to
the recoil energies for XPS �
0�0� by

ER
ABS − ER

XPS = EF. �5.1�

So the recoil energies can easily be obtained from those
given in Table I for XPS.

A. Repulsive barrier

Here we use again VB�r�=� for r�a, VB�r�=0 for r�a,
where a is determined by the phase shift at the Fermi level.
For absorption we have U�r�=VB�r�, V�r�=−VB�r� in Eqs.
�1.1� and �1.2�, while for emission we have U�r�=0, V�r�
=VB�r�. The recoil energies can again be calculated exactly
in this case and are given by

ER = EF − �2
0/3��EF. �5.2�

The sum rule for the case of emission, Eq. �4.6�, can also be
evaluated exactly in this case and gives
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J���/M2 = �
n=1

N+1

kn
2/2�R

= ��N + 1��N + 2��2N + 3�/12R3

= �kF
3/6�2��N + 1��N + 2��2N + 3�/�N + 1�3. �5.3�

For N→� we find

J���/M2 = kF
2/6�2. �5.4�

In Fig. 9 we show the x-ray absorption and emission pro-
files obtained for various values of 
0. The common thresh-
old is set equal to zero and emission appears for negative
energies, absorption for positive energies. Also shown in the
figures are the ND profiles �chained� and the free-electron
profiles �dotted�. In this case the screened-exciton approxi-
mation reduces to the free-electron result and is not shown.
The exact curve clearly shows the threshold anomaly, which
arises from interferences inherent in the determinantal wave
functions, as demonstrated by Friedel.43,44,48 We see again
that the exact results start to deviate from the ND curve very
close to threshold ��E−ET�� 0.03EF�. For small phase
shifts the spectra are very well described by the screened-
exciton approximation �free-electron curves�, except close to
threshold. For larger phase shifts we see that the absorption
profile does indeed approach the screened-exciton result far

away from threshold. Deviations from the screened-exciton
theory are most pronounced near threshold, where the
screened-exciton theory cannot produce an edge anomaly,
and, in emission, above the bottom of the band, where the
sum rule causes a depletion of the emission profile that com-
pensates the edge anomaly. For larger phase shifts there is a
similar effect in absorption just above threshold, where the
exact profile dips below the screened-exciton profile in an
apparent attempt to make up for the edge anomaly. It is also
clear that the absorption and emission profiles are not mirror
images of each other, except very close to threshold.

Absorption and emission edges which are not mirror sym-
metric have been reported.8 Such behavior is to be expected
on the basis of the present work.

As the phase shift increases, the divergence at the thresh-
old becomes more pronounced ��
0 /�−1�2→0 as 
0 /�
→1�, in contrast with the behavior of the XPS profiles.

B. Attractive square well

1. Spectra

Here we use again VW�r�=−V0��a−r�. We arbitrarily
choose a=1.5aB, after which the strength V0 is determined
by the phase shift at the Fermi level. For absorption we have
U�r�=0, V�r�=VW�r� in Eqs. �1.1� and �1.2�, while for emis-
sion we have U�r�=VW�r�, V�r�=−VW�r�. In Fig. 10 we show

FIG. 9. Emission and absorption profiles EF��E� /M2 for a barrier of infinite height. Emission profiles are displayed to the left of the
common threshold, absorption profiles to the right. Solid lines, exact results; chained lines, ND theory; dotted lines, free-electron theory. Not
in this figure, but in some of the following figures, broken lines, screened-exciton approximation.
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the absorption and emission profiles for various values of 
0.
Also shown are the normalized ND result, the free-electron
result, and the screened-exciton profile, as obtained from Eq.
�4.19�. For small phase shifts we see again that the exact
profile is very well described by screened-exciton theory,
except very close to threshold, and that screened-exciton

theory does indeed give an enhancement of the free-electron
result, as predicted in Sec. IV B. It is also clear that the ND
result agrees only very close to threshold with the exact so-
lutions, and that the absorption and emission profiles are not
mirror images. For 
0�0.38� a second threshold appears in
the absorption spectra, due to the fact that the potential is
now strong enough to produce a bound state. The profile
does not diverge at this second threshold, but instead van-
ishes with an exponent �
0 /�−2�2, in agreement with the
predictions of Combescot and Nozières53 �see also Ref. 49�.
Due to the fact that screened-exciton theory does not take the
relaxation of the conduction electrons into account properly,
the screened-exciton profile seems widely different from the
exact profile. However, if we take this electronic relaxation
into account by shifting the screened-exciton profile to the
right over a distance of EF+�B, to make the continuum ab-
sorption thresholds agree for the two cases, it will be seen
that the screened-exciton profile once again agrees very well
with the exact profile. The deviations of screened-exciton
theory from the exact result in emission for 
0=0.35� is
related to the same recoil energy problem.

2. Evolution of the spectra from the free-electron limit to the
exciton limit

Figure 10 shows how the absorption and emission spectra
behave as the strength of the final-state interaction increases
from zero to a magnitude sufficient to produce a bound ex-
citon. The spectra evolve from the square-root-of-energy
shape of free-electron theory to the characteristic exciton
shape.

C. Attractive � shell

In this case we use again V
−�r�=−V0a
�r−a� and let
U�r�=0, V�r�=V
−�r� in Eqs. �1.1� and �1.2� for absorption,
while for emission we have U�r�=V
−�r�, V�r�=−V
−�r�. The
profiles obtained for this case are shown in Fig. 11. These
profiles are qualitatively similar to those obtained for the
square well, but the enhancement factor in screened-exciton
theory is larger in this case. The same comments apply for
the case of the attractive 
 shell as were made for the square
well.

D. Repulsive delta shell

Here we use V
+�r�=V0a
�r−a� and let U�r�=V
+�r� in
Eqs. �1.1� and �1.2� for absorption, while for emission we
use U�r�=0, V�r�=V
+�r�. The profiles obtained for this case
are shown in Fig. 12. Again the screened-exciton theory re-
duces to the free-electron theory. The spectra are quite simi-
lar to those of the barrier and the same comments apply.

E. Comparison of barrier, well, and attractive shell

Figure 13 shows the absorption and emission spectra
EF��E� /M2 for three different final-state interactions, all
with 
0=0.25�. Although all have Nozières–de Dominicis
peaks at the threshold, the strengths of the spectra and those
peaks are quite different.

FIG. 10. Emission and absorption profiles EF��E� /M2 for a
square well of width a=1.5aB �a /rs=0.38aB�; as in Fig. 9.
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VI. SUMMARY

In summary, we have employed a “change of mean-field
model” and have shown that x-ray line shapes of metals can
be rich in structure, depending on the final-state interactions.
Much of this structure had been unanticipated in previous
work.

Especially noteworthy are the qualitative features of the
exact change of mean-field line shapes which offer possible
explanations of current paradoxes: �i� the deviation of the
exact theory from the asymptotic solution; �ii� the exhaustion
of the XPS sum rule �2.7� at relatively low energies for some
final-state interactions, which could lead to the observation
of apparently symmetric lines; and �iii� the lack of mirror
symmetry for absorption and emission edges.

The change of mean-field method can be adapted to treat
final-state interactions in metals with band structure; the re-
sulting calculations can be executed with contemporary
desk-top computers. At the present, such an ambitious com-
putational project seems unwarranted for the simple free-
electron metals, because final-state interactions are rather
weak and the form of the interaction for any specific metal is
not well understood. But, for polyvalent metals and for me-
tallic systems with strong final-state interactions, the finite-
number-of-electrons method provides a powerful technique
for understanding multielectron recoil.
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APPENDIX: DETAILS OF THE CALCULATIONS

In this appendix we give some of the mathematical details
of the calculations, such as the determination of the param-
eters of the final-state interaction, the form of the wave func-
tions, and the number of bound states for the attractive po-
tentials.

In all the cases that we have considered, we have a free-
electron gas in either the initial or the final state, and it is for
this state that we specify the electron density or radius pa-
rameter rs, after which the Fermi wave vector follows as
kF=kF

0 = �9� /4�1/3 /rsaB and the radius R of the system is
given by R=N� /kF

0 . Here N is the number of s conduction
electrons present in the state for which the core state is oc-
cupied. �In other words, for the square well and the attractive

 shell potentials we always use N electrons in the state with
no potential present and N+1 electrons in the state with the

FIG. 11. Emission and absorption profiles EF��E� /M2 for an attractive 
 shell. The calculations have employed a /rs=0.085aB, 0.11aB,
0.18aB, and 0.047aB for 
0 /�=0.05, 0.10, 0.50, and 0.75, respectively. As in Fig. 9.
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potential present. For the barrier and the repulsive shell,
however, we use again N electrons for the state with no
potential present, but N−1 electrons for the state with the
potential present.�

The one-electron wave functions for the free-electron gas
are given by

��n� = �2�Rr2�−1/2sin�knr�, kn = n�/R . �A1�

Here n can take on only integer values.

In Secs. A 1–A 4 we discuss the various final-state inter-
actions employed in this work.

1. Barrier

For an infinite barrier of radius a, the one-electron wave
functions can be written as

��m� = �2��R − a�r2�−1/2sin�km� �r − a��,

km� = m�/�R − a�, a � r � R . �A2�

For the wave function with energy equal to the �perturbed�
Fermi energy we have

��F� � r−1 sin�kF�r − 
0� �A3�

and the boundary condition at r=R gives

kF�R − 
0 = N� → kF� = �N� + 
0�/R = N�/�R − a� ,

�A4�

where the last step follows from Eq. �A2�. From Eq. �A4� we
obtain for the radius of the barrier

a = 
0/�kF
0�1 + 
0/N��� . �A5�

2. Square well

For a square well of strength V0 and radius a �which we
arbitrarily choose to be 1.5aB� the continuum wave functions
can be written as

FIG. 12. Emission and absorption profiles EF��E� /M2 for a re-
pulsive 
 shell. The calculations have employed a /rs=0.27aB,
0.73aB, and 1.27aB for 
0 /�=0.10, 0.35, and 0.75 respectively. As
in Fig. 9.

FIG. 13. Comparison of the absorption and emission spectra
EF��E� /M2 for various potentials with 
0=0.25�, namely, barrier,
square well, and attractive 
 shell. As in Fig. 9.
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��m� = �A�sin �mr�/�r sin �ma� , r � a ,

A�sin km�R − r��/�r sin km�R − a�� , r � a .
�
�A6�

Here A is a normalization constant and we must have

km
2 = �m, �m

2 = km
2 + V0, �A7�

where �m is the energy eigenvalue of the wave function. If
the strength V0 of the potential is known, the allowed wave
vectors follow from the boundary condition at r=a:

�m cot��ma� = − km cot�km�R − a�� . �A8�

Before determining the strength of the potential, we first ob-
tain the perturbed Fermi wave vector kF� . To do this we notice
that the wave function with energy at the �perturbed� Fermi
level can be written as

��F� = �A�sin �Fr�/�r sin �Fa� , r � a ,

A sin�kF�r + 
0�/r sin�kF�a + 
0� , r � a .
�

�A9�

The perturbed wave vector kF� at the perturbed Fermi level is
now determined from the boundary condition at r=R:

sin�kF�R + 
0� = 0 → kF� = �N� − 
0�/R = kF
0 − 
0/R ,

�A10�

where kF
0 is the unperturbed Fermi wave-vector.

From the boundary condition at r=a we obtain

tan x = �x/kF�a�tan�kF�a + 
0� , �A11�

where we have written

x = �Fa = a�V0 + kF�
2�1/2. �A12�

Equation �A11� can be solved for x, after which V0 can be
obtained from Eq. �A12�. We notice that Eq. �A11� has a
trivial solution x=0 which must be discarded, since it would
lead to wave functions with zero amplitude inside the well.
Furthermore, x is not determined uniquely by Eq. �A11�. To
get around this difficulty, we determine the interval n in
which �kF�a=
0� lies from

�n − 1��/2 � �kF�a + 
0� � n�/2, �A13�

and require x=�Fa to be in the same interval. This has the
following advantages: �i� x is determined uniquely; �ii� V0
→0 as the phase shift goes to zero; and �iii� V0 increases
continuously with increasing 
0.

Once V0 is determined, the allowed wave vectors for the
continuum states are obtained by solving Eq. �A8� with the
Newton-Raphson method.146

If the potential is strong enough, we can also have bound
states, which can be written as

��b� = �A�sin �br�/�r sin �ba� , r � a ,

A sinh kb�R − r�/r sinh kb�R − a� , r � a ,
�
�A14�

where we must have

− kb
2 = �b, �b

2 = V0 − kb
2. �A15�

The boundary condition at r=a now gives

�b cot��ba� = − kb coth kb�R − a� , �A16�

which can again be solved with the Newton-Raphson
method. The number of bound states, nb, supported by the
potential, is determined by V0. If

n� � aV0
1/2 � �2n + 1��/2, �A17�

we have nb=n. If

�2n − 1��/2 � aV0
1/2 � n� , �A18�

we must distinguish between two cases. If tan�aV0
1/2��

−V0
1/2�R−a�, we have nb=n, whereas nb=n−1 if tan�aV0

1/2�
�−V0

1/2�R−a�.

3. Attractive � shell

In this case the continuum wave functions can be written
as

��m� = �A�sin kmr�/�r sin kma� , r � a ,

A�sin km�R − r��/�r sin km�R − a�� , r � a .
�
�A19�

Here A is again a normalization constant, and the wave func-
tion must satisfy the boundary condition at r=a

km sin�kmR� = V0a sin�kma�sin�km�R − a�� . �A20�

If a and V0a are known, Eq. �A19� can be used to calculate
the allowed wave vectors km.

For the case of the 
 shell we specify the strength V0a of
the potential, after which the radius a can be determined
from 
0. Before determining this radius, we obtain the per-
turbed Fermi wave vector, by writing the wave function with
energy equal to the perturbed Fermi energy as

��F� = �A�sin kF�r�/�r sin kF�a� , r � a ,

A�sin�kF�r + 
0��/�r sin�kF�a + 
0�� , r � a .
�
�A21�

From the boundary condition at r=R we obtain

kF� = �N� − 
0�/R = kF
0 − 
0/R . �A22�

The wave functions given in Eq. �A21� must satisfy the
boundary condition at r=a:

cos�2kF�a + 
0� = cos�
0� − �2kF�/V0a�sin�
0� , �A23�

which can be solved for a. This equation does not determine
a uniquely, however, and therefore we always require a to
satisfy

0 � 2kF�a + 
0 � � . �A24�

The attractive 
 shell can produce a bound state if the
potential is strong enough. The bound-state wave function
can be written as
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��b� = �A�sinh kbr�/�r sinh kba� , r � a ,

A�sinh kb�R − r��/�r sinh kb�R − a�� , r � A ,
�

�A25�

with boundary condition at r=a given by

kb sinh�kbR� = V0a sinh�kba�sinh�kb�R − a�� . �A26�

This equation has one, and only one, solution if

V0a2�1 − a/R� � 1. �A27�

The wave vector kb for this solution can be obtained from
Eq. �A26�.

4. Repulsive � shell

The wave functions for this case are again given by Eq.
�A19�, but now with boundary condition

km sin�kmR� = − V0a sin�kma�sin�km�R − a�� . �A28�

For the wave function with energy equal to the perturbed
Fermi energy we write

��F� = �A�sin kF�r�/�r sin kFa� , r � a ,

A�sin�kF�r − 
0��/�r sin�kF�a − 
0�� , r � a ,
�
�A29�

and we obtain for the perturbed Fermi wave vector kF� in the
same way as for the attractive 
 shell

kF� = kF
0 + 
0R , �A30�

after which the radius a of the potential can be determined
from the boundary condition at r=a,

cos�2kF�a − 
0� = cos�
0� − �2kF�/V0a�sin�
0� , �A31�

and to determine a uniquely, we require

0 � 2kF�a − 
0 � � . �A32�
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