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Effective dielectric constants of photonic crystal of aligned anisotropic cylinders
and the optical response of a periodic array of carbon nanotubes
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We calculate the static dielectric tensor of a periodic system of aligned anisotropic dielectric cylinders. Exact
analytical formula for the effective dielectric constants for the H-eigenmodes is obtained for arbitrary 2D
Bravais lattice and arbitrary cross section of anisotropic cylinders. It is shown that depending on the symmetry
of the unit cell photonic crystal of anisotropic cylinders behaves like uniaxial or biaxial natural crystals. The
developed theory of homogenization of anisotropic cylinders is applied for calculations of the dielectric

properties of photonic crystals of carbon nanotubes.
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Periodic dielectric structures—photonic crystals (PC’s)—
have found many useful technological applications.'
Progress in the development of optical devices that operate
using the principles of the control of light> gave rise to the-
oretical studies of the properties of the spectra of PC’s.* In
particular, the region of low frequencies, where the methods
of the theory of homogenization* are applicable, has attracted
attention in the last decade. In the low-frequency limit the
light wave has linear dispersion and it is characterized by
effective permittivity

€.ii(K) = lim(ck/w)?. (1)
k—0

This effective parameter depends on the direction of propa-

gation k=Kk/k and has tensor structure. The latter property is
emphasized for 2D PC’s, which are anisotropic uniaxial or
biaxial crystals.> Unlike this, 3D PC’s may be isotropic.

Optical anisotropy of the PC’s studied in Refs. 5-7 is
determined by the geometry of the unit cell only. The con-
stituents themselves are considered to be isotropic dielec-
trics. This is not the case, for example, for a structure of
aligned carbon nanotubes or ZnO nanorods.’ Here anisotropy
manifests itself at the “microscopic” level, since the nano-
tubes (“atoms” of the PC) are optically anisotropic. The
static values of these dielectric constants are g;=1.8225 and
£,=5.226.8 The elongated topology and the anisotropy of
graphite cause PC’s of carbon nanotubes to exhibit large op-
tical anisotropy.” Three-dimensional PC’s of anisotropic
spheres have been studied in Ref. 10.

High anisotropy of 2D photonic crystals may find appli-
cations in nanophotonics as was proposed by Artigas and
Torner.!! Namely, the surface of an anisotropic 2D photonic
crystal supports propagation of a surface wave.'? It is local-
ized close to the surface due to the interference between the
ordinary and extraordinary waves. In natural crystals, it can
be hardly observed because of the low anisotropy. Since it is
a surface wave with very low energy losses, then it may
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replace surface plasmons in the near-field optics and inte-
grated photonic circuits.

The exact theory presented in this paper allows a calcula-
tion of the effective dielectric constant of carbon nanotubes
imbedded in a gas. Due to high absorbability of nanotubes,
the concentration of gas in the interior region of the nano-
tubes may be different from that in the atmosphere. This
leads to slightly different dielectric constants of the material
in the interior and exterior regions of the cylinders. This
effect can be detected measuring the shift of the resonant
frequency of a cavity.'?

An effective medium theory for the PC of anisotropic
carbon nanotubes was proposed in Ref. 14. This theory is
based on the Maxwell-Garnett approximation and it leads to
a simple formula for e.. The formula is valid for low filling
fractions and square lattice.

In this paper we extend the results of the theory’ to the
case of anisotropic dielectric cylinders. Exact formulas are
obtained for the principal dielectric constants of a 2D PC
with an arbitrary cross-sectional form of anisotropic cylin-
ders, arbitrary Bravais lattice, and filling fraction. We apply
our results to calculate the dielectric tensor of the PC of
carbon nanotubes. We also consider a PC with a rectangular
unit cell and calculate two different in-plane dielectric con-
stants. In this case the corresponding effective medium is a
biaxial crystal. It was argued that for the H-polarized mode
the effective dielectric constant for hollow and solid cylin-
ders are practically indistinguishable.'* Using our approach,
we study the effect of the internal cavity on the effective
dielectric constant and show explicitly how the effective di-
electric constant decreases with the internal radius.

We consider a 2D periodic structure of dielectric cylinders
with their axes parallel to z. The background material is an
isotropic dielectric with permittivity &, and the cylinders are
rolled up from an anisotropic dielectric sheet characterized
by a tensor £. For carbon nanotubes, this tensor has two
different eigenvalues, and in cylindrical coordinates is repre-
sented by a diagonal matrix with elements sgg 282):8 | and
si’j):su. As a whole, the periodic inhomogeneous dielectric
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medium is characterized by the coordinate-dependent block-
matrix,

80('3(1') 0 )

é(l‘) = ( O Szz(r)

2)
Here &,4(r) is a 2X2 Hermitian matrix in the x-y plane.
Outside the cylinders it reduces to a scalar, &,5,5 (@, B
=x,y) and inside the cylinders it is given by'*

) ((x2g + yzgl)/r2 (xy/rz)(s” -£)) ) 3)
Cap= (xy/rz)(sn -g)) (yng +x%e )Ir*)’

The wave equations for the E-polarized mode depend
only on the zz component of the dielectric tensor Eq. (2).
Therefore the effective dielectric constant in the long-
wavelength limit is the same as for the parallel arrangement
of isotropic cylinders (not necessarily periodic),

elf)=5.=A7 f e..(r)dr. (4)
A,
Here A, is the area of the unit cell. For a binary composite
siﬁ?=§zzzfsi+(1 —f)ey, where f is the filling fraction of the
component a.
Anisotropy affects the H-polarized mode. The wave equa-
tion has the following form:

d ( (?H) wzH 0 (5)
—\awpT |+ 5H=0, Xx,xg=x,)y.
ox, aﬁ&xﬁ c? @B Y

Here a;; is a 2 X2 matrix with determinant 1:
auﬁ(l‘) = SQ,B(r)/det saﬁ(l’) . (6)

To obtain the long-wavelength limit for Eq. (5) we apply
the method of plane waves.? Using the Bloch theorem we get
the Fourier expansions,

H(r) = exp(ik - 1) 2, I (G)exp(iG - 1), (7)
G

where G are the reciprocal-lattice vectors. Substituting Eq.
(7) into Eq. (5) we get,

> a,5(G = G )k + G) lk+ G") gy (G") = (w/c)*y (G).
GI

(8)

Here a,4(G) is the Fourier component of a,g(r). The ho-
mogenization occurs if the Bloch wave (7) approaches a
plane wave, i.e., if the Fourier coefficients with G# 0 in (7)
vanish in the long-wavelength limit. To obtain the behavior
of h(G) we substitute G=0 in Eq. (8) and take the limit k

—0,

WP = Aok okp= 2 ang(— GGG, (9)
G'#0

Here a,z=a,3(G=0) is the bulk average of the matrix (6)
and h(G)=(G)/h(G=0). In the long-wavelength limit
the coefficients of 4 (G’) on the right-hand side are propor-
tional to k. In order to make the rhs quadratic with k, the
amplitudes of nonzero harmonics, i (G’) must be propor-
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tional to k. Thus, the Bloch wave (7) can be written as a
linear expansion over k,

H(r) =exp(ik - 1)ho| 1+ >, hi(G)exp(iG -r)|. (10)
G#0

Since the sum over G vanishes linearly with k, Eq. (10)
shows that the medium becomes homogeneous, i.e., the so-
lution of the wave equation (5) approaches a plane. Now, to
calculate the dielectric constant (1), we develop a perturba-
tion theory with respect to a small parameter ka (a is the
lattice period). In Eq. (8) we keep the linear terms and obtain
the following relation:

(GG okg=— 2 a,5(G-G)G,Gphi(G"). (11)
G'#0

The quadratic approximation is given by Eq. (9), which gives
another linear relation between the eigenvectors h;(G). The
linear relations, Egs. (9) and (11), are the homogenized equa-
tions for the Fourier components of the magnetic field. These
equations are consistent, if the corresponding determinant
vanishes. Omitting the details, which can be found in Ref. 5,
we give the final answer for the inverse effective dielectric
constant

118 @) = Gugnang— 2 dup(Ga,s—G')
G,G'#0

X ngGan,Glay,(G' -G)G,G]". (12)

Here n=Kk/k is the unit vector in the direction of propagation
and [---]7! implies the inverse matrix in G-space. Equation
(12) is valid for an arbitrary form of the unit cell, geometry
of the cylindrical inclusions, material composition of the
photonic crystal, and the direction of propagation in the
plane of periodicity. In the case when a,4(G)=7(G) .4 Eq.
(12) is reduced to the formula obtained for isotropic cylin-
ders in Ref. 5 [7(G) is the Fourier component of the inverse
dielectric constant]. As any natural crystal, artificial PC in
the long-wavelength limit can be characterized by an index
ellipsoid."> In the x-y plane the cross section of the index
ellipsoid is given by Eq. (12) and the z semiaxis is given by
Eq. (4). If the unit cell possesses a third-or higher-order ro-
tational axis z, then the ellipse is reduced to a circle. In this
case PC behaves like a uniaxial crystal; otherwise, it is
biaxial."

First we study 2D PC of solid carbon cylinders arranged
in square and rectangular lattices. In Cartesian coordinates
the dielectric function of a carbon cylinder is given by Eq.
(3). For rectangular and square lattices with circular cylin-
ders the semiaxes of the index ellipsoid are directed along
the basic lattice vectors. Because of the cylindrical symmetry
of the inclusions, the off-diagonal elements of the tensor
a;(G) vanish.'® The diagonal elements for hollow cylinders
with outer and inner radii R and YR, respectively, (0<7y
=< 1) have the following form:

R*(1 -
LS ;A VZ)(8[]+811—28;1),

a,(0) =g, +
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FIG. 1. (Color online) In-plane effective dielectric constant for
the H-mode for uniaxial PC of solid graphite cylinders (circles).
Straight line (triangles) is the effective dielectric constant for the

E-mode. The squares show the results of the Maxwell-Garnett ap-
proximation (14). Insert shows the region of small filling fractions.

a,(G) =27/(A.G>){GR(&;,' = £1)[¥/,(YGR) - J,(GR)]
+(e7" = eT)Jo(GR) = Jo(YGR)1}. (13)

The diagonal element a,,(G) is obtained from Eq. (13) by
the replacement ¢, < g;.

For solid cylinders y=0. The circles in Fig. 1 show the
effective dielectric constant of the H-mode as a function of
the filling fraction, f= ’7TR2/AC, for the uniaxial PC with a
square lattice. The number of plane waves considered in this
calculation was 1200, which provides a good convergence in
Eq. (12). The dielectric constant for the extraordinary mode
(E-mode), Eq. (4) (shown by triangles in Fig. 1) is always
larger than that for the ordinary wave (H-mode). Therefore,
the effective medium is a uniaxial positive optically aniso-
tropic crystal. To check the validity of the Maxwell-Garnett
approximation, we plot in Fig. 1 (squares) the effective di-
electric constant proposed in Ref. 14,

(H) _ g +A +f(8|| - A)

MG o+ A= fle-A) (1

Here A=1g/& . One can see that for all filling fractions the
Maxwell-Garnett approximation gives overestimated values
for the effective dielectric constant. For a very dilute system,
£<0.07, the Maxwell-Garnett approximation gives results
that are practically indistinguishable from the exact ones (see
insert in Fig. 1). For the close-packed array of cylinders the
Maxwell-Garnet approximation overestimates the dielectric
constant by about 25%. In Fig. 2 we plot the two principal
dielectric constants for the biaxial PC of solid carbon cylin-
ders with a rectangular unit cell. The ratio of the sides of the
rectangle is 1:2. The difference between the two dielectric
constants increases with the filling fraction, giving rise to a
higher anisotropy of the corresponding effective medium.
The Maxwell-Garnett approximation Eq. (14), which does
not take into account the anisotropy of the unit cell, gives the
values for gy that lie between the two principal values, €,
<gpmg< &

In our model we consider the carbon nanotubes as hollow
graphite cylinders. In the experimental study® of the dielec-
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FIG. 2. (Color online) A plot of the principal effective dielectric
constants for the PC of solid carbon cylinders arranged in a rectan-
gular lattice. The larger (smaller) dielectric constant &,(e,) corre-
sponds to the direction of the vector E along the short (long) side of
the rectangle (circles). The Maxwell-Garnett dielectric constant is
shown by the squares.

tric properties of carbon nanotubes the outer radius of the
cylinders was approximately R=5 nm. The nanotubes
formed a thin film and they were oriented along a specific
direction. Although the nanotubes were not necessarily ar-
ranged periodically, one can assume that they formed almost
a regular lattice, since the nanotube density is about 0.6-0.7
which is near the value of f.=w/4~=0.785 for a close-
packed structure. Thus, the separation between the nanotubes
slightly exceeds 2R, and in Ref. 14 it was estimated to be
d=10.15nm. The inner radius is in the range <R
=0.25-2 nm.'* The parameters f, R, ¥, and A, are not inde-
pendent but related by the formula, f=7R*(1-+?)/A,. Sub-
stitution of these parameters into this formula shows that
they are self-consistent. It is worthwhile to mention that the
background material in the experiment’ is not air but the host
material Delrin or Teflon with g,> 1. Since neither the den-
sity of the host material nor its dielectric constant is known,
one cannot expect very good agreement between the experi-
mental results’ and theory. In all theoretical considerations it
was assumed that g,=1. Because of this lack of data, the
effective medium theories'*!” and the results shown in Fig. 1
give lower values for e, than that observed in the
experiment.’

It is obvious that the inner cavity reduces the permittivity
of an isolated nanotube as compared to a solid graphite cyl-
inder. It was argued'* that the effect of the inner cavity is less
than that for a single cylinder and even can be ignored, if
vy=<0.4. This conclusion was supported by comparing the
results of the Maxwell-Garnet approximation Eq. (14) and
numerical band structure calculations. In Fig. 3 we plot the
dielectric constant for a square lattice of hollow carbon nano-
tubes and compare the exact results obtained from Egs. (12)
and (13) with the results given by the Maxwell-Garnett ap-
proximation. One can see that, for the same outer radius, the
effective dielectric constant drops with an increase of the
inner radius. Thus, if the outer radius is fixed, the depen-
dence on the inner radius cannot be ignored, even in the
Maxwell-Garnett approximation. However, the dielectric
constant is much less sensitive to the internal radius if it is
plotted against filling fraction, Fig. 4.
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FIG. 3. (Color online) The plot of the effective dielectric con-
stant for the square lattice of carbon nanotubes versus the outer
radius for tubes with different ratios of the inner and outer radii,
v=0.1,0.3,0.5,0.7. The exact results are shown by circles and the
Maxwell-Garnett approximation is shown by squares.

In the Maxwell-Garnet approximation (14) there is no de-
pendence on the parameter 7, therefore, this approximation
is represented by a single curve in Fig. 4. Here, only the
filling fraction f is important, but not the topology of the
cylinders. In the exact theory the effective dielectric constant
depends on the details of the microstructure, but as far as the
filling fraction is concerned, the topology plays a much less
important role. Since the cylinder is determined by either
two parameters out of R, y, and f, the curves in Fig. 4 may
cross each other.

We calculated the static dielectric tensor for the 2D pho-
tonic crystal of anisotropic parallel cylinders arranged in a
periodic lattice. The results are applied for the periodic ar-
rangement of carbon nanotubes which are rolled up from a
uniaxial graphite crystal. It was shown that the geometry of
the unit cell has a small effect on the dielectric properties of
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FIG. 4. (Color online). A graph of the effective dielectric con-
stant for a square lattice of carbon nanotubes versus filling fraction
for tubes with different ratios of the inner and outer radii, y
=0.0,0.1,0.3,0.5,0.7,0.9. The exact results are shown by circles
and the Maxwell-Garnett approximation is shown by squares.

the uniaxial PC, provided that the filling factor is fixed (see
Fig. 4). Although we are interested in the static dielectric
tensor, it is clear that the developed long-wavelength limit
approach remains valid, even for optical frequencies since
the period of the lattice of carbon nanotubes d=10 nm is
much less than the optical wavelength A =500 nm. To cal-
culate the dynamic dielectric tensor, one has to substitute in
the general formula Eq. (12), the corresponding frequency-
dependent values for ¢ and ¢, . At finite frequencies Eq. (12)
gives the real part of the dielectric function. For dielectrics
the imaginary part of €. appears in the next approximation
over w. For metals Eq. (12) in invalid since Re 6@ 1/w
— 0, Calculations for metallic cylinders require a generali-
zation of the presented theory.
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